Python Library Reference
Release 1.5.2

Guido van Rossum

March 22, 2000

Corporation for National Research Initiatives
1895 Preston White Drive, Reston, VA 20191, USA
E-mail: guido®@python.org

Copyright (©) 1991-1995 by Stichting Mathematisch Centrum, Amsterdam, The Netherlands.
All Rights Reserved

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and
without fee is hereby granted, provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in supporting documentation, and that the
names of Stichting Mathematisch Centrum or CWI or Corporation for National Research Initiatives or
CNRI not be used in advertising or publicity pertaining to distribution of the software without specific,
written prior permission.

While CWT is the initial source for this software, a modified version is made available by the Corporation
for National Research Initiatives (CNRI) at the Internet address ftp://ftp.python.org.

STICHTING MATHEMATISCH CENTRUM AND CNRI DISCLAIM ALL WARRANTIES WITH RE-
GARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS, IN NO EVENT SHALL STICHTING MATHEMATISCH CENTRUM OR CNRI
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAM-
AGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN
AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Abstract

Python is an extensible, interpreted, object-oriented programming language. It supports a wide range
of applications, from simple text processing scripts to interactive WWW browsers.

While the Python Reference Manual describes the exact syntax and semantics of the language, it does
not describe the standard library that is distributed with the language, and which greatly enhances its
immediate usability. This library contains built-in modules (written in C) that provide access to system
functionality such as file I/O that would otherwise be inaccessible to Python programmers, as well as
modules written in Python that provide standardized solutions for many problems that occur in everyday
programming. Some of these modules are explicitly designed to encourage and enhance the portability
of Python programs.

This library reference manual documents Python’s standard library, as well as many optional library
modules (which may or may not be available, depending on whether the underlying platform supports
them and on the configuration choices made at compile time). It also documents the standard types of the
language and its built-in functions and exceptions, many of which are not or incompletely documented
in the Reference Manual.

This manual assumes basic knowledge about the Python language. For an informal introduction to
Python, see the Python Tutorial; the Python Reference Manual remains the highest authority on syntactic
and semantic questions. Finally, the manual entitled Ezxtending and Embedding the Python Interpreter
describes how to add new extensions to Python and how to embed it in other applications.

4.1

CONTENTS

1 Introduction 1
2 Built-in Types, Exceptions and Functions 3
2.1 Built-in Types o oL e 3
2.2 Built-in Exceptions e e e e 12
2.3 Built-in Functionso 15
3 Python Services 23
3.1 sys — System-specific parameters and functionso 0oL 23
3.2 types — Names for all built-in types L 27
3.3 UserDict — Class wrapper for dictionary objects 28
3.4 UserList — Class wrapper for list objects 28
3.5 operator — Standard operators as functions.o 29
3.6 traceback — Print or retrieve a stack tracebacko o000 31
3.7 linecache — Random access to text lines 32
3.8 pickle — Python object serializationo oL 33
3.9 cPickle — Alternate implementation of pickle 37
3.10 copy_reg — Register pickle support functions oL L. 38
3.11 shelve — Python object persistency 38
3.12 copy — Shallow and deep copy operations L. 39
3.13 marshal — Alternate Python object serialization 40
3.14 imp — Access the import internalso oo 41
3.15 parser — Access Python parse trees L oo 44
3.16 symbol — Constants used with Python parse trees. 53
3.17 token — Constants used with Python parse trees 53
3.18 keyword — Testing for Python keywords 54
3.19 tokenize — Tokenizer for Python source oL .. 54
3.20 pyclbr — Python class browser support Lo L oL L. 54
3.21 code — Interpreter base classes e e e e 55
3.22 codeop — Compile Python code L o 57
3.23 pprint — Data pretty printer. oL 57
3.24 repr — Alternate repr () implementation. 59
3.25 py_compile — Compile Python source files 61
3.26 compileall — Byte-compile Python libraries 61
3.27 dis — Disassembler. oL 61
3.28 new — Runtime implementation object creation 0. 67
3.29 site — Site-specific configuration hook L oo oo 67
3.30 user — User-specific configuration hook 0oL 68
3.31 __builtin__ — Built-in functions 69
3.32 __main__ — Top-level script environment. 69
4 String Services 71

string — Common string operations L oo 71

4.2 re — Perl-style regular expression operations. Lo 74
4.3 regex — Regular expression search and match operations. 81
4.4 regsub — String operations using regular expressionso 85
4.5 struct — Interpret strings as packed binary data.o o 0L 85
4.6 fpformat — Floating point conversions L Lo 88
4.7 StringI0 — Read and write strings asfileso 88
4.8 cStringI0 — Faster version of StringI0 88
Miscellaneous Services 91
5.1 math — Mathematical functions Lo 91
5.2 cmath — Mathematical functions for complex numbers 93
5.3 random — Generate pseudo-random numbers 94
5.4 whrandom — Pseudo-random number generator oo 95
5.5 bisect — Array bisection algorithm Lo o 95
5.6 array — Efficient arrays of numeric values oL 96
5.7 ConfigParser — Configuration file parser 98
5.8 fileinput — Iterate over lines from multiple input streams 100
5.9 calendar — General calendar-related functions 101
5.10 cmd — Build line-oriented command interpreters. L oL 101
5.11 shlex — Simple lexical analysis L 103
Generic Operating System Services 105
6.1 os — Miscellaneous OS interfaces L o s 105
6.2 os.path — Common pathname manipulations 113
6.3 dircache — Cached directory listings oo 115
6.4 stat — Interpreting stat() results 116
6.5 statcache — An optimization of os.stat() oL 117
6.6 statvfs — Constants used with os.statvfs() 118
6.7 cmp — File comparisons Lo 119
6.8 cmpcache — Efficient file comparisons oL oo 119
6.9 time — Time access and conversions 119
6.10 sched — Event scheduler 123
6.11 getpass — Portable password input oL oL o 124
6.12 curses — Terminal independant console handling 124
6.13 getopt — Parser for command line options. oL 128
6.14 tempfile — Generate temporary file names L Lo 129
6.15 errno — Standard errno system symbols. Lo oo 130
6.16 glob — UNIX style pathname pattern expansion 135
6.17 fnmatch — UNIX filename pattern matching 0. 136
6.18 shutil — High-level file operations oo 136
6.19 locale — Internationalization services 138
6.20 mutex — Mutual exclusion support 141
Optional Operating System Services 143
7.1 signal — Set handlers for asynchronous events. 143
7.2 socket — Low-level networking interface L Lo oL 145
7.3 select — Waiting for I/O completion. L Lo 149
7.4 thread — Multiple threads of control L 0. 150
7.5 threading — Higher-level threading interface, 151
7.6 Queue — A synchronized queue class. 157
7.7 anydbm — Generic access to DBM-style databases 0L 158
7.8 dumbdbm — Portable DBM implementation 159
7.9 dbhash — DBM-style interface to the BSD database library 159
7.10 whichdb — Guess which DBM module created a database 160
7.11 bsddb — Interface to Berkeley DB library 160
7.12 zlib — Compression compatible with gzip 162
7.13 gzip — Support for gzip fileso 164
7.14 rlcompleter — Completion function for readline 164

8 Unix Specific Services
posix — The most common POSIX system calls

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19

9 The
9.1
9.2

10 The
10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8

pwd — The password database .
grp — The group database . . .
crypt — Function to check UNIX

passwords . . . o.

dl — Call C functions in shared objects
dbm — Simple “database” interface e
gdbm — GNU’s reinterpretation of dbmo
termios — POSIX style tty control o
TERMIOS — Constants used with the termios module

tty — Terminal control functions
pty — Pseudo-terminal utilities

fentl — The fentl() and ioctl() systemcalls.o
pipes — Interface to shell pipelines L o oL
posixfile — File-like objects with locking support,

resource — Resource usage infor

mation e e

nis — Interface to Sun’s NIS (Yellow Pages)
syslog — UNIX syslog library routineso L.
popen2 — Subprocesses with accessible I/O streams

commands — Utilities for running

Python Debugger
Debugger Commands
How It Works

Python Profiler
Introduction to the profiler . . .

Instant Users Manual
What Is Deterministic Profiling?
Reference Manual
Limitations
Calibration

commands

Extensions — Deriving Better Profilers

11 Internet Protocols and Support
cgi — Common Gateway Interface support. L.
urllib — Open an arbitrary resource by URL

11.1
11.2
11.3
114
11.5
11.6
11.7
11.8
11.9

httplib — HTTP protocol client
ftplib — FTP protocol client .
gopherlib — Gopher protocol cli
poplib — POP3 protocol client

ent . .. L e e

imaplib — IMAP4 protocol client

nntplib — NNTP protocol client
smtplib — SMTP protocol client

11.10 telnetlib — Telnet client . . .
11.11 urlparse — Parse URLs into components.
11.12 SocketServer — A framework for network servers. L.
11.13 BaseHTTPServer — Basic HTTP server.
11.14 SimpleHTTPServer — A Do-Something Request Handler
11.15 CGIHTTPServer — A Do-Something Request Handler
11.16 asyncore — Asynchronous socket handler

12 Internet Data Handling

12.1
12.2
12.3
12.4
12.5

sgmllib — Simple SGML parser
htmllib — A parser for HTML d

ocuments e e e e e e e e e e

htmlentitydefs — Definitions of HTML general entities
xmllib — A parser for XML documents
formatter — Generic output formatting L L.

167
167
168
169
169
170
171
172
173
174
174
174
175
176
177
178
181
181
182
183

185
186
188

191
191
191
192
193
194
197
197
198

203
203
209
213
214
217
217
219
221
224
227
229
230
232
234
235
235

239
239
241
243
243
245

12.6 rfc822 — Parse RFC 822 mail headers
12.7 mimetools — Tools for parsing MIME messages
12.8 MimeWriter — Generic MIME file writer
12.9 multifile — Support for files containing distinct parts
12.10 binhex — Encode and decode binhex4 files
12.11 uwu — Encode and decode uuencode files
12.12 binascii — Convert between binary and ASCII
12.13 xdrlib — Encode and decode XDR data.
12.14 mailcap — Mailcap file handling. L oL oL
12.15 mimetypes — Map filenames to MIME types L.
12.16 base64 — Encode and decode MIME base64 data
12.17 quopri — Encode and decode MIME quoted-printable data
12.18 mailbox — Read various mailbox formats
12.19 mhlib — Access to MH mailboxes
12.20 mimify — MIME processing of mail messages
12.21 netrc — netre file processing L. L.

13 Restricted Execution

13.1 rexec — Restricted execution framework oo
13.2 Bastion — Restricting access to objects oo oL

14 Multimedia Services

14.1 audioop — Manipulate raw audio data oo Lo
14.2 imageop — Manipulate raw image data L oo L
14.3 aifc — Read and write AIFF and ATFC files.
14.4 sunau — Read and write Sun AU files o Lo
14.5 wave — Read and write WAV files
14.6 chunk — Read IFF chunked data
14.7 colorsys — Conversions between color systems
14.8 rgbimg — Read and write “SGI RGB” files
14.9 imghdr — Determine the type of an image. oL
14.10 sndhdr — Determine type of sound file. oo oo oL

15 Cryptographic Services

15.1 md5 — MD5 message digest algorithm oL oL oL
15.2 sha — SHA message digest algorithm
15.3 mpz — GNU arbitrary magnitude integers L 0oL
15.4 rotor — Enigma-like encryption and decryption. Lo

16 SGI IRIX Specific Services

16.1 al — Audio functions on the SGI oL
16.2 AL — Constants used with the al module
16.3 cd — CD-ROM access on SGIL systems
16.4 £1 — FORMS library interface for GUI applications
16.5 FL — Constants used with the fl module
16.6 flp — Functions for loading stored FORMS designs
16.7 fm — Font Manager interface L
16.8 gl — Graphics Library interface oL
16.9 DEVICE — Constants used with the gl module
16.10 GL — Constants used with the gl moduleo 0.
16.11 imgfile — Support for SGI imglib files oo oo
16.12 jpeg — Read and write JPEG files o o oo oo

17 SunOS Specific Services

17.1 sunaudiodev — Access to Sun audio hardware
17.2 SUNAUDIODEV — Constants used with sunaudiodev

18 MS Windows Specific Services

18.1 msvcrt — Useful routines from the MS VC++ runtime

267
268
270

271
271
274
275
277
279
280
281
282
283
283

285
285
286
286
287

289
289
291
291
294
299
299
299
300
302
302
302
303

305
305
306

307

18.2 winsound — Sound-playing interface for Windows

19 Undocumented Modules

19.1 Frameworks . . .

19.2 Miscellaneous useful utilities Lo
19.3 Platform specific modules

19.4 Multimedia
19.5 Obsolete
19.6 Extension modules

Module Index

Index

309
309
309
309
310
310
311

313

315

vi

CHAPTER
ONE

Introduction

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as
numbers and lists. For these types, the Python language core defines the form of literals and places some
constraints on their semantics, but does not fully define the semantics. (On the other hand, the language
core does define syntactic properties like the spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python
code without the need of an import statement. Some of these are defined by the core language, but
many are not essential for the core semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect
this collection. Some modules are written in C and built in to the Python interpreter; others are written
in Python and imported in source form. Some modules provide interfaces that are highly specific to
Python, like printing a stack trace; some provide interfaces that are specific to particular operating
systems, such as access to specific hardware; others provide interfaces that are specific to a particular
application domain, like the World-Wide Web. Some modules are avaiable in all versions and ports of
Python; others are only available when the underlying system supports or requires them; yet others are
available only when a particular configuration option was chosen at the time when Python was compiled
and installed.

This manual is organized “from the inside out:” it first describes the built-in data types, then the built-in
functions and exceptions, and finally the modules, grouped in chapters of related modules. The ordering
of the chapters as well as the ordering of the modules within each chapter is roughly from most relevant
to least important.

This means that if you start reading this manual from the start, and skip to the next chapter when
you get bored, you will get a reasonable overview of the available modules and application areas that
are supported by the Python library. Of course, you don’t have to read it like a novel — you can also
browse the table of contents (in front of the manual), or look for a specific function, module or term in
the index (in the back). And finally, if you enjoy learning about random subjects, you choose a random
page number (see module random) and read a section or two. Regardless of the order in which you read
the sections of this manual, it helps to start with chapter 2, “Built-in Types, Exceptions and Functions,”
as the remainder of the manual assumes familiarity with this material.

Let the show begin!

CHAPTER
TWO

Built-in Types, Exceptions and Functions

Names for built-in exceptions and functions are found in a separate symbol table. This table is searched
last when the interpreter looks up the meaning of a name, so local and global user-defined names can
override built-in names. Built-in types are described together here for easy reference.!

The tables in this chapter document the priorities of operators by listing them in order of ascending
priority (within a table) and grouping operators that have the same priority in the same box. Binary
operators of the same priority group from left to right. (Unary operators group from right to left, but
there you have no real choice.) See chapter 5 of the Python Reference Manual for the complete picture
on operator priorities.

2.1 Built-in Types

The following sections describe the standard types that are built into the interpreter. These are the
numeric types, sequence types, and several others, including types themselves. There is no explicit
Boolean type; use integers instead.

Some operations are supported by several object types; in particular, all objects can be compared, tested
for truth value, and converted to a string (with the ‘... ¢ notation). The latter conversion is implicitly
used when an object is written by the print statement.

2.1.1 Truth Value Testing

Any object can be tested for truth value, for use in an if or while condition or as operand of the Boolean
operations below. The following values are considered false:

e None

e zero of any numeric type, for example, 0, OL, 0.0, 0j.

e any empty sequence, for example, *’, (), [].

e any empty mapping, for example, {3}.

e instances of user-defined classes, if the class defines a __nonzero__() or __len__ () method,

when that method returns zero.?

All other values are considered true — so objects of many types are always true.

Operations and built-in functions that have a Boolean result always return O for false and 1 for true,
unless otherwise stated. (Important exception: the Boolean operations ‘or’ and ‘and’ always return one
of their operands.)

1Most descriptions sorely lack explanations of the exceptions that may be raised — this will be fixed in a future version
of this manual.
2 Additional information on these special methods may be found in the Python Reference Manual.

2.1.2 Boolean Operations

These are the Boolean operations, ordered by ascending priority:

Operation | Result Notes
T or y if z is false, then y, else z (1)
z and y | if z is false, then z, else y (1)

not z if z is false, then 1, else 0 (2)

Notes:

(1) These only evaluate their second argument if needed for their outcome.

(2) ‘not’ has a lower priority than non-Boolean operators, so not a == b is interpreted as not (a ==
b), and a == not b is a syntax error.

2.1.3 Comparisons

Comparison operations are supported by all objects. They all have the same priority (which is higher
than that of the Boolean operations). Comparisons can be chained arbitrarily; for example, z < y <=
z is equivalent to < y and y <= z, except that y is evaluated only once (but in both cases z is not
evaluated at all when = < y is found to be false).

This table summarizes the comparison operations:

Operation | Meaning Notes
< strictly less than
<= less than or equal
> strictly greater than
>= greater than or equal
== equal
<> not equal (1)
I= not equal (1)
is object identity

is not negated object identity

Notes:

(1) <> and != are alternate spellings for the same operator. (I couldn’t choose between ABC and C! :-)
= is the preferred spelling; <> is obsolescent.

Objects of different types, except different numeric types, never compare equal; such objects are ordered
consistently but arbitrarily (so that sorting a heterogeneous array yields a consistent result). Further-
more, some types (for example, file objects) support only a degenerate notion of comparison where any
two objects of that type are unequal. Again, such objects are ordered arbitrarily but consistently.

Instances of a class normally compare as non-equal unless the class defines the __cmp__ () method. Refer
to the Python Reference Manual for information on the use of this method to effect object comparisons.

Implementation note: Objects of different types except numbers are ordered by their type names;
objects of the same types that don’t support proper comparison are ordered by their address.

Two more operations with the same syntactic priority, ‘in’ and ‘not in’, are supported only by sequence
types (below).

2.1.4 Numeric Types

There are four numeric types: plain integers, long integers, floating point numbers, and complex numbers.
Plain integers (also just called integers) are implemented using long in C, which gives them at least 32

4 Chapter 2. Built-in Types, Exceptions and Functions

bits of precision. Long integers have unlimited precision. Floating point numbers are implemented using
double in C. All bets on their precision are off unless you happen to know the machine you are working
with.

Complex numbers have a real and imaginary part, which are both implemented using double in C. To
extract these parts from a complex number z, use z.real and z.imag.

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned
integer literals (including hex and octal numbers) yield plain integers. Integer literals with an ‘L’ or
‘1’ suffix yield long integers (‘L’ is preferred because ‘11’ looks too much like eleven!). Numeric literals
containing a decimal point or an exponent sign yield floating point numbers. Appending ‘j’ or ‘J’ to a
numeric literal yields a complex number.

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different
numeric types, the operand with the “smaller” type is converted to that of the other, where plain integer
is smaller than long integer is smaller than floating point is smaller than complex. Comparisons between
numbers of mixed type use the same rule.®> The functions int (), long(), float(), and complex() can
be used to coerce numbers to a specific type.

All numeric types support the following operations, sorted by ascending priority (operations in the same
box have the same priority; all numeric operations have a higher priority than comparison operations):

Operation Result Notes
T+ y sum of z and y
T -y difference of = and y
T *xy product of z and y
x /Yy quotient of z and y (1)
x hy remainder of x / y
-x z negated
+x 2 unchanged
abs(z) absolute value or magnitude of x
int (x) x converted to integer (2)
long(z) x converted to long integer (2)
float(x) z converted to floating point
complex(re,im) | a complex number with real part re, imaginary part ém. im defaults to zero.
c.conjugate() | conjugate of the complex number c
divmod(z, y) the pair (x / y, = % y) (3)
pow(z, y) z to the power y
T k*k gy z to the power y
Notes:

(1) For (plain or long) integer division, the result is an integer. The result is always rounded towards
minus infinity: 1/2is 0, (-1)/2 is -1, 1/(-2) is -1, and (-1)/(-2) is 0. Note that the result is a long
integer if either operand is a long integer, regardless of the numeric value.

(2) Conversion from floating point to (long or plain) integer may round or truncate as in C; see functions
floor() and ceil() in module math for well-defined conversions.

(3) See section 2.3, “Built-in Functions,” for a full description.

Bit-string Operations on Integer Types

Plain and long integer types support additional operations that make sense only for bit-strings. Negative
numbers are treated as their 2’s complement value (for long integers, this assumes a sufficiently large
number of bits that no overflow occurs during the operation).

3As a consequence, the list [1, 2] is considered equal to [1.0, 2.0], and similar for tuples.

2.1. Built-in Types 5

The priorities of the binary bit-wise operations are all lower than the numeric operations and higher than
the comparisons; the unary operation ‘~’ has the same priority as the other unary numeric operations
(A+7 and L_’).

This table lists the bit-string operations sorted in ascending priority (operations in the same box have
the same priority):

Operation | Result Notes
z |y bitwise or of z and y
z "y bitwise exclusive or of = and y
T &y bitwise and of z and y
T << n z shifted left by n bits (1), (2)
T >> n x shifted right by n bits (1), (3)
"z the bits of z inverted

Notes:

(1) Negative shift counts are illegal and cause a ValueError to be raised.
(2) A left shift by n bits is equivalent to multiplication by pow(2, n) without overflow check.
(3) A right shift by n bits is equivalent to division by pow(2, n) without overflow check.

2.1.5 Sequence Types

There are three sequence types: strings, lists and tuples.

Strings literals are written in single or double quotes: ’xyzzy’, "frobozz". See chapter 2 of the Python
Reference Manual for more about string literals. Lists are constructed with square brackets, separating
items with commas: [a, b, c]. Tuples are constructed by the comma operator (not within square
brackets), with or without enclosing parentheses, but an empty tuple must have the enclosing parentheses,
e.g.,a, b, cor (). A single item tuple must have a trailing comma: (d,).

Sequence types support the following operations. The ‘in’ and ‘not in’ operations have the same priori-
ties as the comparison operations. The ‘+’ and ‘*’ operations have the same priority as the corresponding
numeric operations.*

This table lists the sequence operations sorted in ascending priority (operations in the same box have
the same priority). In the table, s and ¢ are sequences of the same type; n, i and j are integers:

Operation Result Notes
z in s 1 if an item of s is equal to z, else 0
z not in s | 0 if an item of s is equal to z, else 1
s+t the concatenation of s and ¢
s * n, n * s | n copies of s concatenated (1)
s[4l i’th item of s, origin 0 (2)
sli:7] slice of s from i to j (2), (3)
len(s) length of s
min(s) smallest item of s
max (s) largest item of s

Notes:

(1) Values of n less than 0 are treated as 0 (which yields an empty sequence of the same type as s).

(2) If i or j is negative, the index is relative to the end of the string, i.e., len(s) + i or len(s) + jis
substituted. But note that -0 is still 0.

(3) The slice of s from ¢ to j is defined as the sequence of items with index k such that i <= k < j. If
i or j is greater than len(s), use len(s). If ¢ is omitted, use 0. If j is omitted, use len(s). If i
is greater than or equal to j, the slice is empty.

4They must have since the parser can’t tell the type of the operands.

6 Chapter 2. Built-in Types, Exceptions and Functions

More String Operations

String objects have one unique built-in operation: the % operator (modulo) with a string left argument
interprets this string as a C sprintf () format string to be applied to the right argument, and returns
the string resulting from this formatting operation.

The right argument should be a tuple with one item for each argument required by the format string; if
the string requires a single argument, the right argument may also be a single non-tuple object.> The
following format characters are understood: %, c, s, i, d, u, o, x, X, e, E, £, g, G. Width and precision may
be a * to specify that an integer argument specifies the actual width or precision. The flag characters
-, +, blank, # and 0 are understood. The size specifiers h, 1 or L may be present but are ignored. The
%s conversion takes any Python object and converts it to a string using str () before formatting it. The
ANSI features %p and %n are not supported. Since Python strings have an explicit length, %s conversions
don’t assume that >\0’ is the end of the string.

For safety reasons, floating point precisions are clipped to 50; %f conversions for numbers whose absolute
value is over 1e25 are replaced by %g conversions.® All other errors raise exceptions.

If the right argument is a dictionary (or any kind of mapping), then the formats in the string must have
a parenthesized key into that dictionary inserted immediately after the ‘%’ character, and each format
formats the corresponding entry from the mapping. For example:

>>> count = 2

>>> language = ’Python’

>>> print ’Y%(language)s has %(count)03d quote types.’ 7% vars()
Python has 002 quote types.

In this case no * specifiers may occur in a format (since they require a sequential parameter list).

Additional string operations are defined in standard module string and in built-in module re.

Mutable Sequence Types

List objects support additional operations that allow in-place modification of the object. These operations
would be supported by other mutable sequence types (when added to the language) as well. Strings and
tuples are immutable sequence types and such objects cannot be modified once created. The following
operations are defined on mutable sequence types (where z is an arbitrary object):

Operation Result Notes
sli] = x item ¢ of s is replaced by z

sli:jl =t slice of s from ¢ to j is replaced by ¢

del s[i:j] same as s[i:j] = []

s.append (z) same as s[len(s):len(s)] = [z] (1)

s.extend(z) same as s[len(s):len(s)] = z (2)

s.count (x) return number of i’s for which s[i] ==

s.index(z) return smallest ¢ such that s[i] == z (3)

s.insert (i, z) same as s[i:4] = [z] if ¢ >= 0

s.pop([i]) same as ¢ = s[i]; del s[i]; return z (4)

s.remove (1) same as del s[s.index(z)] (3)

s.reverse() reverses the items of s in place (5)
s. sort([cmpfunc]) sort the items of s in place (5), (6)

Notes:

(1) The C implementation of Python has historically accepted multiple parameters and implicitly joined

5A tuple object in this case should be a singleton.
6These numbers are fairly arbitrary. They are intended to avoid printing endless strings of meaningless digits without
hampering correct use and without having to know the exact precision of floating point values on a particular machine.

2.1. Built-in Types 7

them into a tuple; this will no longer work in Python 1.6. Use of this misfeature has been deprecated
since Python 1.4.

(2) Raises an exception when z is not a list object. The extend() method is experimental and not
supported by mutable sequence types other than lists.

(3) Raises ValueError when z is not found in s.

(4) The pop() method is experimental and not supported by other mutable sequence types than lists.
The optional argument 7 defaults to -1, so that by default the last item is removed and returned.

(5) The sort() and reverse() methods modify the list in place for economy of space when sorting or
reversing a large list. They don’t return the sorted or reversed list to remind you of this side effect.

(6) The sort() method takes an optional argument specifying a comparison function of two arguments
(list items) which should return -1, 0 or 1 depending on whether the first argument is considered
smaller than, equal to, or larger than the second argument. Note that this slows the sorting process
down considerably; e.g. to sort a list in reverse order it is much faster to use calls to the methods
sort () and reverse() than to use the built-in function sort() with a comparison function that
reverses the ordering of the elements.

2.1.6 Mapping Types

A mapping object maps values of one type (the key type) to arbitrary objects. Mappings are mutable
objects. There is currently only one standard mapping type, the dictionary. A dictionary’s keys are
almost arbitrary values. The only types of values not acceptable as keys are values containing lists or
dictionaries or other mutable types that are compared by value rather than by object identity. Numeric
types used for keys obey the normal rules for numeric comparison: if two numbers compare equal (e.g.
1 and 1.0) then they can be used interchangeably to index the same dictionary entry.

Dictionaries are created by placing a comma-separated list of key: walue pairs within braces, for ex-
ample: {’jack’: 4098, ’sjoerd’: 4127} or {4098: ’jack’, 4127: ’sjoerd’}.

The following operations are defined on mappings (where a and b are mappings, k is a key, and v and =
are arbitrary objects):

Operation Result Notes
len(a) the number of items in a
alk] the item of a with key & (1)
alk] =z set a[k] to x
del alk] remove a[k] from a (1)
a.clear() remove all items from a
a.copy(Q) a (shallow) copy of a
a.has_key(k) | 1if a has a key k, else 0
a.items() a copy of a’s list of (key, value) pairs (2)
a.keys() a copy of a’s list of keys (2)
a.update(d) | for k, v in b.items(): alk] =v (3)
a.values() a copy of a’s list of values (2)
a.get(k[, x]) a[k] if a.has_key(k), else x (4)

Notes:

(1) Raises a KeyError exception if k is not in the map.

(2) Keys and values are listed in random order. If keys() and values() are called with no intervening
modifications to the dictionary, the two lists will directly correspond. This allows the creation of
(value, key) pairs using map(): ‘pairs = map(None, a.values(), a.keys())’.

(3) b must be of the same type as a.

(4) Never raises an exception if k is not in the map, instead it returns z. x is optional; when z is not
provided and k is not in the map, None is returned.

8 Chapter 2. Built-in Types, Exceptions and Functions

2.1.7 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

Modules

The only special operation on a module is attribute access: m.name, where m is a module and name
accesses a name defined in m’s symbol table. Module attributes can be assigned to. (Note that the
import statement is not, strictly speaking, an operation on a module object; import foo does not
require a module object named foo to exist, rather it requires an (external) definition for a module
named foo somewhere.)

A special member of every module is __dict__. This is the dictionary containing the module’s symbol
table. Modifying this dictionary will actually change the module’s symbol table, but direct assignment
to the __dict__ attribute is not possible (i.e., you can write m.__dict__[’a’] = 1, which defines
m.a to be 1, but you can’t write m.__dict__ = {}.

Modules built into the interpreter are written like this: <module ’sys’ (built-in)>. If loaded from a
file, they are written as <module ’os’ from ’/usr/local/lib/pythonl.5/os.pyc’>.

Classes and Class Instances

See chapters 3 and 7 of the Python Reference Manual for these.

Functions

Function objects are created by function definitions. The only operation on a function object is to call
it: funcCargument-list) .

There are really two flavors of function objects: built-in functions and user-defined functions. Both
support the same operation (to call the function), but the implementation is different, hence the different
object types.

The implementation adds two special read-only attributes: f.func_code is a function’s code object (see
below) and f.func_globals is the dictionary used as the function’s global name space (this is the same
as m.__dict__ where m is the module in which the function f was defined).

Methods

Methods are functions that are called using the attribute notation. There are two flavors: built-in
methods (such as append() on lists) and class instance methods. Built-in methods are described with
the types that support them.

The implementation adds two special read-only attributes to class instance methods: m.im_self is the
object on which the method operates, and m.im_func is the function implementing the method. Call-
ing m(arg-1, arg-2, ..., arg-n) is completely equivalent to calling m.im_func(m.im_self, arg-1,
arg-2, ..., arg-n).

See the Python Reference Manual for more information.

Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code
such as a function body. They differ from function objects because they don’t contain a reference to
their global execution environment. Code objects are returned by the built-in compile() function and
can be extracted from function objects through their func_code attribute.

A code object can be executed or evaluated by passing it (instead of a source string) to the exec statement
or the built-in eval () function.

2.1. Built-in Types 9

See the Python Reference Manual for more information.

Type Objects

Type objects represent the various object types. An object’s type is accessed by the built-in function
type(). There are no special operations on types. The standard module types defines names for all
standard built-in types.

Types are written like this: <type ’int’>.

The Null Object

This object is returned by functions that don’t explicitly return a value. It supports no special operations.
There is exactly one null object, named None (a built-in name).

It is written as None.

The Ellipsis Object

This object is used by extended slice notation (see the Python Reference Manual). Tt supports no special
operations. There is exactly one ellipsis object, named E1lipsis (a built-in name).

It is written as Ellipsis.

File Objects

File objects are implemented using C’s stdio package and can be created with the built-in function
open() described in section 2.3, “Built-in Functions.” They are also returned by some other built-in
functions and methods, e.g., posix.popen() and posix.fdopen() and the makefile () method of socket
objects.

When a file operation fails for an I/O-related reason, the exception IOError is raised. This includes
situations where the operation is not defined for some reason, like seek() on a tty device or writing a
file opened for reading.

Files have the following methods:

close()
Close the file. A closed file cannot be read or written anymore.

flush O
Flush the internal buffer, like stdio’s £flush().

isatty ()
Return 1 if the file is connected to a tty(-like) device, else 0.

fileno()
Return the integer “file descriptor” that is used by the underlying implementation to request 1/0O
operations from the operating system. This can be useful for other, lower level interfaces that use
file descriptors, e.g. module fcntl or os.read() and friends.

read([size])
Read at most size bytes from the file (less if the read hits EOF before obtaining size bytes). If the
size argument is negative or omitted, read all data until EOF is reached. The bytes are returned as
a string object. An empty string is returned when EOF is encountered immediately. (For certain
files, like ttys, it makes sense to continue reading after an EOF is hit.) Note that this method may
call the underlying C function fread () more than once in an effort to acquire as close to size bytes
as possible.

readline([size])

10 Chapter 2. Built-in Types, Exceptions and Functions

Read one entire line from the file. A trailing newline character is kept in the string” (but may
be absent when a file ends with an incomplete line). If the size argument is present and non-
negative, it is a maximum byte count (including the trailing newline) and an incomplete line may
be returned. An empty string is returned when EOF is hit immediately. Note: Unlike stdio’s
fgets (), the returned string contains null characters (?\0?) if they occurred in the input.

readlines([sizehint])
Read until EOF using readline() and return a list containing the lines thus read. If the optional
sizehint argument is present, instead of reading up to EOF, whole lines totalling approximately
sizehint bytes (possibly after rounding up to an internal buffer size) are read.

seek(oﬁset[, whence])
Set the file’s current position, like stdio’s fseek(). The whence argument is optional and defaults
to 0 (absolute file positioning); other values are 1 (seek relative to the current position) and 2 (seek
relative to the file’s end). There is no return value.

tell()
Return the file’s current position, like stdio’s ftell().

truncate([size])
Truncate the file’s size. If the optional size argument present, the file is truncated to (at most)
that size. The size defaults to the current position. Availability of this function depends on the
operating system version (for example, not all UNIX versions support this operation).

write(str)
Write a string to the file. There is no return value. Note: Due to buffering, the string may not
actually show up in the file until the flush() or close() method is called.

writelines (list)
Write a list of strings to the file. There is no return value. (The name is intended to match
readlines(); writelines() does not add line separators.)

File objects also offer the following attributes:

closed
Boolean indicating the current state of the file object. This is a read-only attribute; the close ()
method changes the value.

mode
The I/0 mode for the file. If the file was created using the open() built-in function, this will be
the value of the mode parameter. This is a read-only attribute.

name
If the file object was created using open(), the name of the file. Otherwise, some string that
indicates the source of the file object, of the form ‘<...>’. This is a read-only attribute.

softspace
Boolean that indicates whether a space character needs to be printed before another value when
using the print statement. Classes that are trying to simulate a file object should also have
a writable softspace attribute, which should be initialized to zero. This will be automatic for
classes implemented in Python; types implemented in C will have to provide a writable softspace
attribute.

Internal Objects

See the Python Reference Manual for this information. It describes code objects, stack frame objects,
traceback objects, and slice objects.

7The advantage of leaving the newline on is that an empty string can be returned to mean EOF without being ambiguous.
Another advantage is that (in cases where it might matter, e.g. if you want to make an exact copy of a file while scanning
its lines) you can tell whether the last line of a file ended in a newline or not (yes this happens!).

2.1. Built-in Types 11

2.1.8 Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are
relevant:

—_dict__
A dictionary of some sort used to store an object’s (writable) attributes.

__methods_ _
List of the methods of many built-in object types, e.g., [1.__methods__ yields [’append’,
’count’, ’index’, ’insert’, ’pop’, ’remove’, ’reverse’, ’sort’].

__members_ _
Similar to __methods__, but lists data attributes.

__class__
The class to which a class instance belongs.

__bases__
The tuple of base classes of a class object.

2.2 Built-in Exceptions

Exceptions can be class objects or string objects. While traditionally, most exceptions have been string
objects, in Python 1.5, all standard exceptions have been converted to class objects, and users are
encouraged to do the same. The source code for those exceptions is present in the standard library
module exceptions; this module never needs to be imported explicitly.

For backward compatibility, when Python is invoked with the -X option, most of the standard exceptions
are strings.® This option may be used to run code that breaks because of the different semantics of class
based exceptions.

Deprecation warning: The -X option will be removed in Python 1.6, so the recommended solution is
to adjust all code to work with class-based exceptions.

Two distinct string objects with the same value are considered different exceptions. This is done to force
programmers to use exception names rather than their string value when specifying exception handlers.
The string value of all built-in exceptions is their name, but this is not a requirement for user-defined
exceptions or exceptions defined by library modules.

For class exceptions, in a try statement with an except clause that mentions a particular class, that
clause also handles any exception classes derived from that class (but not exception classes from which
it is derived). Two exception classes that are not related via subclassing are never equivalent, even if
they have the same name.

The built-in exceptions listed below can be generated by the interpreter or built-in functions. Except
where mentioned, they have an “associated value” indicating the detailed cause of the error. This may
be a string or a tuple containing several items of information (e.g., an error code and a string explaining
the code). The associated value is the second argument to the raise statement. For string exceptions,
the associated value itself will be stored in the variable named as the second argument of the except
clause (if any). For class exceptions, that variable receives the exception instance. If the exception
class is derived from the standard root class Exception, the associated value is present as the exception
instance’s args attribute, and possibly on other attributes as well.

User code can raise built-in exceptions. This can be used to test an exception handler or to report an
error condition “just like” the situation in which the interpreter raises the same exception; but beware
that there is nothing to prevent user code from raising an inappropriate error.

The following exceptions are only used as base classes for other exceptions. When string-based standard
exceptions are used, they are tuples containing the directly derived classes. Note: These will always be
classes in Python 1.6.

8For forward-compatibility the new exceptions Exception, LookupError, ArithmeticError, EnvirommentError, and
StandardError are tuples.

12 Chapter 2. Built-in Types, Exceptions and Functions

Exception

The root class for exceptions. All built-in exceptions are derived from this class. All user-defined
exceptions should also be derived from this class, but this is not (yet) enforced. The str () function,
when applied to an instance of this class (or most derived classes) returns the string value of the
argument or arguments, or an empty string if no arguments were given to the constructor. When
used as a sequence, this accesses the arguments given to the constructor (handy for backward
compatibility with old code). The arguments are also available on the instance’s args attribute,
as a tuple.

StandardError
The base class for all built-in exceptions except SystemExit. StandardError itself is derived from
the root class Exception.

ArithmeticError
The base class for those built-in exceptions that are raised for various arithmetic errors:
OverflowError, ZeroDivisionError, FloatingPointError.

LookupError
The base class for the exceptions that are raised when a key or index used on a mapping or sequence
is invalid: IndexError, KeyError.

EnvironmentError
The base class for exceptions that can occur outside the Python system: I0Error, 0SError. When
exceptions of this type are created with a 2-tuple, the first item is available on the instance’s errno
attribute (it is assumed to be an error number), and the second item is available on the strerror
attribute (it is usually the associated error message). The tuple itself is also available on the args
attribute. New in version 1.5.2.

When an EnvironmentError exception is instantiated with a 3-tuple, the first two items are avail-
able as above, while the third item is available on the filename attribute. However, for backwards
compatibility, the args attribute contains only a 2-tuple of the first two constructor arguments.

The filename attribute is None when this exception is created with other than 3 arguments. The
errno and strerror attributes are also None when the instance was created with other than 2 or
3 arguments. In this last case, args contains the verbatim constructor arguments as a tuple.

The following exceptions are the exceptions that are actually raised. They are class objects, except when
the -X option is used to revert back to string-based standard exceptions.

AssertionError
Raised when an assert statement fails.

AttributeError
Raised when an attribute reference or assignment fails. (When an object does not support attribute
references or attribute assignments at all, TypeError is raised.)

EOFError
Raised when one of the built-in functions (input () or raw_input()) hits an end-of-file condition
(EOF) without reading any data. (N.B.: the read() and readline () methods of file objects return
an empty string when they hit EOF.)

FloatingPointError
Raised when a floating point operation fails. This exception is always defined, but can only be
raised when Python is configured with the -—with-fpectl option, or the WANT_SIGFPE_HANDLER
symbol is defined in the ‘config.h’ file.

I0Error
Raised when an I/O operation (such as a print statement, the built-in open() function or a
method of a file object) fails for an I/O-related reason, e.g., “file not found” or “disk full”.

This class is derived from EnvironmentError. See the discussion above for more information on
exception instance attributes.

ImportError
Raised when an import statement fails to find the module definition or when a from ... import
fails to find a name that is to be imported.

2.2. Built-in Exceptions 13

IndexError
Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the
allowed range; if an index is not a plain integer, TypeError is raised.)

KeyError
Raised when a mapping (dictionary) key is not found in the set of existing keys.

KeyboardInterrupt
Raised when the user hits the interrupt key (normally Control-C or DEL). During execution, a
check for interrupts is made regularly. Interrupts typed when a built-in function input() or
raw_input()) is waiting for input also raise this exception.

MemoryError
Raised when an operation runs out of memory but the situation may still be rescued (by deleting
some objects). The associated value is a string indicating what kind of (internal) operation ran out
of memory. Note that because of the underlying memory management architecture (C’s malloc()
function), the interpreter may not always be able to completely recover from this situation; it
nevertheless raises an exception so that a stack traceback can be printed, in case a run-away
program was the cause.

NameError
Raised when a local or global name is not found. This applies only to unqualified names. The
associated value is the name that could not be found.

NotImplementedError
This exception is derived from RuntimeError. In user defined base classes, abstract methods should
raise this exception when they require derived classes to override the method. New in version
1.5.2.

0SError
This class is derived from EnvironmentError and is used primarily as the os module’s os.error
exception. See EnvironmentError above for a description of the possible associated values. New
in version 1.5.2.

OverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot
occur for long integers (which would rather raise MemoryError than give up). Because of the lack
of standardization of floating point exception handling in C, most floating point operations also
aren’t checked. For plain integers, all operations that can overflow are checked except left shift,
where typical applications prefer to drop bits than raise an exception.

RuntimeError
Raised when an error is detected that doesn’t fall in any of the other categories. The associated
value is a string indicating what precisely went wrong. (This exception is mostly a relic from a
previous version of the interpreter; it is not used very much any more.)

SyntaxError
Raised when the parser encounters a syntax error. This may occur in an import statement, in an
exec statement, in a call to the built-in function eval() or input (), or when reading the initial
script or standard input (also interactively).

When class exceptions are used, instances of this class have atttributes filename, lineno, offset
and text for easier access to the details; for string exceptions, the associated value is usually a
tuple of the form (message, (filename, lineno, offset, text)). For class exceptions, str()
returns only the message.

SystemError
Raised when the interpreter finds an internal error, but the situation does not look so serious to
cause it to abandon all hope. The associated value is a string indicating what went wrong (in
low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report the
version string of the Python interpreter (sys.version; it is also printed at the start of an interactive
Python session), the exact error message (the exception’s associated value) and if possible the source
of the program that triggered the error.

14 Chapter 2. Built-in Types, Exceptions and Functions

SystemExit
This exception is raised by the sys.exit () function. When it is not handled, the Python interpreter
exits; no stack traceback is printed. If the associated value is a plain integer, it specifies the system
exit status (passed to C’s exit () function); if it is None, the exit status is zero; if it has another
type (such as a string), the object’s value is printed and the exit status is one.

When class exceptions are used, the instance has an attribute code which is set to the proposed exit
status or error message (defaulting to None). Also, this exception derives directly from Exception
and not StandardError, since it is not technically an error.

A call to sys.exit () is translated into an exception so that clean-up handlers (finally clauses of
try statements) can be executed, and so that a debugger can execute a script without running the
risk of losing control. The os._exit () function can be used if it is absolutely positively necessary
to exit immediately (e.g., after a fork() in the child process).

TypeError
Raised when a built-in operation or function is applied to an object of inappropriate type. The
associated value is a string giving details about the type mismatch.

ValueError
Raised when a built-in operation or function receives an argument that has the right type but
an inappropriate value, and the situation is not described by a more precise exception such as
IndexError.

ZeroDivisionError
Raised when the second argument of a division or modulo operation is zero. The associated value
is a string indicating the type of the operands and the operation.

2.3 Built-in Functions

The Python interpreter has a number of functions built into it that are always available. They are listed
here in alphabetical order.

__import__(name[, globals[, locals[, fromlist]]])
This function is invoked by the import statement. It mainly exists so that you can replace it with
another function that has a compatible interface, in order to change the semantics of the import
statement. For examples of why and how you would do this, see the standard library modules
ihooks and rexec. See also the built-in module imp, which defines some useful operations out of
which you can build your own __import__ () function.

For example, the statement ‘import spam’ results in the following call: __import__(’spam’,
globals(), 1locals(), [1); the statement from spam.ham import eggs results in
__import__(’spam.ham’, globals(), locals(), [’eggs’]). Note that even though locals()
and [’eggs’] are passed in as arguments, the __import__ () function does not set the local vari-
able named eggs; this is done by subsequent code that is generated for the import statement. (In
fact, the standard implementation does not use its locals argument at all, and uses its globals only
to determine the package context of the import statement.)

When the name variable is of the form package.module, normally, the top-level package (the
name up till the first dot) is returned, not the module named by name. However, when a non-
empty fromlist argument is given, the module named by name is returned. This is done for
compatibility with the bytecode generated for the different kinds of import statement; when using
‘import spam.ham.eggs’, the top-level package spam must be placed in the importing namespace,
but when using ‘from spam.ham import eggs’, the spam.ham subpackage must be used to find the
eggs variable. As a workaround for this behavior, use getattr () to extract the desired components.
For example, you could define the following helper:

2.3. Built-in Functions 15

import string

def my_import (name) :
mod = __import__(name)
components = string.split(name, ’.’°)
for comp in components[1:]:
mod = getattr(mod, comp)
return mod

abs(z)
Return the absolute value of a number. The argument may be a plain or long integer or a floating
point number. If the argument is a complex number, its magnitude is returned.

apply (function, args [, keywords])
The function argument must be a callable object (a user-defined or built-in function or method,
or a class object) and the args argument must be a sequence (if it is not a tuple, the sequence is
first converted to a tuple). The function is called with args as the argument list; the number of
arguments is the the length of the tuple. (This is different from just calling func(args), since in
that case there is always exactly one argument.) If the optional keywords argument is present, it
must be a dictionary whose keys are strings. It specifies keyword arguments to be added to the
end of the the argument list.

buffer(object[, offset [, size]])
The object argument must be an object that supports the buffer call interface (such as strings,
arrays, and buffers). A new buffer object will be created which references the object argument.
The buffer object will be a slice from the beginning of object (or from the specified offset). The
slice will extend to the end of object (or will have a length given by the size argument).

callable(object)
Return true if the object argument appears callable, false if not. If this returns true, it is still
possible that a call fails, but if it is false, calling object will never succeed. Note that classes
are callable (calling a class returns a new instance); class instances are callable if they have a
__call__ () method.

chr (i)
Return a string of one character whose ASCII code is the integer i, e.g., chr(97) returns the string
a’. This is the inverse of ord(). The argument must be in the range [0..255], inclusive.

cmp (z, y)
Compare the two objects z and y and return an integer according to the outcome. The return
value is negative if x < y, zero if x == y and strictly positive if z > y.

coerce(z, y)
Return a tuple consisting of the two numeric arguments converted to a common type, using the
same rules as used by arithmetic operations.

compile(string, filename, kind)
Compile the string into a code object. Code objects can be executed by an exec statement or
evaluated by a call to eval(). The filename argument should give the file from which the code was
read; pass e.g. ’<string>’ if it wasn’t read from a file. The kind argument specifies what kind of
code must be compiled; it can be ’exec’ if string consists of a sequence of statements, ’eval’ if
it consists of a single expression, or ’single’ if it consists of a single interactive statement (in the
latter case, expression statements that evaluate to something else than None will printed).

complex(real[, z'mag])
Create a complex number with the value real + imag*j or convert a string or number to a complex
number. Each argument may be any numeric type (including complex). If imag is omitted, it
defaults to zero and the function serves as a numeric conversion function like int (), long() and
float (); in this case it also accepts a string argument which should be a valid complex number.

delattr (object, name)
This is a relative of setattr(). The arguments are an object and a string. The string must be

16 Chapter 2. Built-in Types, Exceptions and Functions

the name of one of the object’s attributes. The function deletes the named attribute, provided the
object allows it. For example, delattr(z, ’foobar’) is equivalent to del x.foobar.

dir([object])
Without arguments, return the list of names in the current local symbol table. With an argument,
attempts to return a list of valid attribute for that object. This information is gleaned from
the object’s __dict__, __methods__ and __members__ attributes, if defined. The list is not
necessarily complete; e.g., for classes, attributes defined in base classes are not included, and for
class instances, methods are not included. The resulting list is sorted alphabetically. For example:

>>> import sys

>>> dir()

[’sys’]

>>> dir(sys)

[’argv’, ’exit’, ’modules’, ’path’, ’stderr’, ’stdin’, ’stdout’]
>>>

divmod(a, b)
Take two numbers as arguments and return a pair of numbers consisting of their quotient and
remainder when using long division. With mixed operand types, the rules for binary arithmetic
operators apply. For plain and long integers, the result is the same as (a / b, a % b). For
floating point numbers the result is (¢, a % b), where ¢ is usually math.floor(a / b) but may
be 1 less than that. In any case ¢ * b + a % b is very close to a, if a % b is non-zero it has the
same sign as b, and 0 <= abs(a % b) < abs(b).

eval(expression[, globals[, locals]])
The arguments are a string and two optional dictionaries. The ezxpression argument is parsed and
evaluated as a Python expression (technically speaking, a condition list) using the globals and locals
dictionaries as global and local name space. If the locals dictionary is omitted it defaults to the
globals dictionary. If both dictionaries are omitted, the expression is executed in the environment
where eval is called. The return value is the result of the evaluated expression. Syntax errors are
reported as exceptions. Example:

>>> x =1
>>> print eval(’x+1’)
2

This function can also be used to execute arbitrary code objects (e.g. created by compile()). In
this case pass a code object instead of a string. The code object must have been compiled passing
’eval’ to the kind argument.

Hints: dynamic execution of statements is supported by the exec statement. Execution of state-
ments from a file is supported by the execfile () function. The globals() and locals() functions
returns the current global and local dictionary, respectively, which may be useful to pass around
for use by eval() or execfile().

execfile(ﬁle[, globals[, locals]])
This function is similar to the exec statement, but parses a file instead of a string. It is different
from the import statement in that it does not use the module administration — it reads the file
unconditionally and does not create a new module.”

The arguments are a file name and two optional dictionaries. The file is parsed and evaluated as a
sequence of Python statements (similarly to a module) using the globals and locals dictionaries as
global and local name space. If the locals dictionary is omitted it defaults to the globals dictionary.
If both dictionaries are omitted, the expression is executed in the environment where execfile ()
is called. The return value is None.

filter (function, list)
Construct a list from those elements of list for which function returns true. If list is a string or a

91t is used relatively rarely so does not warrant being made into a statement.

2.3. Built-in Functions 17

tuple, the result also has that type; otherwise it is always a list. If function is None, the identity
function is assumed, i.e. all elements of list that are false (zero or empty) are removed.

float(z)
Convert a string or a number to floating point. If the argument is a string, it must contain a
possibly signed decimal or floating point number, possibly embedded in whitespace; this behaves
identical to string.atof (z). Otherwise, the argument may be a plain or long integer or a floating
point number, and a floating point number with the same value (within Python’s floating point
precision) is returned.

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the
underlying C library. The specific set of strings accepted which cause these values to be returned
depends entirely on the C library and is known to vary.

getattr (object, name[, default])
Return the value of the named attributed of object. name must be a string. If the string is the
name of one of the object’s attributes, the result is the value of that attribute. For example,
getattr(x, ’foobar’) is equivalent to x.foobar. If the named attribute does not exist, default
is returned if provided, otherwise AttributeError is raised.

globals()
Return a dictionary representing the current global symbol table. This is always the dictionary of
the current module (inside a function or method, this is the module where it is defined, not the
module from which it is called).

hasattr (object, name)
The arguments are an object and a string. The result is 1 if the string is the name of one of the
object’s attributes, 0 if not. (This is implemented by calling getattr (object, name) and seeing
whether it raises an exception or not.)

hash (object)
Return the hash value of the object (if it has one). Hash values are integers. They are used to
quickly compare dictionary keys during a dictionary lookup. Numeric values that compare equal
have the same hash value (even if they are of different types, e.g. 1 and 1.0).

hex(x)
Convert an integer number (of any size) to a hexadecimal string. The result is a valid Python
expression. Note: this always yields an unsigned literal, e.g. on a 32-bit machine, hex(-1) yields
Yoxffffffff’. When evaluated on a machine with the same word size, this literal is evaluated as
-1; at a different word size, it may turn up as a large positive number or raise an OverflowError
exception.

id(object)
Return the ‘identity’ of an object. This is an integer which is guaranteed to be unique and constant
for this object during its lifetime. (Two objects whose lifetimes are disjunct may have the same
id() value.) (Implementation note: this is the address of the object.)

input([pmmpt])
Equivalent to eval (raw_input (prompt)).

intern(string)
Enter string in the table of “interned” strings and return the interned string — which is string itself
or a copy. Interning strings is useful to gain a little performance on dictionary lookup — if the keys
in a dictionary are interned, and the lookup key is interned, the key comparisons (after hashing)
can be done by a pointer compare instead of a string compare. Normally, the names used in Python
programs are automatically interned, and the dictionaries used to hold module, class or instance
attributes have interned keys. Interned strings are immortal (i.e. never get garbage collected).

int(z)
Convert a string or number to a plain integer. If the argument is a string, it must contain a possibly
signed decimal number representable as a Python integer, possibly embedded in whitespace; this
behaves identical to string.atoi(z). Otherwise, the argument may be a plain or long integer
or a floating point number. Conversion of floating point numbers to integers is defined by the C

18 Chapter 2. Built-in Types, Exceptions and Functions

semantics; normally the conversion truncates towards zero.'®

isinstance (object, class)
Return true if the object argument is an instance of the class argument, or of a (direct or indirect)
subclass thereof. Also return true if class is a type object and object is an object of that type. If
object is not a class instance or a object of the given type, the function always returns false. If
class is neither a class object nor a type object, a TypeError exception is raised.

issubclass(classi, class2)
Return true if class! is a subclass (direct or indirect) of class2. A class is considered a subclass of
itself. If either argument is not a class object, a TypeError exception is raised.

len(s)
Return the length (the number of items) of an object. The argument may be a sequence (string,
tuple or list) or a mapping (dictionary).

list (sequence)
Return a list whose items are the same and in the same order as sequence’s items. If sequence is
already a list, a copy is made and returned, similar to sequence[:]. For instance, list(’abc’)
returns returns [’a’, ’b’, ’c’] and 1list((1, 2, 3)) returns [1, 2, 3].

locals()
Return a dictionary representing the current local symbol table. Warning: the contents of this
dictionary should not be modified; changes may not affect the values of local variables used by the
interpreter.

long(zx)
Convert a string or number to a long integer. If the argument is a string, it must contain a possibly
signed decimal number of arbitrary size, possibly embedded in whitespace; this behaves identical
to string.atol(z). Otherwise, the argument may be a plain or long integer or a floating point
number, and a long integer with the same value is returned. Conversion of floating point numbers
to integers is defined by the C semantics; see the description of int ().

map (function, list, ...)
Apply function to every item of list and return a list of the results. If additional list arguments are
passed, function must take that many arguments and is applied to the items of all lists in parallel;
if a list is shorter than another it is assumed to be extended with None items. If function is None,
the identity function is assumed; if there are multiple list arguments, map () returns a list consisting
of tuples containing the corresponding items from all lists (i.e. a kind of transpose operation). The
list arguments may be any kind of sequence; the result is always a list.

max(s[, args..,])
With a single argument s, return the largest item of a non-empty sequence (e.g., a string, tuple or
list). With more than one argument, return the largest of the arguments.

min(s[, args...])
With a single argument s, return the smallest item of a non-empty sequence (e.g., a string, tuple
or list). With more than one argument, return the smallest of the arguments.

oct(z)
Convert an integer number (of any size) to an octal string. The result is a valid Python ex-
pression. Note: this always yields an unsigned literal, e.g. on a 32-bit machine, oct(-1) yields
2037777777777°. When evaluated on a machine with the same word size, this literal is evaluated
as -1; at a different word size, it may turn up as a large positive number or raise an OverflowError
exception.

open (filename [, mode [, bufsize]])
Return a new file object (described earlier under Built-in Types). The first two arguments are the
same as for stdio’s fopen(): filename is the file name to be opened, mode indicates how the file
is to be opened: ’r’ for reading, ’w’ for writing (truncating an existing file), and ’a’ opens it
for appending (which on some UNIX systems means that all writes append to the end of the file,
regardless of the current seek position).

10This is ugly — the language definition should require truncation towards zero.

2.3. Built-in Functions 19

Modes ’r+’, >w+’ and ’a+’ open the file for updating (note that >w+’ truncates the file). Append
’b’ to the mode to open the file in binary mode, on systems that differentiate between binary and
text files (else it is ignored). If the file cannot be opened, I0Error is raised.

If mode is omitted, it defaults to r’. When opening a binary file, you should append ’b’ to the
mode value for improved portability. (It’s useful even on systems which don’t treat binary and text
files differently, where it serves as documentation.) The optional bufsize argument specifies the
file’s desired buffer size: 0 means unbuffered, 1 means line buffered, any other positive value means
use a buffer of (approximately) that size. A negative bufsize means to use the system default,
which is usually line buffered for for tty devices and fully buffered for other files. If omitted, the
system default is used.!!

ord(c)
Return the Ascir value of a string of one character. E.g., ord(’a’) returns the integer 97. This is
the inverse of chr().

pow (z, y[, z])
Return z to the power y; if z is present, return z to the power y, modulo z (computed more
efficiently than pow(z, y) % z). The arguments must have numeric types. With mixed operand
types, the rules for binary arithmetic operators apply. The effective operand type is also the type
of the result; if the result is not expressible in this type, the function raises an exception; e.g.,
pow(2, -1) or pow(2, 35000) is not allowed.

range([start,] stop [, step])
This is a versatile function to create lists containing arithmetic progressions. It is most often used
in for loops. The arguments must be plain integers. If the step argument is omitted, it defaults
to 1. If the start argument is omitted, it defaults to 0. The full form returns a list of plain integers
[start, start + step, start + 2 * step, ...]. If step is positive, the last element is the largest
start + i * step less than stop; if step is negative, the last element is the largest start + @ * step
greater than stop. step must not be zero (or else ValueError is raised). Example:

>>> range(10)

[o, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> range(1, 11)

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> range(0, 30, 5)

[0, 5, 10, 15, 20, 25]

>>> range(0, 10, 3)

[0, 3, 6, 9]

>>> range(0, -10, -1)

o, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> range(0)

]

>>> range(1, 0)

]

>>>

raw_input ([prompt])
If the prompt argument is present, it is written to standard output without a trailing newline. The
function then reads a line from input, converts it to a string (stripping a trailing newline), and
returns that. When EOF is read, EOFError is raised. Example:

>>> s = raw_input(’-->)

--> Monty Python’s Flying Circus
>>> s

"Monty Python’s Flying Circus"
>>>

11Specifying a buffer size currently has no effect on systems that don’t have setvbuf (). The interface to specify the
buffer size is not done using a method that calls setvbuf (), because that may dump core when called after any I/O has
been performed, and there’s no reliable way to determine whether this is the case.

20 Chapter 2. Built-in Types, Exceptions and Functions

If the readline module was loaded, then raw_input () will use it to provide elaborate line editing
and history features.

reduce (function, sequence[, im’tializer])
Apply function of two arguments cumulatively to the items of sequence, from left to right, so as
to reduce the sequence to a single value. For example, reduce(lambda x, y: =x+y, [1, 2, 3,
4, 5]) calculates ((((1+2)+3)+4)+5). If the optional initializer is present, it is placed before the
items of the sequence in the calculation, and serves as a default when the sequence is empty.

reload(module)
Re-parse and re-initialize an already imported module. The argument must be a module object,
so it must have been successfully imported before. This is useful if you have edited the module
source file using an external editor and want to try out the new version without leaving the Python
interpreter. The return value is the module object (i.e. the same as the module argument).

There are a number of caveats:

If a module is syntactically correct but its initialization fails, the first import statement for it does
not bind its name locally, but does store a (partially initialized) module object in sys.modules. To
reload the module you must first import it again (this will bind the name to the partially initialized
module object) before you can reload() it.

When a module is reloaded, its dictionary (containing the module’s global variables) is retained.
Redefinitions of names will override the old definitions, so this is generally not a problem. If the new
version of a module does not define a name that was defined by the old version, the old definition
remains. This feature can be used to the module’s advantage if it maintains a global table or cache
of objects — with a try statement it can test for the table’s presence and skip its initialization if
desired.

It is legal though generally not very useful to reload built-in or dynamically loaded modules,
except for sys, __main__ and __builtin__. In certain cases, however, extension modules are
not designed to be initialized more than once, and may fail in arbitrary ways when reloaded.

If a module imports objects from another module using from ... import ..., calling reload()
for the other module does not redefine the objects imported from it — one way around this is
to re-execute the from statement, another is to use import and qualified names (module.name)
instead.

If a module instantiates instances of a class, reloading the module that defines the class does not
affect the method definitions of the instances — they continue to use the old class definition. The
same is true for derived classes.

repr (object)
Return a string containing a printable representation of an object. This is the same value yielded
by conversions (reverse quotes). It is sometimes useful to be able to access this operation as an
ordinary function. For many types, this function makes an attempt to return a string that would
yield an object with the same value when passed to eval().

round(x[, n])
Return the floating point value x rounded to n digits after the decimal point. If n is omitted, it
defaults to zero. The result is a floating point number. Values are rounded to the closest multiple
of 10 to the power minus n; if two multiples are equally close, rounding is done away from 0 (so
e.g. round(0.5) is 1.0 and round(-0.5) is -1.0).

setattr (object, name, value)
This is the counterpart of getattr(). The arguments are an object, a string and an arbitrary
value. The string may name an existing attribute or a new attribute. The function assigns the
value to the attribute, provided the object allows it. For example, setattr(z, ’foobar’, 123) is
equivalent to z.foobar = 123.

slice([start,] stop [, step])
Return a slice object representing the set of indices specified by range(start, stop, step). The
start and step arguments default to None. Slice objects have read-only data attributes start, stop
and step which merely return the argument values (or their default). They have no other explicit
functionality; however they are used by Numerical Python and other third party extensions. Slice

2.3. Built-in Functions 21

objects are also generated when extended indexing syntax is used, e.g. for ‘a[start:stop:step]’
or ‘a[start:stop, il’.

str(object)
Return a string containing a nicely printable representation of an object. For strings, this returns
the string itself. The difference with repr (object) is that str(object) does not always attempt to
return a string that is acceptable to eval(); its goal is to return a printable string.

tuple (sequence)
Return a tuple whose items are the same and in the same order as sequence’s items. If sequence
is already a tuple, it is returned unchanged. For instance, tuple(’abc’) returns returns (’a’,
’b?, ’c’) and tuple([1, 2, 3]) returns (1, 2, 3).

type (object)
Return the type of an object. The return value is a type object. The standard module types
defines names for all built-in types. For instance:

>>> import types
>>> if type(x) == types.StringType: print "It’s a string"

vars([object])
Without arguments, return a dictionary corresponding to the current local symbol table. With a
module, class or class instance object as argument (or anything else that hasa __dict__ attribute),
returns a dictionary corresponding to the object’s symbol table. The returned dictionary should
not be modified: the effects on the corresponding symbol table are undefined.'?

xrange([start,] stop[, step])
This function is very similar to range (), but returns an “xrange object” instead of a list. This is
an opaque sequence type which yields the same values as the corresponding list, without actually
storing them all simultaneously. The advantage of xrange() over range() is minimal (since
xrange () still has to create the values when asked for them) except when a very large range
is used on a memory-starved machine (e.g. MS-DOS) or when all of the range’s elements are never
used (e.g. when the loop is usually terminated with break).

12In the current implementation, local variable bindings cannot normally be affected this way, but variables retrieved
from other scopes (e.g. modules) can be. This may change.

22 Chapter 2. Built-in Types, Exceptions and Functions

CHAPTER
THREE

Python Services

The modules described in this chapter provide a wide range of services related to the Python interpreter
and its interaction with its environment. Here’s an overview:

sys Access system-specific parameters and functions.

types Names for all built-in types.

UserDict Class wrapper for dictionary objects.

UserList Class wrapper for list objects.

operator All Python’s standard operators as built-in functions.
traceback Print or retrieve a stack traceback.

linecache This module provides random access to individual lines from text files.
pickle Convert Python objects to streams of bytes and back.
cPickle Faster version of pickle, but not subclassable.

copy_reg Register pickle support functions.

shelve Python object persistency.

copy Shallow and deep copy operations.

marshal Convert Python objects to streams of bytes and back (with different constraints).
imp Access the implementation of the import statement.
parser Access parse trees for Python source code.

symbol Constants representing internal nodes of the parse tree.
token Constants representing terminal nodes of the parse tree.
keyword Test whether a string is a keyword in Python.

tokenize Lexical scanner for Python source code.

pyclbr Supports information extraction for a Python class browser.
code Base classes for interactive Python interpreters.

codeop Compile (possibly incomplete) Python code.

pprint Data pretty printer.

repr Alternate repr () implementation with size limits.
py_compile Compile Python source files to byte-code files.

compileall Tools for byte-compiling all Python source files in a directory tree.
dis Disassembler.

new Interface to the creation of runtime implementation objects.
site A standard way to reference site-specific modules.

user A standard way to reference user-specific modules.
__builtin__ The set of built-in functions.

__main__ The environment where the top-level script is run.

3.1 sys — System-specific parameters and functions

This module provides access to some variables used or maintained by the interpreter and to functions
that interact strongly with the interpreter. It is always available.

argv
The list of command line arguments passed to a Python script. argv[0] is the script name (it is
operating system dependent whether this is a full pathname or not). If the command was executed

23

‘

using the ‘-c¢’ command line option to the interpreter, argv[0] is set to the string ’>-c’. If no
script name was passed to the Python interpreter, argv has zero length.

builtin_module_names
A tuple of strings giving the names of all modules that are compiled into this Python interpreter.
(This information is not available in any other way — modules.keys() only lists the imported
modules.)

copyright
A string containing the copyright pertaining to the Python interpreter.

dllhandle
Integer specifying the handle of the Python DLL. Availability: Windows.

exc_info ()

This function returns a tuple of three values that give information about the exception that is
currently being handled. The information returned is specific both to the current thread and to
the current stack frame. If the current stack frame is not handling an exception, the information
is taken from the calling stack frame, or its caller, and so on until a stack frame is found that is
handling an exception. Here, “handling an exception” is defined as “executing or having executed
an except clause.” For any stack frame, only information about the most recently handled exception
is accessible.

If no exception is being handled anywhere on the stack, a tuple containing three None values is
returned. Otherwise, the values returned are (type, wvalue, traceback). Their meaning is: type
gets the exception type of the exception being handled (a string or class object); value gets the
exception parameter (its associated value or the second argument to raise, which is always a class
instance if the exception type is a class object); traceback gets a traceback object (see the Reference
Manual) which encapsulates the call stack at the point where the exception originally occurred.

Warning: assigning the traceback return value to a local variable in a function that is handling an
exception will cause a circular reference. This will prevent anything referenced by a local variable
in the same function or by the traceback from being garbage collected. Since most functions
don’t need access to the traceback, the best solution is to use something like type, value =
sys.exc_info() [:2] to extract only the exception type and value. If you do need the traceback,
make sure to delete it after use (best done with a try ... finally statement) or to call exc_info ()
in a function that does not itself handle an exception.

exc_type
exc_value
exc_traceback
Deprecated since release 1.5. Use exc_info() instead.

Since they are global variables, they are not specific to the current thread, so their use is not safe
in a multi-threaded program. When no exception is being handled, exc_type is set to None and
the other two are undefined.

exec_prefix
A string giving the site-specific directory prefix where the platform-dependent Python files are in-
stalled; by default, thisis also ’ /usr/local’. This can be set at build time with the ——exec-prefix
argument to the configure script. Specifically, all configuration files (e.g. the ‘config.h’ header file)
are installed in the directory exec_prefix + ’/lib/pythonwversion/config’, and shared library
modules are installed in exec_prefix + ’/1ib/pythonversion/lib-dynload’, where version is
equal to version[:3].

executable
A string giving the name of the executable binary for the Python interpreter, on systems where
this makes sense.

exit([arg])
Exit from Python. This is implemented by raising the SystemExit exception, so cleanup actions
specified by finally clauses of try statements are honored, and it is possible to intercept the exit
attempt at an outer level. The optional argument arg can be an integer giving the exit status
(defaulting to zero), or another type of object. If it is an integer, zero is considered “successful

24 Chapter 3. Python Services

termination” and any nonzero value is considered “abnormal termination” by shells and the like.
Most systems require it to be in the range 0-127, and produce undefined results otherwise. Some
systems have a convention for assigning specific meanings to specific exit codes, but these are
generally underdeveloped; Unix programs generally use 2 for command line syntax errors and 1
for all other kind of errors. If another type of object is passed, None is equivalent to passing zero,
and any other object is printed to sys.stderr and results in an exit code of 1. In particular,
sys.exit("some error message") is a quick way to exit a program when an error occurs.

exitfunc

This value is not actually defined by the module, but can be set by the user (or by a program) to
specify a clean-up action at program exit. When set, it should be a parameterless function. This
function will be called when the interpreter exits. Note: the exit function is not called when the
program is killed by a signal, when a Python fatal internal error is detected, or when os._exit()
is called.

getrefcount (object)

Return the reference count of the object. The count returned is generally one higher than you
might expect, because it includes the (temporary) reference as an argument to getrefcount().

last_type
last_value
last_traceback

These three variables are not always defined; they are set when an exception is not handled and
the interpreter prints an error message and a stack traceback. Their intended use is to allow an
interactive user to import a debugger module and engage in post-mortem debugging without having
to re-execute the command that caused the error. (Typical use is ‘import pdb; pdb.pm()’ to enter
the post-mortem debugger; see the chapter “The Python Debugger” for more information.)

The meaning of the variables is the same as that of the return values from exc_info() above.
(Since there is only one interactive thread, thread-safety is not a concern for these variables, unlike
for exc_type etc.)

maxint

The largest positive integer supported by Python’s regular integer type. This is at least 2*¥*31-1.
The largest negative integer is -maxint-1 — the asymmetry results from the use of 2’s complement
binary arithmetic.

modules

path

This is a dictionary that maps module names to modules which have already been loaded. This
can be manipulated to force reloading of modules and other tricks. Note that removing a module
from this dictionary is not the same as calling reload() on the corresponding module object.

A list of strings that specifies the search path for modules. Initialized from the environment variable
$PYTHONPATH, or an installation-dependent default.

The first item of this list, path[0], is the directory containing the script that was used to invoke
the Python interpreter. If the script directory is not available (e.g. if the interpreter is invoked
interactively or if the script is read from standard input), path[0] is the empty string, which
directs Python to search modules in the current directory first. Notice that the script directory is
inserted before the entries inserted as a result of SPYTHONPATH.

platform

This string contains a platform identifier, e.g. ’>sunos5’ or ’linux1’. This can be used to append
platform-specific components to path, for instance.

prefix

A string giving the site-specific directory prefix where the platform independent Python files are
installed; by default, this is the string ’/usr/local’. This can be set at build time with the
—--prefix argument to the configure script. The main collection of Python library modules is
installed in the directory prefix + ’/1ib/pythonversion’ while the platform independent header
files (all except ‘config.h’) are stored in prefix + ’/include/pythonversion’, where version is
equal to version[:3].

3.1.

sys — System-specific parameters and functions 25

psl

ps2
Strings specifying the primary and secondary prompt of the interpreter. These are only defined if
the interpreter is in interactive mode. Their initial values in this case are >>>> ? and *>... . If
a non-string object is assigned to either variable, its str () is re-evaluated each time the interpreter
prepares to read a new interactive command; this can be used to implement a dynamic prompt.

setcheckinterval (interval)
Set the interpreter’s “check interval”. This integer value determines how often the interpreter
checks for periodic things such as thread switches and signal handlers. The default is 10, meaning
the check is performed every 10 Python virtual instructions. Setting it to a larger value may
increase performance for programs using threads. Setting it to a value <= 0 checks every virtual
instruction, maximizing responsiveness as well as overhead.

setprofile(profilefunc)
Set the system’s profile function, which allows you to implement a Python source code profiler in
Python. See the chapter on the Python Profiler. The system’s profile function is called similarly
to the system’s trace function (see settrace()), but it isn’t called for each executed line of code
(only on call and return and when an exception occurs). Also, its return value is not used, so it
can just return None.

settrace (tracefunc)
Set the system’s trace function, which allows you to implement a Python source code debugger in
Python. See section “How It Works” in the chapter on the Python Debugger.

stdin

stdout

stderr
File objects corresponding to the interpreter’s standard input, output and error streams. stdin is
used for all interpreter input except for scripts but including calls to input() and raw_input().
stdout is used for the output of print and expression statements and for the prompts of input ()
and raw_input (). The interpreter’s own prompts and (almost all of) its error messages go to
stderr. stdout and stderr needn’t be built-in file objects: any object is acceptable as long as it
has a write() method that takes a string argument. (Changing these objects doesn’t affect the
standard I/O streams of processes executed by os.popen(), os.system() or the exec*() family
of functions in the os module.)

__stdin__

__stdout__

__stderr__
These objects contain the original values of stdin, stderr and stdout at the start of the program.
They are used during finalization, and could be useful to restore the actual files to known working
file objects in case they have been overwritten with a broken object.

tracebacklimit
When this variable is set to an integer value, it determines the maximum number of levels of
traceback information printed when an unhandled exception occurs. The default is 1000. When
set to 0 or less, all traceback information is suppressed and only the exception type and value are
printed.

version
A string containing the version number of the Python interpreter plus additional information
on the build number and compiler used. It has a value of the form ’wversion (#build_number,
build_date, build_time) [compiler]’. The first three characters are used to identify the version
in the installation directories (where appropriate on each platform). An example:

>>> import sys
>>> sys.version
’1.5.2 (#0 Apr 13 1999, 10:51:12) [MSC 32 bit (Intel)]’

winver
The version number used to form registry keys on Windows platforms. This is stored as string

26 Chapter 3. Python Services

resource 1000 in the Python DLL. The value is normally the first three characters of version. It
is provided in the sys module for informational purposes; modifying this value has no effect on the

registry keys used by Python. Availability: Windows.

3.2 types — Names for all built-in types

This module defines names for all object types that are used by the standard Python interpreter, but
not for the types defined by various extension modules. It is safe to use ‘from types import *’ — the
module does not export any names besides the ones listed here. New names exported by future versions

of this module will all end in ‘Type’.

Typical use is for functions that do different things depending on their argument types, like the following:

from types import *
def delete(list, item):
if type(item) is IntType:
del list[item]
else:
list.remove(item)

The module defines the following names:

NoneType
The type of None.

TypeType
The type of type objects (such as returned by type()).

IntType
The type of integers (e.g. 1).

LongType
The type of long integers (e.g. 1L).

FloatType
The type of floating point numbers (e.g. 1.0).

ComplexType
The type of complex numbers (e.g. 1.0j).

StringType
The type of character strings (e.g. ’Spam’).

TupleType
The type of tuples (e.g. (1, 2, 3, ’Spam’)).

ListType
The type of lists (e.g. [0, 1, 2, 3]).

DictType

The type of dictionaries (e.g. {’Bacon’: 1, ’Ham’: O0}).

DictionaryType
An alternate name for DictType.

FunctionType
The type of user-defined functions and lambdas.

LambdaType
An alternate name for FunctionType.

CodeType
The type for code objects such as returned by compile().

3.2. types — Names for all built-in types

27

ClassType
The type of user-defined classes.

InstanceType
The type of instances of user-defined classes.

MethodType
The type of methods of user-defined class instances.

UnboundMethodType
An alternate name for MethodType.

BuiltinFunctionType
The type of built-in functions like len() or sys.exit ().

BuiltinMethodType
An alternate name for BuiltinFunction.

ModuleType
The type of modules.

FileType
The type of open file objects such as sys.stdout.

XRangeType
The type of range objects returned by xrange ().

SliceType
The type of objects returned by slice().

EllipsisType
The type of Ellipsis.

TracebackType
The type of traceback objects such as found in sys.exc_traceback.

FrameType
The type of frame objects such as found in tb.tb_frame if tb is a traceback object.

BufferType
The type of buffer objects created by the buffer () function.

3.3 UserDict — Class wrapper for dictionary objects

This module defines a class that acts as a wrapper around dictionary objects. It is a useful base class
for your own dictionary-like classes, which can inherit from them and override existing methods or add
new ones. In this way one can add new behaviours to dictionaries.

The UserDict module defines the UserDict class:

UserDict([mtialdata])
Return a class instance that simulates a dictionary. The instance’s contents are kept in a regular
dictionary, which is accessible via the data attribute of UserDict instances. If initialdata is
provided, data is initialized with its contents; note that a reference to initialdata will not be kept,
allowing it be used used for other purposes.

In addition to supporting the methods and operations of mappings (see section 2.1.6), UserDict instances
provide the following attribute:

data
A real dictionary used to store the contents of the UserDict class.

3.4 UserList — Class wrapper for list objects

28 Chapter 3. Python Services

This module defines a class that acts as a wrapper around list objects. It is a useful base class for your
own list-like classes, which can inherit from them and override existing methods or add new ones. In
this way one can add new behaviours to lists.

The UserList module defines the UserList class:

UserList([list])
Return a class instance that simulates a list. The instance’s contents are kept in a regular list, which
is accessible via the data attribute of UserList instances. The instance’s contents are initially set
to a copy of list, defaulting to the empty list []1. list can be either a regular Python list, or an
instance of UserList (or a subclass).

In addition to supporting the methods and operations of mutable sequences (see section 2.1.5), UserList
instances provide the following attribute:

data
A real Python list object used to store the contents of the UserList class.

3.5 operator — Standard operators as functions.

The operator module exports a set of functions implemented in C corresponding to the intrinsic oper-
ators of Python. For example, operator.add(x, y) is equivalent to the expression x+y. The function
names are those used for special class methods; variants without leading and trailing ‘__’ are also
provided for convenience.

The operator module defines the following functions:

add(a, b)
__add__(a, b)
Return a + b, for a and b numbers.

sub(a, b)
__sub__(a, b)
Return a - b.

mul (a, b)
__mul__C(a, b)
Return a * b, for a and b numbers.

div(a, b)
__div__C(a, b)

Return a / b.
mod (a, b)
__mod__(a, b)

Return a % b.
neg(o)
__neg__(o0)

Return o negated.
pos (o)
—_pos__(o)

Return o positive.
abs (0)
__abs__(o0)

Return the absolute value of o.
inv (o)
__inv__(o)

Return the inverse of o.

1shift(a, b)

3.5. operator — Standard operators as functions. 29

__1shift__(a, b)
Return a shifted left by b.

rshift(a, b)
__rshift__(a, b)
Return a shifted right by b.

and_(a, b)
__and__C(a, b)
Return the bitwise and of a and b.

or_~(a, b)
__or__(a, b)
Return the bitwise or of a and b.

xor (a, b)
__xor__C(a, b)
Return the bitwise exclusive or of a and b.

not_(o)
__not__(o)

Return the outcome of not o. (Note that there is no __not__() discipline for object instances;

only the interpreter core defines this operation.)

truth(o)
Return 1 if o is true, and 0 otherwise.

concat (a, b)
__concat__(a, b)
Return a + b for a and b sequences.

repeat(a, b)
__repeat__(a, b)
Return a * b where a is a sequence and b is an integer.

contains(a, b)
sequenceIncludes(a, b)
Return the outcome of the test b in a. Note the reversed operands.

countO0f (a, b)
Return the number of occurrences of b in a.

index0f (a, b)
Return the index of the first of occurrence of b in a.

getitem(a, b)
__getitem__(a, b)
Return the value of a at index b.

setitem(a, b, c)
__setitem__(a, b, ¢)
Set the value of a at index b to c.

delitem(a, b)
__delitem__(a, b)
Remove the value of a at index b.

getslice(q, b, ¢)
__getslice__(a, b, ¢)
Return the slice of a from index b to index c-1.

setslice(a, b, ¢, v)
__setslice__(a, b, ¢, v)
Set the slice of a from index b to index c¢-1 to the sequence v.

delslice(a, b, ¢)
__delslice__(a, b, ¢)

30 Chapter 3.

Python Services

Delete the slice of a from index b to index c¢-1.

Example: Build a dictionary that maps the ordinals from O to 256 to their character equivalents.

>>> import operator

>>> d = {}

>>> keys = range(256)

>>> vals = map(chr, keys)

>>> map(operator.setitem, [d]*len(keys), keys, vals)

3.6 traceback — Print or retrieve a stack traceback

This module provides a standard interface to extract, format and print stack traces of Python programs.
It exactly mimics the behavior of the Python interpreter when it prints a stack trace. This is useful
when you want to print stack traces under program control, e.g. in a “wrapper” around the interpreter.

The module uses traceback objects — this is the object type that is stored in the wvariables
sys.exc_traceback and sys.last_traceback and returned as the third item from sys.exc_info().

The module defines the following functions:

print_tb(tmceback[, limit [, ﬁle]])
Print up to limit stack trace entries from traceback. If limit is omitted or None, all entries are
printed. If file is omitted or None, the output goes to sys.stderr; otherwise it should be an open
file or file-like object to receive the output.

print_exception(type, value, tmceback[, limit[, ﬁle]])
Print exception information and up to limit stack trace entries from traceback to file. This differs
from print_tb() in the following ways: (1) if traceback is not None, it prints a header ‘Traceback
(innermost last):’; (2) it prints the exception type and value after the stack trace; (3) if type
is SyntaxError and wvalue has the appropriate format, it prints the line where the syntax error
occurred with a caret indicating the approximate position of the error.

print_exc([lz'mit [, ﬁle]])
This is a shorthand for ‘print_exception(sys.exc_type, sys.exc_value,
sys.exc_traceback, limit, file)’. (In fact, it uses sys.exc_info() to retrieve the same
information in a thread-safe way.)

print_last([limit[, ﬁle]])
This is a shorthand for ‘print_exception(sys.last_type, sys.last_value,
sys.last_traceback, limit, file)’.

print_stack([f [, limit [, ﬁle]]])
This function prints a stack trace from its invocation point. The optional f argument can be used
to specify an alternate stack frame to start. The optional limit and file arguments have the same
meaning as for print_exception().

extract_tb(traceback [, limat])
Return a list of up to limit “pre-processed” stack trace entries extracted from the traceback object
traceback. It is useful for alternate formatting of stack traces. If limit is omitted or None, all entries
are extracted. A “pre-processed” stack trace entry is a quadruple (filename, line number, function
name, text) representing the information that is usually printed for a stack trace. The text is a
string with leading and trailing whitespace stripped; if the source is not available it is None.

extract_stack([f [, limit]])
Extract the raw traceback from the current stack frame. The return value has the same format as for
extract_tb(). The optional f and limit arguments have the same meaning as for print_stack().

format_1list (list)

3.6. traceback — Print or retrieve a stack traceback 31

Given a list of tuples as returned by extract_tb() or extract_stack(), return a list of strings
ready for printing. Each string in the resulting list corresponds to the item with the same index
in the argument list. Each string ends in a newline; the strings may contain internal newlines as
well, for those items whose source text line is not None.

format_exception_only (type, value)
Format the exception part of a traceback. The arguments are the exception type and value such as
given by sys.last_type and sys.last_value. The return value is a list of strings, each ending
in a newline. Normally, the list contains a single string; however, for SyntaxError exceptions,
it contains several lines that (when printed) display detailed information about where the syntax
error occurred. The message indicating which exception occurred is the always last string in the
list.

format_exception(type, value, tb[, limit])
Format a stack trace and the exception information. The arguments have the same meaning as
the corresponding arguments to print_exception(). The return value is a list of strings, each
ending in a newline and some containing internal newlines. When these lines are contatenated and
printed, exactly the same text is printed as does print_exception().

format_tb(tb|, limit |)
A shorthand for format_list(extract_tb(tb, limit)).

format_stack([f [, limit]])
A shorthand for format_list(extract_stack(f, limit)).

tb_lineno (tb)
This function returns the current line number set in the traceback object. This is normally the
same as the ¢tb.tb_lineno field of the object, but when optimization is used (the -O flag) this field
is not updated correctly; this function calculates the correct value.

3.6.1 Traceback Example

This simple example implements a basic read-eval-print loop, similar to (but less useful than) the standard
Python interactive interpreter loop. For a more complete implementation of the interpreter loop, refer
to the code module.

import sys, traceback

def run_user_code(envdir):

source = raw_input(">>> ")

try:
exec source in envdir

except:
print "Exception in user code:"
print ’-’*60
traceback.print_exc(file=sys.stdout)
print ’-’*60

envdir = {}
while 1:
run_user_code (envdir)

3.7 1linecache — Random access to text lines

The linecache module allows one to get any line from any file, while attempting to optimize internally,
using a cache, the common case where many lines are read from a single file. This is used by the
traceback module to retrieve source lines for inclusion in the formatted traceback.

32 Chapter 3. Python Services

The linecache module defines the following functions:

getline (filename, lineno)
Get line lineno from file named filename. This function will never throw an exception — it will
return ’’ on errors (the terminating newline character will be included for lines that are found).

If a file named filename is not found, the function will look for it in the module search path,
sys.path.

clearcache()
Clear the cache. Use this function if you no longer need lines from files previously read using
getline().

checkcache ()
Check the cache for validity. Use this function if files in the cache may have changed on disk, and
you require the updated version.

Example:

>>> import linecache
>>> linecache.getline(’/etc/passwd’, 4)
’sys:x:3:3:sys:/dev:/bin/sh\012’

3.8 pickle — Python object serialization

The pickle module implements a basic but powerful algorithm for “pickling” (a.k.a. serializing, mar-
shalling or flattening) nearly arbitrary Python objects. This is the act of converting objects to a stream
of bytes (and back: “unpickling”). This is a more primitive notion than persistency — although pickle
reads and writes file objects, it does not handle the issue of naming persistent objects, nor the (even
more complicated) area of concurrent access to persistent objects. The pickle module can transform a
complex object into a byte stream and it can transform the byte stream into an object with the same
internal structure. The most obvious thing to do with these byte streams is to write them onto a file, but
it is also conceivable to send them across a network or store them in a database. The module shelve
provides a simple interface to pickle and unpickle objects on DBM-style database files.

Note: The pickle module is rather slow. A reimplementation of the same algorithm in C, which is
up to 1000 times faster, is available as the cPickle module. This has the same interface except that
Pickler and Unpickler are factory functions, not classes (so they cannot be used as base classes for
inheritance).

Although the pickle module can use the built-in module marshal internally, it differs from marshal in
the way it handles certain kinds of data:

e Recursive objects (objects containing references to themselves): pickle keeps track of the objects
it has already serialized, so later references to the same object won’t be serialized again. (The
marshal module breaks for this.)

e Object sharing (references to the same object in different places): This is similar to self-referencing
objects; pickle stores the object once, and ensures that all other references point to the master
copy. Shared objects remain shared, which can be very important for mutable objects.

e User-defined classes and their instances: marshal does not support these at all, but pickle can
save and restore class instances transparently. The class definition must be importable and live in
the same module as when the object was stored.

The data format used by pickle is Python-specific. This has the advantage that there are no restrictions
imposed by external standards such as XDR (which can’t represent pointer sharing); however it means
that non-Python programs may not be able to reconstruct pickled Python objects.

3.8. pickle — Python object serialization 33

By default, the pickle data format uses a printable ASCII representation. This is slightly more volu-
minous than a binary representation. The big advantage of using printable Ascil (and of some other
characteristics of pickle’s representation) is that for debugging or recovery purposes it is possible for a
human to read the pickled file with a standard text editor.

A binary format, which is slightly more efficient, can be chosen by specifying a nonzero (true) value for
the bin argument to the Pickler constructor or the dump () and dumps () functions. The binary format
is not the default because of backwards compatibility with the Python 1.4 pickle module. In a future
version, the default may change to binary.

The pickle module doesn’t handle code objects, which the marshal module does. I suppose pickle
could, and maybe it should, but there’s probably no great need for it right now (as long as marshal
continues to be used for reading and writing code objects), and at least this avoids the possibility of
smuggling Trojan horses into a program.

For the benefit of persistency modules written using pickle, it supports the notion of a reference to an
object outside the pickled data stream. Such objects are referenced by a name, which is an arbitrary
string of printable ASCII characters. The resolution of such names is not defined by the pickle module —
the persistent object module will have to implement a method persistent_load(). To write references
to persistent objects, the persistent module must define a method persistent_id () which returns either
None or the persistent ID of the object.

There are some restrictions on the pickling of class instances.

First of all, the class must be defined at the top level in a module. Furthermore, all its instance variables
must be picklable.

When a pickled class instance is unpickled, its __init__ () method is normally not invoked. Note: This
is a deviation from previous versions of this module; the change was introduced in Python 1.5b2. The
reason for the change is that in many cases it is desirable to have a constructor that requires arguments;
it is a (minor) nuisance to have to provide a __getinitargs__ () method.

If it is desirable that the __init__ () method be called on unpickling, a class can define a method
__getinitargs__ (), which should return a tuple containing the arguments to be passed to the class
constructor (—_init__()). This method is called at pickle time; the tuple it returns is incorporated in
the pickle for the instance.

Classes can further influence how their instances are pickled — if the class defines the method
__getstate__(), it is called and the return state is pickled as the contents for the instance, and if
the class defines the method __setstate__(), it is called with the unpickled state. (Note that these
methods can also be used to implement copying class instances.) If there isno __getstate__ () method,
the instance’s __dict__ is pickled. If there is no __setstate__() method, the pickled object must
be a dictionary and its items are assigned to the new instance’s dictionary. (If a class defines both
__getstate__() and __setstate__(), the state object needn’t be a dictionary — these methods can
do what they want.) This protocol is also used by the shallow and deep copying operations defined in
the copy module.

Note that when class instances are pickled, their class’s code and data are not pickled along with them.
Only the instance data are pickled. This is done on purpose, so you can fix bugs in a class or add
methods and still load objects that were created with an earlier version of the class. If you plan to have
long-lived objects that will see many versions of a class, it may be worthwhile to put a version number
in the objects so that suitable conversions can be made by the class’s __setstate__ () method.

When a class itself is pickled, only its name is pickled — the class definition is not pickled, but re-
imported by the unpickling process. Therefore, the restriction that the class must be defined at the top
level in a module applies to pickled classes as well.

The interface can be summarized as follows.

To pickle an object x onto a file £, open for writing:

p = pickle.Pickler(f)
p.dump (x)

34 Chapter 3. Python Services

A shorthand for this is:

pickle.dump(x, f)

To unpickle an object x from a file £, open for reading;:

=]
]

pickle.Unpickler(f)
u.load()

o]
1]

A shorthand is:

x = pickle.load(f)

The Pickler class only calls the method f.write() with a string argument. The Unpickler calls the
methods f.read() (with an integer argument) and f.readline() (without argument), both returning
a string. It is explicitly allowed to pass non-file objects here, as long as they have the right methods.

The constructor for the Pickler class has an optional second argument, bin. If this is present and true,
the binary pickle format is used; if it is absent or false, the (less efficient, but backwards compatible) text
pickle format is used. The Unpickler class does not have an argument to distinguish between binary
and text pickle formats; it accepts either format.

The following types can be pickled:

e None

e integers, long integers, floating point numbers

e strings

e tuples, lists and dictionaries containing only picklable objects

e functions defined at the top level of a module (by name reference, not storage of the implementation)
e built-in functions

e classes that are defined at the top level in a module

e instances of such classes whose __dict__ or __setstate__() is picklable

Attempts to pickle unpicklable objects will raise the PicklingError exception; when this happens, an
unspecified number of bytes may have been written to the file.

It is possible to make multiple calls to the dump() method of the same Pickler instance. These must
then be matched to the same number of calls to the 1oad() method of the corresponding Unpickler
instance. If the same object is pickled by multiple dump () calls, the 1oad () will all yield references to the
same object. Warning: this is intended for pickling multiple objects without intervening modifications
to the objects or their parts. If you modify an object and then pickle it again using the same Pickler
instance, the object is not pickled again — a reference to it is pickled and the Unpickler will return the
old value, not the modified one. (There are two problems here: (a) detecting changes, and (b) marshalling
a minimal set of changes. I have no answers. Garbage Collection may also become a problem here.)

Apart from the Pickler and Unpickler classes, the module defines the following functions, and an
exception:

dump (object, ﬁle[, bin])
Write a pickled representation of obect to the open file object file. This is equivalent to
‘Pickler(file, bin).dump(object)’. If the optional bin argument is present and nonzero, the bi-
nary pickle format is used; if it is zero or absent, the (less efficient) text pickle format is used.

3.8. pickle — Python object serialization 35

load (file)
Read a pickled object from the open file object file. This is equivalent to ‘Unpickler (file) .1oad()’.

dumps(object[, bin])
Return the pickled representation of the object as a string, instead of writing it to a file. If the
optional bin argument is present and nonzero, the binary pickle format is used; if it is zero or
absent, the (less efficient) text pickle format is used.

loads (string)
Read a pickled object from a string instead of a file. Characters in the string past the pickled
object’s representation are ignored.

PicklingError
This exception is raised when an unpicklable object is passed to Pickler.dump().

See Also:

Module copy_reg (section 3.10):
pickle interface constructor registration

Module shelve (section 3.11):
indexed databases of objects; uses pickle

Module copy (section 3.12):
shallow and deep object copying

Module marshal (section 3.13):
high-performance serialization of built-in types

3.8.1 Example

Here’s a simple example of how to modify pickling behavior for a class. The TextReader class opens a
text file, and returns the line number and line contents each time its readline () method is called. If a
TextReader instance is pickled, all attributes ezcept the file object member are saved. When the instance
is unpickled, the file is reopened, and reading resumes from the last location. The __setstate__ () and
__getstate__() methods are used to implement this behavior.

36 Chapter 3. Python Services

illustrate __setstate__ and __getstate_ methods

used in pickling.

class TextReader:

"Print and number lines in a text file."
def __init__(self,file):

self.file = file

self.fh = open(file,’r’)

self.lineno = 0

def readline(self):
self.lineno = self.lineno + 1
line = self.fh.readline()
if not line:
return None
return "%d: %s" % (self.lineno,line[:-1])

return data representation for pickled object
def __getstate__(self):
odict = self.__dict__ # get attribute dictionary

del odict[’fh’] # remove filehandle entry
return odict

restore object state from data representation generated
by __getstate__
def __setstate__(self,dict):
fh = open(dict[’file’]) # reopen file
count = dict[’lineno’]
while count: # until line count is restored
fh.readline()
count = count - 1
dict[’fh’] = fh # create filehandle entry
self.__dict__ = dict # make dict our attribute dictionary

**

read from file...

A sample usage might be something like this:

>>>
>>>
>>>
’1:
>>>
7.
>>>
>>>

import TextReader

obj = TextReader.TextReader("TextReader.py")
obj.readline()

#!/usr/local/bin/python’

(more invocations of obj.readline() here)

. obj.readline()

class TextReader:’
import pickle
pickle.dump(obj,open(’save.p’,’w’))

(start another Python session)

>>>
>>>
>>>
’8:

import pickle
reader = pickle.load(open(’save.p’))
reader.readline()

"Print and number lines in a text file.™’

3.9 cPickle — Alternate implementation of pickle

The cPickle module provides a similar interface and identical functionality as the pickle module, but
can be up to 1000 times faster since it is implemented in C. The only other important difference to note

3.9. cPickle — Alternate implementation of pickle

37

is that Pickler () and Unpickler() are functions and not classes, and so cannot be subclassed. This
should not be an issue in most cases.

The format of the pickle data is identical to that produced using the pickle module, so it is possible to
use pickle and cPickle interchangably with existing pickles.

(Since the pickle data format is actually a tiny stack-oriented programming language, and there are some
freedoms in the encodings of certain objects, it’s possible that the two modules produce different pickled
data for the same input objects; however they will always be able to read each others pickles back in.)

3.10 copy_reg — Register pickle support functions

The copy_reg module provides support for the pickle and cPickle modules. The copy module is likely
to use this in the future as well. It provides configuration information about object constructors which
are not classes. Such constructors may be factory functions or class instances.

constructor (object)
Declares object to be a valid constructor.

pickle (type, function[, constructor])
Declares that function should be used as a “reduction” function for objects of type or class type.
function should return either a string or a tuple. The optional constructor parameter, if provided,
is a callable object which can be used to reconstruct the object when called with the tuple of
arguments returned by function at pickling time.

3.11 shelve — Python object persistency

A “shelf” is a persistent, dictionary-like object. The difference with “dbm” databases is that the values
(not the keys!) in a shelf can be essentially arbitrary Python objects — anything that the pickle module
can handle. This includes most class instances, recursive data types, and objects containing lots of shared
sub-objects. The keys are ordinary strings.

To summarize the interface (key is a string, data is an arbitrary object):

import shelve
d = shelve.open(filename) # open, with (g)dbm filename -- no suffix
d[key] = data # store data at key (overwrites old data if
using an existing key)
data = d[key] # retrieve data at key (raise KeyError if no
such key)

#

delete data stored at key (raises KeyError
if no such key)

del dlkey]

flag = d.has_key(key) # true if the key exists
list = d.keys() # a list of all existing keys (slow!)
d.close() # close it

Restrictions:

e The choice of which database package will be used (e.g. dbm or gdbm) depends on which interface
is available. Therefore it is not safe to open the database directly using dbm. The database is
also (unfortunately) subject to the limitations of dbm, if it is used — this means that (the pickled
representation of) the objects stored in the database should be fairly small, and in rare cases key
collisions may cause the database to refuse updates.

38 Chapter 3. Python Services

e Dependent on the implementation, closing a persistent dictionary may or may not be necessary to
flush changes to disk.

e The shelve module does not support concurrent read/write access to shelved objects. (Multiple
simultaneous read accesses are safe.) When a program has a shelf open for writing, no other
program should have it open for reading or writing. UNIX file locking can be used to solve this,
but this differs across UNIX versions and requires knowledge about the database implementation
used.

See Also:

Module anydbm (section 7.7):
Generic interface to dbm-style databases.

Module dbhash (section 7.9):
BSD db database interface.

Module dbm (section 8.6):
Standard UNIX database interface.

Module dumbdbm (section 7.8):
Portable implementation of the dbm interface.

Module gdbm (section 8.7):
GNU database interface, based on the dbm interface.

Module pickle (section 3.8):
Object serialization used by shelve.

Module cPickle (section 3.9):
High-performance version of pickle.

3.12 copy — Shallow and deep copy operations

This module provides generic (shallow and deep) copying operations.

Interface summary:

import copy

copy . copy (y) # make a shallow copy of y
copy .deepcopy (y) # make a deep copy of y

MM
nwon

For module specific errors, copy.error is raised.

The difference between shallow and deep copying is only relevant for compound objects (objects that
contain other objects, like lists or class instances):

e A shallow copy constructs a new compound object and then (to the extent possible) inserts refer-
ences into it to the objects found in the original.
e A deep copy constructs a new compound object and then, recursively, inserts copies into it of the
objects found in the original.
Two problems often exist with deep copy operations that don’t exist with shallow copy operations:
e Recursive objects (compound objects that, directly or indirectly, contain a reference to themselves)
may cause a recursive loop.

e Because deep copy copies everything it may copy too much, e.g., administrative data structures
that should be shared even between copies.

3.12. copy — Shallow and deep copy operations 39

The deepcopy () function avoids these problems by:

e keeping a “memo” dictionary of objects already copied during the current copying pass; and

e letting user-defined classes override the copying operation or the set of components copied.

This version does not copy types like module, class, function, method, stack trace, stack frame, file,
socket, window, array, or any similar types.

Classes can use the same interfaces to control copying that they use to control pickling: they can define
methods called __getinitargs__(), __getstate__() and __setstate__(). See the description
of module pickle for information on these methods. The copy module does not use the copy_reg
registration module.

In order for a class to define its own copy implementation, it can define special methods __copy__ ()
and __deepcopy__(). The former is called to implement the shallow copy operation; no additional
arguments are passed. The latter is called to implement the deep copy operation; it is passed one
argument, the memo dictionary. If the __deepcopy__() implementation needs to make a deep copy
of a component, it should call the deepcopy () function with the component as first argument and the
memo dictionary as second argument.

See Also:

Module pickle (section 3.8):
Discussion of the special disciplines used to support object state retrieval and restoration.

3.13 marshal — Alternate Python object serialization

This module contains functions that can read and write Python values in a binary format. The format
is specific to Python, but independent of machine architecture issues (e.g., you can write a Python
value to a file on a PC, transport the file to a Sun, and read it back there). Details of the format are
undocumented on purpose; it may change between Python versions (although it rarely does).!

This is not a general “persistency” module. For general persistency and transfer of Python objects
through RPC calls, see the modules pickle and shelve. The marshal module exists mainly to support
reading and writing the “pseudo-compiled” code for Python modules of ‘.pyc’ files.

Not all Python object types are supported; in general, only objects whose value is independent from
a particular invocation of Python can be written and read by this module. The following types are
supported: None, integers, long integers, floating point numbers, strings, tuples, lists, dictionaries, and
code objects, where it should be understood that tuples, lists and dictionaries are only supported as long
as the values contained therein are themselves supported; and recursive lists and dictionaries should not
be written (they will cause infinite loops).

Caveat: On machines where C’s long int type has more than 32 bits (such as the DEC Alpha), it is
possible to create plain Python integers that are longer than 32 bits. Since the current marshal module
uses 32 bits to transfer plain Python integers, such values are silently truncated. This particularly affects
the use of very long integer literals in Python modules — these will be accepted by the parser on such
machines, but will be silently be truncated when the module is read from the ‘.pyc’ instead.?

There are functions that read/write files as well as functions operating on strings.
The module defines these functions:

dump (value, file)
Write the value on the open file. The value must be a supported type. The file must be an open

1The name of this module stems from a bit of terminology used by the designers of Modula-3 (amongst others), who
use the term “marshalling” for shipping of data around in a self-contained form. Strictly speaking, “to marshal” means
to convert some data from internal to external form (in an RPC buffer for instance) and “unmarshalling” for the reverse
process.

2A solution would be to refuse such literals in the parser, since they are inherently non-portable. Another solution
would be to let the marshal module raise an exception when an integer value would be truncated. At least one of these
solutions will be implemented in a future version.

40 Chapter 3. Python Services

file object such as sys.stdout or returned by open() or posix.popen(). It must be opened in
binary mode (’wb’ or ’w+b’).

If the value has (or contains an object that has) an unsupported type, a ValueError exception is
raised — but garbage data will also be written to the file. The object will not be properly read
back by load().

load (file)
Read one value from the open file and return it. If no valid value is read, raise EOFError,
ValueError or TypeError. The file must be an open file object opened in binary mode (’rb’
or ’r+b’).
Warning: If an object containing an unsupported type was marshalled with dump (), load() will
substitute None for the unmarshallable type.

dumps (value)
Return the string that would be written to a file by dump(value, file). The value must be a
supported type. Raise a ValueError exception if value has (or contains an object that has) an
unsupported type.

loads (string)
Convert the string to a value. If no valid value is found, raise EOFError, ValueError or TypeError.
Extra characters in the string are ignored.

3.14 imp — Access the import internals

This module provides an interface to the mechanisms used to implement the import statement. It defines
the following constants and functions:

get_magic()
Return the magic string value used to recognize byte-compiled code files (‘.pyc’ files). (This value
may be different for each Python version.)

get_suffixes()
Return a list of triples, each describing a particular type of module. Each triple has the form
(suffix, mode, type), where suffix is a string to be appended to the module name to form the
filename to search for, mode is the mode string to pass to the built-in open() function to open the
file (this can be *r’ for text files or *rb’ for binary files), and type is the file type, which has one
of the values PY_SOURCE, PY_COMPILED, or C_EXTENSION, described below.

find_module(name [, path])

Try to find the module name on the search path path. If path is a list of directory names, each
directory is searched for files with any of the suffixes returned by get_suffixes() above. Invalid
names in the list are silently ignored (but all list items must be strings). If path is omitted or
None, the list of directory names given by sys.path is searched, but first it searches a few special
places: it tries to find a built-in module with the given name (C_BUILTIN), then a frozen module
(PY_FROZEN), and on some systems some other places are looked in as well (on the Mac, it looks
for a resource (PY_RESOURCE); on Windows, it looks in the registry which may point to a specific
file).

If search is successful, the return value is a triple (file, pathname, description) where file is an
open file object positioned at the beginning, pathname is the pathname of the file found, and
description is a triple as contained in the list returned by get_suffixes() describing the kind of
module found. If the module does not live in a file, the returned file is None, filename is the empty
string, and the description tuple contains empty strings for its suffix and mode; the module type
is as indicate in parentheses dabove. If the search is unsuccessful, ImportError is raised. Other
exceptions indicate problems with the arguments or environment.

This function does not handle hierarchical module names (names containing dots). In order to find
P.M, i.e., submodule M of package P, use find_module() and load_module() to find and load
package P, and then use find_module() with the path argument set to P.__path__. When P
itself has a dotted name, apply this recipe recursively.

3.14. imp — Access the import internals 41

load_module (name, file, filename, description)

Load a module that was previously found by find_module() (or by an otherwise conducted search
yielding compatible results). This function does more than importing the module: if the module
was already imported, it is equivalent to a reload ()! The name argument indicates the full module
name (including the package name, if this is a submodule of a package). The file argument is an
open file, and filename is the corresponding file name; these can be None and ’’, respectively, when
the module is not being loaded from a file. The description argument is a tuple as returned by
find_module() describing what kind of module must be loaded.

If the load is successful, the return value is the module object; otherwise, an exception (usually
ImportError) is raised.

Important: the caller is responsible for closing the file argument, if it was not None, even when
an exception is raised. This is best done using a try ... finally statement.

new_module (name)
Return a new empty module object called name. This object is not inserted in sys.modules.

The following constants with integer values, defined in this module, are used to indicate the search result
of find_module().

PY_SOURCE
The module was found as a source file.

PY_COMPILED
The module was found as a compiled code object file.

C_EXTENSION
The module was found as dynamically loadable shared library.

PY_RESOURCE
The module was found as a Macintosh resource. This value can only be returned on a Macintosh.

PKG_DIRECTORY
The module was found as a package directory.

C_BUILTIN
The module was found as a built-in module.

PY_FROZEN
The module was found as a frozen module (see init_frozen()).

The following constant and functions are obsolete; their functionality is available through find_module ()
or load_module(). They are kept around for backward compatibility:

SEARCH_ERROR
Unused.

init_builtin(name)
Initialize the built-in module called name and return its module object. If the module was already
initialized, it will be initialized again. A few modules cannot be initialized twice — attempting
to initialize these again will raise an ImportError exception. If there is no built-in module called
name, None is returned.

init_frozen(name)
Initialize the frozen module called name and return its module object. If the module was already
initialized, it will be initialized again. If there is no frozen module called name, None is returned.
(Frozen modules are modules written in Python whose compiled byte-code object is incorporated
into a custom-built Python interpreter by Python’s freeze utility. See ‘Tools/freeze/’ for now.)

is_builtin(name)
Return 1 if there is a built-in module called name which can be initialized again. Return -1 if
there is a built-in module called name which cannot be initialized again (see init_builtin()).
Return 0 if there is no built-in module called name.

is_frozen(name)
Return 1 if there is a frozen module (see init_frozen()) called name, or 0 if there is no such

42 Chapter 3. Python Services

module.

load_compiled(name, pathname, file)

Load and initialize a module implemented as a byte-compiled code file and return its module
object. If the module was already initialized, it will be initialized again. The name argument is
used to create or access a module object. The pathname argument points to the byte-compiled
code file. The file argument is the byte-compiled code file, open for reading in binary mode, from
the beginning. It must currently be a real file object, not a user-defined class emulating a file.

load_dynamic(name, pathname [, file])

Load and initialize a module implemented as a dynamically loadable shared library and return its
module object. If the module was already initialized, it will be initialized again. Some modules
don’t like that and may raise an exception. The pathname argument must point to the shared
library. The name argument is used to construct the name of the initialization function: an
external C function called ‘initname()’ in the shared library is called. The optional file argment
is ignored. (Note: using shared libraries is highly system dependent, and not all systems support
it.)

load_source(name, pathname, file)

Load and initialize a module implemented as a Python source file and return its module object. If
the module was already initialized, it will be initialized again. The name argument is used to create
or access a module object. The pathname argument points to the source file. The file argument is
the source file, open for reading as text, from the beginning. It must currently be a real file object,
not a user-defined class emulating a file. Note that if a properly matching byte-compiled file (with
suffix ‘.pyc’ or ‘.pyo’) exists, it will be used instead of parsing the given source file.

3.14.1 Examples

The following function emulates what was the standard import statement up to Python 1.4 (i.e., no
hierarchical module names). (This implementation wouldn’t work in that version, since find_module ()
has been extended and load_module() has been added in 1.4.)

import imp import sys

Fast path: see if the module has already been imported.
try:

return sys.modules [name]
except KeyError:

pass

def import__(name, globals=None, locals=None, fromlist=None):

If any of the following calls raises an exception,
there’s a problem we can’t handle -- let the caller handle it.

fp, pathname, description = imp.find_module (name)

try:
return imp.load_module(name, fp, pathname, description)
finally:
Since we may exit via an exception, close fp explicitly.
if fp:

fp.close()

A more complete example that implements hierarchical module names and includes a reload () function
can be found in the standard module knee (which is intended as an example only — don’t rely on any
part of it being a standard interface).

3.14.

imp — Access the import internals 43

3.15 parser — Access Python parse trees

The parser module provides an interface to Python’s internal parser and byte-code compiler. The
primary purpose for this interface is to allow Python code to edit the parse tree of a Python expression
and create executable code from this. This is better than trying to parse and modify an arbitrary Python
code fragment as a string because parsing is performed in a manner identical to the code forming the
application. It is also faster.

There are a few things to note about this module which are important to making use of the data structures
created. This is not a tutorial on editing the parse trees for Python code, but some examples of using
the parser module are presented.

Most importantly, a good understanding of the Python grammar processed by the internal parser is
required. For full information on the language syntax, refer to the Python Language Reference. The
parser itself is created from a grammar specification defined in the file ‘Grammar/Grammar’ in the standard
Python distribution. The parse trees stored in the AST objects created by this module are the actual
output from the internal parser when created by the expr () or suite() functions, described below. The
AST objects created by sequence2ast () faithfully simulate those structures. Be aware that the values
of the sequences which are considered “correct” will vary from one version of Python to another as the
formal grammar for the language is revised. However, transporting code from one Python version to
another as source text will always allow correct parse trees to be created in the target version, with the
only restriction being that migrating to an older version of the interpreter will not support more recent
language constructs. The parse trees are not typically compatible from one version to another, whereas
source code has always been forward-compatible.

Each element of the sequences returned by ast21ist() or ast2tuple() has a simple form. Sequences
representing non-terminal elements in the grammar always have a length greater than one. The first
element is an integer which identifies a production in the grammar. These integers are given symbolic
names in the C header file ‘Include/graminit.h’ and the Python module symbol. Each additional element
of the sequence represents a component of the production as recognized in the input string: these are
always sequences which have the same form as the parent. An important aspect of this structure which
should be noted is that keywords used to identify the parent node type, such as the keyword if in an
if_stmt, are included in the node tree without any special treatment. For example, the if keyword
is represented by the tuple (1, ’if’), where 1 is the numeric value associated with all NAME tokens,
including variable and function names defined by the user. In an alternate form returned when line
number information is requested, the same token might be represented as (1, ’if’, 12), where the 12
represents the line number at which the terminal symbol was found.

Terminal elements are represented in much the same way, but without any child elements and the addition
of the source text which was identified. The example of the if keyword above is representative. The
various types of terminal symbols are defined in the C header file ‘Include/token.h’ and the Python module
token.

The AST objects are not required to support the functionality of this module, but are provided for three
purposes: to allow an application to amortize the cost of processing complex parse trees, to provide
a parse tree representation which conserves memory space when compared to the Python list or tuple
representation, and to ease the creation of additional modules in C which manipulate parse trees. A
simple “wrapper” class may be created in Python to hide the use of AST objects.

The parser module defines functions for a few distinct purposes. The most important purposes are to
create AST objects and to convert AST objects to other representations such as parse trees and compiled
code objects, but there are also functions which serve to query the type of parse tree represented by an
AST object.

See Also:

Module symbol (section 3.16):
Useful constants representing internal nodes of the parse tree.

Module token (section 3.17):
Useful constants representing leaf nodes of the parse tree and functions for testing node values.

44 Chapter 3. Python Services

3.15.1 Creating AST Objects

AST objects may be created from source code or from a parse tree. When creating an AST object from
source, different functions are used to create the ’eval’ and ’exec’ forms.

expr (string)
The expr() function parses the parameter string as if it were an input to ‘compile(string,
’eval’)’. If the parse succeeds, an AST object is created to hold the internal parse tree rep-
resentation, otherwise an appropriate exception is thrown.

suite (string)
The suite() function parses the parameter string as if it were an input to ‘compile (string,
>exec’)’. If the parse succeeds, an AST object is created to hold the internal parse tree represen-
tation, otherwise an appropriate exception is thrown.

sequence2ast (sequence)

This function accepts a parse tree represented as a sequence and builds an internal representation
if possible. If it can validate that the tree conforms to the Python grammar and all nodes are valid
node types in the host version of Python, an AST object is created from the internal representation
and returned to the called. If there is a problem creating the internal representation, or if the tree
cannot be validated, a ParserError exception is thrown. An AST object created this way should
not be assumed to compile correctly; normal exceptions thrown by compilation may still be initiated
when the AST object is passed to compileast (). This may indicate problems not related to syntax
(such as a MemoryError exception), but may also be due to constructs such as the result of parsing
del £(0), which escapes the Python parser but is checked by the bytecode compiler.

Sequences representing terminal tokens may be represented as either two-element lists of the form
(1, ’name’) or as three-element lists of the form (1, ’name’, 56). If the third element is present,
it is assumed to be a valid line number. The line number may be specified for any subset of the
terminal symbols in the input tree.

tuple2ast (sequence)
This is the same function as sequence2ast (). This entry point is maintained for backward com-
patibility.

3.15.2 Converting AST Objects

AST objects, regardless of the input used to create them, may be converted to parse trees represented
as list- or tuple- trees, or may be compiled into executable code objects. Parse trees may be extracted
with or without line numbering information.

ast21ist(ast[, linefz'nfo])

This function accepts an AST object from the caller in ast and returns a Python list representing
the equivalent parse tree. The resulting list representation can be used for inspection or the creation
of a new parse tree in list form. This function does not fail so long as memory is available to build
the list representation. If the parse tree will only be used for inspection, ast2tuple() should be
used instead to reduce memory consumption and fragmentation. When the list representation is
required, this function is significantly faster than retrieving a tuple representation and converting
that to nested lists.

If line_info is true, line number information will be included for all terminal tokens as a third
element of the list representing the token. Note that the line number provided specifies the line on
which the token ends. This information is omitted if the flag is false or omitted.

ast2tuple (ast [, line_info])
This function accepts an AST object from the caller in ast and returns a Python tuple representing
the equivalent parse tree. Other than returning a tuple instead of a list, this function is identical
to ast2list ().

If line_info is true, line number information will be included for all terminal tokens as a third
element of the list representing the token. This information is omitted if the flag is false or omitted.

compileast(ast[, filename = ’<ast>’])

3.15. parser — Access Python parse trees 45

The Python byte compiler can be invoked on an AST object to produce code objects which can be
used as part of an exec statement or a call to the built-in eval () function. This function provides
the interface to the compiler, passing the internal parse tree from ast to the parser, using the source
file name specified by the filename parameter. The default value supplied for filename indicates
that the source was an AST object.

Compiling an AST object may result in exceptions related to compilation; an example would be
a SyntaxError caused by the parse tree for del £(0): this statement is considered legal within
the formal grammar for Python but is not a legal language construct. The SyntaxError raised for
this condition is actually generated by the Python byte-compiler normally, which is why it can be
raised at this point by the parser module. Most causes of compilation failure can be diagnosed
programmatically by inspection of the parse tree.

3.15.3 Queries on AST Objects

Two functions are provided which allow an application to determine if an AST was created as an expres-
sion or a suite. Neither of these functions can be used to determine if an AST was created from source
code via expr () or suite() or from a parse tree via sequence2ast().

isexpr (ast)
When ast represents an ’eval’ form, this function returns true, otherwise it returns false. This
is useful, since code objects normally cannot be queried for this information using existing built-in
functions. Note that the code objects created by compileast() cannot be queried like this either,
and are identical to those created by the built-in compile() function.

issuite(ast)
This function mirrors isexpr() in that it reports whether an AST object represents an ’exec’
form, commonly known as a “suite.” It is not safe to assume that this function is equivalent to
‘not isexpr(ast)’, as additional syntactic fragments may be supported in the future.

3.15.4 Exceptions and Error Handling

The parser module defines a single exception, but may also pass other built-in exceptions from other
portions of the Python runtime environment. See each function for information about the exceptions it
can raise.

ParserError
Exception raised when a failure occurs within the parser module. This is generally produced
for validation failures rather than the built in SyntaxError thrown during normal parsing. The
exception argument is either a string describing the reason of the failure or a tuple containing
a sequence causing the failure from a parse tree passed to sequence2ast() and an explanatory
string. Calls to sequence2ast () need to be able to handle either type of exception, while calls to
other functions in the module will only need to be aware of the simple string values.

Note that the functions compileast (), expr (), and suite() may throw exceptions which are normally
thrown by the parsing and compilation process. These include the built in exceptions MemoryError,
OverflowError, SyntaxError, and SystemError. In these cases, these exceptions carry all the meaning
normally associated with them. Refer to the descriptions of each function for detailed information.

3.15.5 AST Objects

Ordered and equality comparisons are supported between AST objects. Pickling of AST objects (using
the pickle module) is also supported.

ASTType
The type of the objects returned by expr(), suite() and sequence2ast().

AST objects have the following methods:

46 Chapter 3. Python Services

compile([ﬁlename])

Same as compileast(ast, filename).

isexpr ()
Same as isexpr(ast).

issuite()
Same as issuite(ast).

tolist([lme_mfo])
Same as ast2list(ast, line_info).

totuple([line_info])

Same as ast2tuple(ast, line_info).

3.15.6 Examples

The parser modules allows operations to be performed on the parse tree of Python source code before the
bytecode is generated, and provides for inspection of the parse tree for information gathering purposes.
Two examples are presented. The simple example demonstrates emulation of the compile() built-in

function and the complex example shows the use of a parse tree for information discovery.

Emulation of compile()

While many useful operations may take place between parsing and bytecode generation, the simplest
operation is to do nothing. For this purpose, using the parser module to produce an intermediate data

structure is equivalent to the code

>>> code = compile(’a + 5’, ’eval’)
>>>a =5

>>> eval(code)

10

The equivalent operation using the parser module is somewhat longer, and allows the intermediate

internal parse tree to be retained as an AST object:

>>> import parser
>>> ast = parser.expr(’a + 5’)
>>> code = ast.compile()

>>> a =5
>>> eval(code)
10

An application which needs both AST and code objects can package this code into readily available

functions:

import parser

def load_suite(source_string):

ast = parser.suite(source_string)

return ast, ast.compile()

def load_expression(source_string):
ast = parser.expr(source_string)

return ast, ast.compile()

3.15. parser — Access Python parse trees

47

Information Discovery

Some applications benefit from direct access to the parse tree. The remainder of this section demonstrates
how the parse tree provides access to module documentation defined in docstrings without requiring that
the code being examined be loaded into a running interpreter via import. This can be very useful for
performing analyses of untrusted code.

Generally, the example will demonstrate how the parse tree may be traversed to distill interesting infor-
mation. Two functions and a set of classes are developed which provide programmatic access to high
level function and class definitions provided by a module. The classes extract information from the parse
tree and provide access to the information at a useful semantic level, one function provides a simple
low-level pattern matching capability, and the other function defines a high-level interface to the classes
by handling file operations on behalf of the caller. All source files mentioned here which are not part of
the Python installation are located in the ‘Demo/parser/’ directory of the distribution.

The dynamic nature of Python allows the programmer a great deal of flexibility, but most modules need
only a limited measure of this when defining classes, functions, and methods. In this example, the only
definitions that will be considered are those which are defined in the top level of their context, e.g., a
function defined by a def statement at column zero of a module, but not a function defined within a
branch of an if ... else construct, though there are some good reasons for doing so in some situations.
Nesting of definitions will be handled by the code developed in the example.

To construct the upper-level extraction methods, we need to know what the parse tree structure looks
like and how much of it we actually need to be concerned about. Python uses a moderately deep parse
tree so there are a large number of intermediate nodes. It is important to read and understand the
formal grammar used by Python. This is specified in the file ‘Grammar/Grammar’ in the distribution.
Consider the simplest case of interest when searching for docstrings: a module consisting of a docstring
and nothing else. (See file ‘docstring.py’.)

"""Some documentation.
nnn

Using the interpreter to take a look at the parse tree, we find a bewildering mass of numbers and
parentheses, with the documentation buried deep in nested tuples.

48 Chapter 3. Python Services

>>> import parser
>>> import pprint
>>> ast = parser.suite(open(’docstring.py’).read())
>>> tup = ast.totuple()
>>> pprint.pprint (tup)
(257,
(264,
(265,
(266,
(267,
(307,
(287,
(288,
(289,
(290,
(292,
(293,
(294,
(295,
(296,
(297,
(298,
(299,
(300, (3, ’"""Some documentation.\012"""2))))))))))II))),
4,),
4,),
0,)

The numbers at the first element of each node in the tree are the node types; they map directly to
terminal and non-terminal symbols in the grammar. Unfortunately, they are represented as integers
in the internal representation, and the Python structures generated do not change that. However, the
symbol and token modules provide symbolic names for the node types and dictionaries which map from
the integers to the symbolic names for the node types.

In the output presented above, the outermost tuple contains four elements: the integer 257 and three
additional tuples. Node type 257 has the symbolic name file_input. Each of these inner tuples contains
an integer as the first element; these integers, 264, 4, and 0, represent the node types stmt, NEWLINE,
and ENDMARKER, respectively. Note that these values may change depending on the version of Python
you are using; consult ‘symbol.py’ and ‘token.py’ for details of the mapping. It should be fairly clear that
the outermost node is related primarily to the input source rather than the contents of the file, and may
be disregarded for the moment. The stmt node is much more interesting. In particular, all docstrings
are found in subtrees which are formed exactly as this node is formed, with the only difference being
the string itself. The association between the docstring in a similar tree and the defined entity (class,
function, or module) which it describes is given by the position of the docstring subtree within the tree
defining the described structure.

By replacing the actual docstring with something to signify a variable component of the tree, we allow a
simple pattern matching approach to check any given subtree for equivalence to the general pattern for
docstrings. Since the example demonstrates information extraction, we can safely require that the tree be
in tuple form rather than list form, allowing a simple variable representation to be [’variable_name’].
A simple recursive function can implement the pattern matching, returning a boolean and a dictionary
of variable name to value mappings. (See file ‘example.py’.)

3.15. parser — Access Python parse trees 49

from types import ListType, TupleType

def match(pattern, data, vars=None):

if vars is Nome:
vars = {}

if type(pattern) is ListType:
vars[pattern[0]] = data
return 1, vars

if type(pattern) is not TupleType:
return (pattern == data), vars

if len(data) != len(pattern):
return 0, vars

for pattern, data in map(None, pattern, data):
same, vars = match(pattern, data, vars)
if not same:

break
return same, vars

Using this simple representation for syntactic variables and the symbolic node types, the pattern for the
candidate docstring subtrees becomes fairly readable. (See file ‘example.py’.)

import symbol
import token

DOCSTRING_STMT_PATTERN = (
symbol.stmt,
(symbol.simple_stmt,

(symbol.small_stmt,
(symbol.expr_stmt,
(symbol.testlist,
(symbol.test,
(symbol.and_test,
(symbol.not_test,
(symbol.comparison,
(symbol.expr,
(symbol.xor_expr,
(symbol.and_expr,
(symbol.shift_expr,
(symbol.arith_expr,
(symbol.term,
(symbol.factor,
(symbol.power,
(symbol.atom,
(token.STRING, [’docstring’])
13333333))300)),
(token.NEWLINE, °’)
)

Using the match() function with this pattern, extracting the module docstring from the parse tree
created previously is easy:

>>> found, vars = match(DOCSTRING_STMT_PATTERN, tup([1])
>>> found

1

>>> vars

{’docstring’: ’"""Some documentation.\012"""’}

50 Chapter 3. Python Services

Once specific data can be extracted from a location where it is expected, the question of where information
can be expected needs to be answered. When dealing with docstrings, the answer is fairly simple: the
docstring is the first stmt node in a code block (file_input or suite node types). A module consists
of a single file_input node, and class and function definitions each contain exactly one suite node.
Classes and functions are readily identified as subtrees of code block nodes which start with (stmt,
(compound_stmt, (classdef, ... or (stmt, (compound_stmt, (funcdef, Note that these
subtrees cannot be matched by match () since it does not support multiple sibling nodes to match without
regard to number. A more elaborate matching function could be used to overcome this limitation, but
this is sufficient for the example.

Given the ability to determine whether a statement might be a docstring and extract the actual string
from the statement, some work needs to be performed to walk the parse tree for an entire module and
extract information about the names defined in each context of the module and associate any docstrings
with the names. The code to perform this work is not complicated, but bears some explanation.

The public interface to the classes is straightforward and should probably be somewhat more flexible.
Each “major” block of the module is described by an object providing several methods for inquiry and
a constructor which accepts at least the subtree of the complete parse tree which it represents. The
ModuleInfo constructor accepts an optional name parameter since it cannot otherwise determine the
name of the module.

The public classes include ClassInfo, FunctionInfo, and ModuleInfo. All objects provide the meth-
ods get_name(), get_docstring(), get_class_names(), and get_class_info(). The ClassInfo
objects support get_method_names() and get_method_info() while the other classes provide
get_function_names() and get_function_info().

Within each of the forms of code block that the public classes represent, most of the required information
is in the same form and is accessed in the same way, with classes having the distinction that functions
defined at the top level are referred to as “methods.” Since the difference in nomenclature reflects a real
semantic distinction from functions defined outside of a class, the implementation needs to maintain the
distinction. Hence, most of the functionality of the public classes can be implemented in a common base
class, SuiteInfoBase, with the accessors for function and method information provided elsewhere. Note
that there is only one class which represents function and method information; this parallels the use of
the def statement to define both types of elements.

Most of the accessor functions are declared in SuiteInfoBase and do not need to be overriden by
subclasses. More importantly, the extraction of most information from a parse tree is handled through
a method called by the SuiteInfoBase constructor. The example code for most of the classes is clear
when read alongside the formal grammar, but the method which recursively creates new information
objects requires further examination. Here is the relevant part of the SuiteInfoBase definition from
‘example.py’:

3.15. parser — Access Python parse trees 51

class SuiteInfoBase:
_docstring = ’’
_name = ’’

def __init__(self, tree = None):
self._class_info = {}
self._function_info = {}
if tree:
self._extract_info(tree)

def _extract_info(self, tree):
extract docstring

if len(tree) == 2:

found, vars = match(DOCSTRING_STMT_PATTERN[1], treel[1])
else:

found, vars = match(DOCSTRING_STMT_PATTERN, treel[3])
if found:

self._docstring = eval(vars[’docstring’])
discover inner definitions
for node in tree[1:]:
found, vars = match(COMPOUND_STMT_PATTERN, node)

if found:
cstmt = vars[’compound’]
if cstmt[0] == symbol.funcdef:

name = cstmt[2] [1]

self._function_info[name] = FunctionInfo(cstmt)
elif cstmt[0] == symbol.classdef:

name = cstmt[2] [1]

self._class_info[name] = ClassInfo(cstmt)

After initializing some internal state, the constructor calls the _extract_info() method. This method
performs the bulk of the information extraction which takes place in the entire example. The extraction
has two distinct phases: the location of the docstring for the parse tree passed in, and the discovery of
additional definitions within the code block represented by the parse tree.

The initial if test determines whether the nested suite is of the “short form” or the “long form.” The
short form is used when the code block is on the same line as the definition of the code block, as in

def square(x): "Square an argument."; return x ** 2

while the long form uses an indented block and allows nested definitions:

def make_power (exp):
"Make a function that raises an argument to the exponent
def raiser(x, y=exp):
return x ** y
return raiser

(exp) "

When the short form is used, the code block may contain a docstring as the first, and possibly only,
small_stmt element. The extraction of such a docstring is slightly different and requires only a portion
of the complete pattern used in the more common case. As implemented, the docstring will only be found
if there is only one small_stmt node in the simple_stmt node. Since most functions and methods which
use the short form do not provide a docstring, this may be considered sufficient. The extraction of the
docstring proceeds using the match() function as described above, and the value of the docstring is
stored as an attribute of the SuiteInfoBase object.

After docstring extraction, a simple definition discovery algorithm operates on the stmt nodes of the

52 Chapter 3. Python Services

suite node. The special case of the short form is not tested; since there are no stmt nodes in the short
form, the algorithm will silently skip the single simple_stmt node and correctly not discover any nested
definitions.

Each statement in the code block is categorized as a class definition, function or method definition,
or something else. For the definition statements, the name of the element defined is extracted and a
representation object appropriate to the definition is created with the defining subtree passed as an
argument to the constructor. The repesentation objects are stored in instance variables and may be
retrieved by name using the appropriate accessor methods.

The public classes provide any accessors required which are more specific than those provided by the
SuiteInfoBase class, but the real extraction algorithm remains common to all forms of code blocks. A
high-level function can be used to extract the complete set of information from a source file. (See file
‘example.py’.)

def get_docs(fileName):
import os
import parser

source = open(fileName).read()

basename = os.path.basename(os.path.splitext(fileName) [0])
ast = parser.suite(source)

return ModuleInfo(ast.totuple(), basename)

This provides an easy-to-use interface to the documentation of a module. If information is required
which is not extracted by the code of this example, the code may be extended at clearly defined points
to provide additional capabilities.

3.16 symbol — Constants used with Python parse trees

This module provides constants which represent the numeric values of internal nodes of the parse tree.
Unlike most Python constants, these use lower-case names. Refer to the file ‘Grammar/Grammar’ in the
Python distribution for the defintions of the names in the context of the language grammar. The specific
numeric values which the names map to may change between Python versions.

This module also provides one additional data object:

Sym_name
Dictionary mapping the numeric values of the constants defined in this module back to name
strings, allowing more human-readable representation of parse trees to be generated.

See Also:

Module parser (section 3.15):
second example uses this module

3.17 token — Constants used with Python parse trees

This module provides constants which represent the numeric values of leaf nodes of the parse tree
(terminal tokens). Refer to the file ‘Grammar/Grammar’ in the Python distribution for the defintions of
the names in the context of the language grammar. The specific numeric values which the names map
to may change between Python versions.

This module also provides one data object and some functions. The functions mirror definitions in the
Python C header files.

tok_name
Dictionary mapping the numeric values of the constants defined in this module back to name
strings, allowing more human-readable representation of parse trees to be generated.

3.16. symbol — Constants used with Python parse trees 53

ISTERMINAL(z)
Return true for terminal token values.

ISNONTERMINAL(z)
Return true for non-terminal token values.

ISEQF (x)
Return true if z is the marker indicating the end of input.

See Also:

Module parser (section 3.15):
second example uses this module

3.18 keyword — Testing for Python keywords

This module allows a Python program to determine if a string is a keyword. A single function is provided:

iskeyword(s)
Return true if s is a Python keyword.

3.19 tokenize — Tokenizer for Python source

The tokenize module provides a lexical scanner for Python source code, implemented in Python. The
scanner in this module returns comments as tokens as well, making it useful for implementing “pretty-
printers,” including colorizers for on-screen displays.

The scanner is exposed by a single function:

tokenize (readline [, tokeneater])
The tokenize() function accepts two parameters: one representing the input stream, and one
providing an output mechanism for tokenize ().

The first parameter, readline, must be a callable object which provides the same interface as the
readline() method of built-in file objects (see section 2.1.7). Each call to the function should
return one line of input as a string.

The second parameter, tokeneater, must also be a callable object. It is called with five parameters:
the token type, the token string, a tuple (srow, scol) specifying the row and column where the
token begins in the source, a tuple (erow, ecol) giving the ending position of the token, and
the line on which the token was found. The line passed is the logical line; continuation lines are
included.

All constants from the token module are also exported from tokenize, as is one additional token type
value that might be passed to the tokeneater function by tokenize():

COMMENT
Token value used to indicate a comment.

3.20 pyclbr — Python class browser support

The pyclbr can be used to determine some limited information about the classes and methods defined
in a module. The information provided is sufficient to implement a traditional three-pane class browser.
The information is extracted from the source code rather than from an imported module, so this module
is safe to use with untrusted source code. This restriction makes it impossible to use this module with
modules not implemented in Python, including many standard and optional extension modules.

readmodule (module [, path])
Read a module and return a dictionary mapping class names to class descriptor objects. The
parameter module should be the name of a module as a string; it may be the name of a module

54 Chapter 3. Python Services

within a package. The path parameter should be a sequence, and is used to augment the value of
sys.path, which is used to locate module source code.

3.20.1 Class Descriptor Objects

The class descriptor objects used as values in the dictionary returned by readmodule() provide the
following data members:

module
The name of the module defining the class described by the class descriptor.

name
The name of the class.

super
A list of class descriptors which describe the immediate base classes of the class being described.
Classes which are named as superclasses but which are not discoverable by readmodule () are listed
as a string with the class name instead of class descriptors.

methods
A dictionary mapping method names to line numbers.

file
Name of the file containing the class statement defining the class.

lineno
The line number of the class statement within the file named by file.

3.21 code — Interpreter base classes

The code module provides facilities to implement read-eval-print loops in Python. Two classes and
convenience functions are included which can be used to build applications which provide an interactive
interpreter prompt.

InteractivelInterpreter([locals])
This class deals with parsing and interpreter state (the user’s namespace); it does not deal with
input buffering or prompting or input file naming (the filename is always passed in explicitly). The
optional locals argument specifies the dictionary in which code will be executed; it defaults to a
newly created dictionary with key ’__name__’ set to ’__console__’ and key ’__doc__"’ set
to None.

InteractiveConsole([locals [, ﬁlename]])
Closely emulate the behavior of the interactive Python interpreter. This class builds on
InteractivelInterpreter and adds prompting using the familiar sys.ps1 and sys.ps2, and input
buffering.

interact([banner[, readfunc[, local]]])
Convenience function to run a read-eval-print loop. This creates a new instance of
InteractiveConsole and sets readfunc to be used as the raw_input () method, if provided. If
local is provided, it is passed to the InteractiveConsole constructor for use as the default names-
pace for the interpreter loop. The interact() method of the instance is then run with banner
passed as the banner to use, if provided. The console object is discarded after use.

compilefcommand(source[, ﬁlename[, symbol]])
This function is useful for programs that want to emulate Python’s interpreter main loop (a.k.a.
the read-eval-print loop). The tricky part is to determine when the user has entered an incomplete
command that can be completed by entering more text (as opposed to a complete command or a
syntax error). This function almost always makes the same decision as the real interpreter main
loop.

source is the source string; filename is the optional filename from which source was read, defaulting

3.21. code — Interpreter base classes 55

to ’<input>’; and symbol is the optional grammar start symbol, which should be either ’single’
(the default) or ’eval’.

Returns a code object (the same as compile(source, filename, symbol)) if the command is com-
plete and valid; None if the command is incomplete; raises SyntaxError if the command is complete
and contains a syntax error, or raises OverflowError if the command includes a numeric constant
which exceeds the range of the appropriate numeric type.

3.21.1 Interactive Interpreter Objects

runsource (source [, ﬁlename[, symbol]])
Compile and run some source in the interpreter. Arguments are the same as for
compile_command (); the default for filename is ’><input>’, and for symbol is ’single’. One
several things can happen:

eThe input is incorrect; compile command() raised an exception (SyntaxError or
OverflowError). A syntax traceback will be printed by calling the showsyntaxerror ()
method. runsource() returns 0.

eThe input is incomplete, and more input is required; compile_command() returned None.
runsource() returns 1.

eThe input is complete; compile_command() returned a code object. The code is executed
by calling the runcode() (which also handles run-time exceptions, except for SystemExit).
runsource () returns 0.

The return value can be used to decide whether to use sys.psl or sys.ps2 to prompt the next
line.

runcode (code)
Execute a code object. When an exception occurs, showtraceback() is called to display a trace-
back. All exceptions are caught except SystemExit, which is allowed to propogate.

A note about KeyboardInterrupt: this exception may occur elsewhere in this code, and may not
always be caught. The caller should be prepared to deal with it.

showsyntaxerror([ﬁlename])
Display the syntax error that just occurred. This does not display a stack trace because there isn’t
one for syntax errors. If filename is given, it is stuffed into the exception instead of the default
filename provided by Python’s parser, because it always uses ’<string>’ when reading from a
string. The output is written by the write() method.

showtraceback()
Display the exception that just occurred. We remove the first stack item because it is within the
interpreter object implementation. The output is written by the write () method.

write(data)
Write a string to standard output. Derived classes should override this to provide the appropriate
output handling as needed.

3.21.2 Interactive Console Objects

The InteractiveConsole class is a subclass of InteractivelInterpreter, and so offers all the methods
of the interpreter objects as well as the following additions.

interact([banner])
Closely emulate the interactive Python console. The optional banner argument specify the banner
to print before the first interaction; by default it prints a banner similar to the one printed by the
standard Python interpreter, followed by the class name of the console object in parentheses (so
as not to confuse this with the real interpreter — since it’s so close!).

56 Chapter 3. Python Services

push(line)
Push a line of source text to the interpreter. The line should not have a trailing newline; it may
have internal newlines. The line is appended to a buffer and the interpreter’s runsource () method
is called with the concatenated contents of the buffer as source. If this indicates that the command
was executed or invalid, the buffer is reset; otherwise, the command is incomplete, and the buffer
is left as it was after the line was appended. The return value is 1 if more input is required, O if
the line was dealt with in some way (this is the same as runsource()).

resetbuffer()
Remove any unhandled source text from the input buffer.

raw_input([prompt])
Write a prompt and read a line. The returned line does not include the trailing newline. When the
user enters the EOF key sequence, EOFError is raised. The base implementation uses the built-in
function raw_input (); a subclass may replace this with a different implementation.

3.22 codeop — Compile Python code

The codeop module provides a function to compile Python code with hints on whether it is certainly
complete, possibly complete or definitely incomplete. This is used by the code module and should not
normally be used directly.

The codeop module defines the following function:

compile_command(source[, ﬁlename[, symbol]])
Tries to compile source, which should be a string of Python code and return a code object if source
is valid Python code. In that case, the filename attribute of the code object will be filename, which
defaults to ><input>’. Returns None if source is not valid Python code, but is a prefix of valid
Python code.

If there is a problem with source, an exception will be raised. SyntaxError is raised if there is
invalid Python syntax, and OverflowError if there is an invalid numeric constant.

The symbol argument determines whether source is compiled as a statement (’single’, the default)
or as an expression (’eval’). Any other value will cause ValueError to be raised.

Caveat: It is possible (but not likely) that the parser stops parsing with a successful outcome
before reaching the end of the source; in this case, trailing symbols may be ignored instead of
causing an error. For example, a backslash followed by two newlines may be followed by arbitrary
garbage. This will be fixed once the API for the parser is better.

3.23 pprint — Data pretty printer.

The pprint module provides a capability to “pretty-print” arbitrary Python data structures in a form
which can be used as input to the interpreter. If the formatted structures include objects which are not
fundamental Python types, the representation may not be loadable. This may be the case if objects such
as files, sockets, classes, or instances are included, as well as many other builtin objects which are not
representable as Python constants.

The formatted representation keeps objects on a single line if it can, and breaks them onto multiple lines
if they don’t fit within the allowed width. Construct PrettyPrinter objects explicitly if you need to
adjust the width constraint.

The pprint module defines one class:

PrettyPrinter(...)
Construct a PrettyPrinter instance. This constructor understands several keyword parameters.
An output stream may be set using the stream keyword; the only method used on the stream object
is the file protocol’s write () method. If not specified, the PrettyPrinter adopts sys.stdout.
Three additional parameters may be used to control the formatted representation. The keywords
are indent, depth, and width. The amount of indentation added for each recursive level is specified

3.22. codeop — Compile Python code 57

by indent; the default is one. Other values can cause output to look a little odd, but can make
nesting easier to spot. The number of levels which may be printed is controlled by depth; if the
data structure being printed is too deep, the next contained level is replaced by . ..’. By default,
there is no constraint on the depth of the objects being formatted. The desired output width is
constrained using the width parameter; the default is eighty characters. If a structure cannot be
formatted within the constrained width, a best effort will be made.

>>> import pprint, sys

>>> stuff = sys.path[:]

>>> stuff.insert(0, stuffl[:])

>>> pp = pprint.PrettyPrinter (indent=4)

>>> pp.pprint (stuff)

t r -,
’/usr/local/lib/pythonl.5’,
’/usr/local/lib/pythonl.5/test’,
’/usr/local/lib/pythonl.5/sunos5’,
>/usr/local/lib/pythonl.5/sharedmodules’,
’/usr/local/lib/pythonl.5/tkinter’],

2
3

> /usr/local/lib/pythonl.5’,
’/usr/local/lib/pythonl.5/test’,
’/usr/local/lib/pythonl.5/sunos5’,
’/usr/local/lib/pythonl.5/sharedmodules’,
> /usr/local/lib/pythoni.5/tkinter’]

>>>

>>> import parser

>>> tup = parser.ast2tuple(

... parser.suite(open(’pprint.py’).read())) [1][1] [1]

>>> pp = pprint.PrettyPrinter (depth=6)

>>> pp.pprint (tup)

(266, (267, (307, (287, (288, (...))))))

The PrettyPrinter class supports several derivative functions:

pformat (object)
Return the formatted representation of object as a string. The default parameters for formatting
are used.

pprint (object [, stream])
Prints the formatted representation of object on stream, followed by a newline. If stream is omitted,
sys.stdout is used. This may be used in the interactive interpreter instead of a print statement
for inspecting values. The default parameters for formatting are used.

>>> stuff = sys.path[:]

>>> stuff.insert(0, stuff)

>>> pprint.pprint(stuff)

[<Recursion on list with id=869440>,
)
’/usr/local/lib/pythonl.5’,
> /usr/local/lib/pythonl.5/test’,
’/usr/local/lib/pythonl.5/sunos5’,
’/usr/local/lib/pythonl.5/sharedmodules’,
’/usr/local/lib/pythoni.5/tkinter’]

isreadable (object)
Determine if the formatted representation of object is “readable,” or can be used to reconstruct
the value using eval (). This always returns false for recursive objects.

>>> pprint.isreadable(stuff)
0

58 Chapter 3. Python Services

isrecursive (object)
Determine if object requires a recursive representation.

One more support function is also defined:

saferepr (object)
Return a string representation of object, protected against recursive data structures. If the represen-
tation of object exposes a recursive entry, the recursive reference will be represented as ‘<Recursion
on typename with id=number>’. The representation is not otherwise formatted.

>>> pprint.saferepr(stuff)

"[<Recursion on list with i1d=682968>, ’’, ’/usr/local/lib/pythonl.5’, ’/usr/loca
1/1ib/pythonl.5/test’, ’/usr/local/lib/pythonl.5/sunos5’, ’/usr/local/lib/python
1.5/sharedmodules’, ’/usr/local/lib/pythonl.5/tkinter’]"

3.23.1 PrettyPrinter Objects

PrettyPrinter instances have the following methods:

pformat (object)
Return the formatted representation of object. This takes into Account the options passed to the
PrettyPrinter constructor.

pprint (object)
Print the formatted representation of object on the configured stream, followed by a newline.

The following methods provide the implementations for the corresponding functions of the same names.
Using these methods on an instance is slightly more efficient since new PrettyPrinter objects don’t
need to be created.

isreadable (object)
Determine if the formatted representation of the object is “readable,” or can be used to reconstruct
the value using eval(). Note that this returns false for recursive objects. If the depth parameter
of the PrettyPrinter is set and the object is deeper than allowed, this returns false.

isrecursive (object)
Determine if the object requires a recursive representation.

3.24 repr — Alternate repr () implementation.

The repr module provides a means for producing object representations with limits on the size of the
resulting strings. This is used in the Python debugger and may be useful in other contexts as well.

This module provides a class, an instance, and a function:

Repr ()
Class which provides formatting services useful in implementing functions similar to the built-in
repr (); size limits for different object types are added to avoid the generation of representations
which are excessively long.

aRepr
This is an instance of Repr which is used to provide the repr () function described below. Changing
the attributes of this object will affect the size limits used by repr() and the Python debugger.

repr(obj)
This is the repr() method of aRepr. It returns a string similar to that returned by the built-in
function of the same name, but with limits on most sizes.

3.24. repr — Alternate repr() implementation. 59

3.24.1 Repr Objects

Repr instances provide several members which can be used to provide size limits for the representations
of different object types, and methods which format specific object types.

maxlevel
Depth limit on the creation of recursive representations. The default is 6.

maxdict

maxlist

maxtuple
Limits on the number of entries represented for the named object type. The default for maxdict
is 4, for the others, 6.

maxlong
Maximum number of characters in the representation for a long integer. Digits are dropped from
the middle. The default is 40.

maxstring
Limit on the number of characters in the representation of the string. Note that the “normal”
representation of the string is used as the character source: if escape sequences are needed in the
representation, these may be mangled when the representation is shortened. The default is 30.

maxother
This limit is used to control the size of object types for which no specific formatting method is
available on the Repr object. It is applied in a similar manner as maxstring. The default is 20.

repr (obj)
The equivalent to the built-in repr () that uses the formatting imposed by the instance.

reprl(obj, level)
Recursive implementation used by repr (). This uses the type of 0bj to determine which formatting
method to call, passing it obj and level. The type-specific methods should call repr1 () to perform
recursive formatting, with level - 1 for the value of level in the recursive call.

repr_type (obj, level)
Formatting methods for specific types are implemented as methods with a
name based on the type name. In the method name, type 1is replaced by
string. join(string.split(type(obj).__name__, ’_’). Dispatch to these methods is
handled by repr1(). Type-specific methods which need to recursively format a value should call
‘self .reprl(subobj, level - 1)’

3.24.2 Subclassing Repr Objects

The use of dynamic dispatching by Repr.repr1() allows subclasses of Repr to add support for additional
built-in object types or to modify the handling of types already supported. This example shows how
special support for file objects could be added:

import repr
import sys

class MyRepr(repr.Repr):
def repr_file(self, obj, level):
if obj.name in [’<stdin>’, ’<stdout>’, ’<stderr>’]:
return obj.name
else:
return ‘obj‘
aRepr = MyRepr()
print aRepr.repr(sys.stdin) # prints ’<stdin>’

60 Chapter 3. Python Services

3.25 py_compile — Compile Python source files

The py_compile module provides a single function to generate a byte-code file from a source file.

Though not often needed, this function can be useful when installing modules for shared use, especially if
some of the users may not have permission to write the byte-code cache files in the directory containing
the source code.

compile (ﬁle[, cﬁle[, dﬁle]])
Compile a source file to byte-code and write out the byte-code cache file. The source code is loaded
from the file name file. The byte-code is written to cfile, which defaults to file + >c’ (*o? if
optimization is enabled in the current interpreter). If dfile is specified, it is used as the name of
the source file in error messages instead of file.

See Also:

Module compileall (section 3.26):
Utilities to compile all Python source files in a directory tree.

3.26 compileall — Byte-compile Python libraries

This module provides some utility functions to support installing Python libraries. These functions
compile Python source files in a directory tree, allowing users without permission to write to the libraries
to take advantage of cached byte-code files.

The source file for this module may also be used as a script to compile Python sources in directories
named on the command line or in sys.path.

compile_dir(dir[, maxlevels[, ddir[, force]]])
Recursively descend the directory tree named by dir, compiling all ‘.py’ files along the way. The
mazlevels parameter is used to limit the depth of the recursion; it defaults to 10. If ddir is given,
it is used as the base path from which the filenames used in error messages will be generated. If
force is true, modules are re-compiled even if the timestamps are up to date.

compile_path([skip_curdir[, maxlevels[, force]]])
Byte-compile all the ‘.py’ files found along sys.path. If skip_curdir is true (the default), the
current directory is not included in the search. The mazlevels and force parameters default to 0
and are passed to the compile_dir() function.

See Also:

Module py_compile (section 3.25):
Byte-compile a single source file.

3.27 dis — Disassembler.

The dis module supports the analysis of Python byte code by disassembling it. Since there is no Python
assembler, this module defines the Python assembly language. The Python byte code which this module
takes as an input is defined in the file ‘Include/opcode.h’ and used by the compiler and the interpreter.

Example: Given the function myfunc:

def myfunc(alist):
return len(alist)

the following command can be used to get the disassembly of myfunc():

3.25. py_compile — Compile Python source files 61

>>> dis.dis(myfunc)

0 SET_LINENO 1
3 SET_LINENO 2

6 LOAD_GLOBAL 0 (len)

9 LOAD_FAST 0 (alist)
12 CALL_FUNCTION 1

15 RETURN_VALUE
16 LOAD_CONST 0 (None)
19 RETURN_VALUE

The dis module defines the following functions:

dis([bytesource])
Disassemble the bytesource object. bytesource can denote either a class, a method, a function, or
a code object. For a class, it disassembles all methods. For a single code sequence, it prints one
line per byte code instruction. If no object is provided, it disassembles the last traceback.

distb([#h])
Disassembles the top-of-stack function of a traceback, using the last traceback if none was passed.
The instruction causing the exception is indicated.

disassemble (code [, lasti])
Disassembles a code object, indicating the last instruction if lasti was provided. The output is
divided in the following columns:

1.the current instruction, indicated as ‘==>’,
2.a labelled instruction, indicated with ‘>>’,
3.the address of the instruction,

4.the operation code name,

5.operation parameters, and

6.interpretation of the parameters in parentheses.

The parameter interpretation recognizes local and global variable names, constant values, branch
targets, and compare operators.

disco(code[, lastz'])
A synonym for disassemble. It is more convenient to type, and kept for compatibility with earlier
Python releases.

opname
Sequence of a operation names, indexable using the byte code.

cmp_op
Sequence of all compare operation names.

hasconst
Sequence of byte codes that have a constant parameter.

hasname
Sequence of byte codes that access a attribute by name.

hasjrel
Sequence of byte codes that have a relative jump target.

hasjabs
Sequence of byte codes that have an absolute jump target.

haslocal
Sequence of byte codes that access a a local variable.

62 Chapter 3. Python Services

hascompare
Sequence of byte codes of boolean operations.

3.27.1 Python Byte Code Instructions

The Python compiler currently generates the following byte code instructions.

STOP_CODE
Indicates end-of-code to the compiler, not used by the interpreter.

POP_TOP
Removes the top-of-stack (TOS) item.

ROT_TWO
Swaps the two top-most stack items.

ROT_THREE
Lifts second and third stack item one position up, moves top down to position three.

DUP_TOP
Duplicates the reference on top of the stack.

Unary Operations take the top of the stack, apply the operation, and push the result back on the stack.

UNARY_POSITIVE
Implements TOS

+T0S.

UNARY_NEG
Implements TOS = -TOS.

UNARY_NOT
Implements TOS = not TOS.

UNARY_CONVERT

Implements TOS ‘TOS¢.

UNARY_INVERT
Implements TOS = ~TOS.

Binary operations remove the top of the stack (TOS) and the second top-most stack item (TOS1) from
the stack. They perform the operation, and put the result back on the stack.

BINARY_POWER
Implements TOS

TOS1 ** TOS.

BINARY_ MULTIPLY
Implements TOS = TOS1 * TOS.

BINARY_DIVIDE
Implements TOS = TOS1 / TOS.

BINARY_MODULO
Implements TOS = T0OS1 %TOS.

BINARY_ADD
Implements TOS = TOS1 + TOS.

BINARY_SUBTRACT
Implements TOS = TOS1 - TOS.

BINARY_SUBSCR
Implements TOS = TOS1[TOS].

BINARY_LSHIFT
Implements TOS = TOS1 << TOS.

BINARY_RSHIFT
Implements TOS = TOS1 >> TOS.

3.27. dis — Disassembler. 63

BINARY_AND
Implements TOS

TOS1 and TOS.

BINARY_XOR
Implements TOS = TOS1 ~ TOS.

BINARY_OR
Implements TOS = TOS1 or TOS.

The slice opcodes take up to three parameters.

SLICE+0

Implements TOS = TOS[:].
SLICE+1

Implements TOS = TOS1[TO0S:].

SLICE+2
Implements TOS

TOS1[:T0S1].

SLICE+3
Implements TOS

TOS2[T0S1:TOS].
Slice assignment needs even an additional parameter. As any statement, they put nothing on the stack.

STORE_SLICE+0
Implements TOS[:] = TOS1.

STORE_SLICE+1

Implements TOS1[T0S:] = TOS2.
STORE_SLICE+2
Implements TOS1[:TOS] = TO0S2.

STORE_SLICE+3
Implements TOS2[T0S1:T0OS] = TOS3.

DELETE_SLICE+O
Implements del TOS[:].

DELETE_SLICE+1
Implements del TOS1[TOS:].

DELETE_SLICE+2
Implements del TOS1[:T0OS].

DELETE_SLICE+3
Implements del T0S2[T0S1:T0S].

STORE_SUBSCR
Implements TOS1[T0OS] = TOS2.

DELETE_SUBSCR
Implements del TOS1[TOS].

PRINT_EXPR
Implements the expression statement for the interactive mode. TOS is removed from the stack and
printed. In non-interactive mode, an expression statement is terminated with POP_STACK.

PRINT_ITEM
Prints TOS. There is one such instruction for each item in the print statement.

PRINT_NEWLINE
Prints a new line on sys.stdout. This is generated as the last operation of a print statement,
unless the statement ends with a comma.

BREAK_LQOOP
Terminates a loop due to a break statement.

LOAD_LOCALS

64 Chapter 3. Python Services

Pushes a reference to the locals of the current scope on the stack. This is used in the code for a

class definition: After the class body is evaluated, the locals are passed to the class definition.

RETURN_VALUE
Returns with TOS to the caller of the function.

EXEC_STMT
Implements exec T0S2,T0S1,T0S. The compiler fills missing optional parameters with None.

POP_BLOCK

Removes one block from the block stack. Per frame, there is a stack of blocks, denoting nested

loops, try statements, and such.

END_FINALLY

Terminates a finally-block. The interpreter recalls whether the exception has to be re-raised, or

whether the function returns, and continues with the outer-next block.

BUILD_CLASS

Creates a new class object. TOS is the methods dictionary, TOS1 the tuple of the names of the

base classes, and TOS2 the class name.

All of the following opcodes expect arguments. An argument is two bytes, with the more significant byte

last.

STORE_NAME namet

Implements name = TOS. namei is the index of name in the attribute co_names of the code object.

The compiler tries to use STORE_LOCAL or STORE_GLOBAL if possible.

DELETE_NAME names
Implements del name, where namei is the index into co_names attribute of the code object.

UNPACK_TUPLE count
Unpacks TOS into count individual values, which are put onto the stack right-to-left.

UNPACK_LIST count
Unpacks TOS into count individual values.

STORE_ATTR namei
Implements TOS.name = T0S1, where namei is the index of name in co_names.

DELETE_ATTR names
Implements del TO0S.name, using name: as index into co_names.

STORE_GLOBAL namer
Works as STORE_NAME, but stores the name as a global.

DELETE_GLOBAL names
Works as DELETE_NAME, but deletes a global name.

LOAD_CONST const:
Pushes ‘co_consts[consti]’ onto the stack.

LOAD_NAME names
Pushes the value associated with ‘co_names [namei]’ onto the stack.

BUILD_TUPLE count

Creates a tuple consuming count items from the stack, and pushes the resulting tuple onto the

stack.

BUILD_LIST count
Works as BUILD_TUPLE, but creates a list.

BUILD_MAP zero

Pushes an empty dictionary object onto the stack. The argument is ignored and set to zero by the

compiler.

LOAD_ATTR names
Replaces TOS with getattr(T0S, co_names [namei].

3.27. dis — Disassembler.

COMPARE_QOP opname
Performs a boolean operation. The operation name can be found in cmp_op [opname].

IMPORT_NAME names
Imports the module co_names [namei]. The module object is pushed onto the stack. The current
name space is not affected: for a proper import statement, a subsequent STORE_FAST instruction
modifies the name space.

IMPORT_FROM namei
Imports the attribute co_names[namei]l. The module to import from is found in TOS and left
there.

JUMP_FORWARD delta
Increments byte code counter by delta.

JUMP_IF_TRUE delta
If TOS is true, increment the byte code counter by delta. TOS is left on the stack.

JUMP_IF_FALSE delta
If TOS is false, increment the byte code counter by delta. TOS is not changed.

JUMP_ABSOLUTE target
Set byte code counter to target.

FOR_LOOP delta
Iterate over a sequence. TOS is the current index, TOS1 the sequence. First, the next element is
computed. If the sequence is exhausted, increment byte code counter by delta. Otherwise, push
the sequence, the incremented counter, and the current item onto the stack.

LOAD_GLOBAL namei
Loads the global named co_names [namet] onto the stack.

SETUP_LOOP delta
Pushes a block for a loop onto the block stack. The block spans from the current instruction with
a size of delta bytes.

SETUP_EXCEPT delta
Pushes a try block from a try-except clause onto the block stack. delta points to the first except
block.

SETUP_FINALLY delta
Pushes a try block from a try-except clause onto the block stack. delta points to the finally block.

LOAD_FAST war_num
Pushes a reference to the local co_varnames [var_num] onto the stack.

STORE_FAST war_num
Stores TOS into the local co_varnames [var_num].

DELETE_FAST war_num
Deletes local co_varnames [var_num].

SET_LINENO lineno
Sets the current line number to lineno.

RAISE_VARARGS argc
Raises an exception. argc indicates the number of parameters to the raise statement, ranging from
1 to 3. The handler will find the traceback as TOS2, the parameter as TOS1, and the exception
as TOS.

CALL_FUNCTION argc
Calls a function. The low byte of argc indicates the number of positional parameters, the high
byte the number of keyword parameters. On the stack, the opcode finds the keyword parameters
first. For each keyword argument, the value is on top of the key. Below the keyword parameters,
the positional parameters are on the stack, with the right-most parameter on top. Below the
parameters, the function object to call is on the stack.

MAKE_FUNCTION argc

66 Chapter 3. Python Services

Pushes a new function object on the stack. TOS is the code associated with the function. The
function object is defined to have argc default parameters, which are found below TOS.

BUILD_SLICE argc
Pushes a slice object on the stack. arge must be 2 or 3. If it is 2, slice(T0S1, TO0S) is pushed; if
it is 3, slice(T0S2, TOS1, TOS) is pushed. See the slice() built-in function.

3.28 new — Runtime implementation object creation

The new module allows an interface to the interpreter object creation functions. This is for use primarily
in marshal-type functions, when a new object needs to be created “magically” and not by using the
regular creation functions. This module provides a low-level interface to the interpreter, so care must be
exercised when using this module.

The new module defines the following functions:

instance (class, dict)
This function creates an instance of class with dictionary dict without calling the __init__ ()
constructor. Note that there are no guarantees that the object will be in a consistent state.

instancemethod (function, instance, class)
This function will return a method object, bound to instance, or unbound if instance is None.
function must be callable, and instance must be an instance object or None.

function(code, globals[, name[argdefs]])
Returns a (Python) function with the given code and globals. If name is given, it must be a string
or None. If it is a string, the function will have the given name, otherwise the function name will be
taken from code.co_name. If argdefs is given, it must be a tuple and will be used to the determine
the default values of parameters.

code (argcount, nlocals, stacksize, flags, codestring, constants, names, varnames, filename, name, firstlineno, Inotab)
This function is an interface to the PyCode_New() C function.

module (name)
This function returns a new module object with name name. name must be a string.

classobj(name, baseclasses, dict)
This function returns a new class object, with name name, derived from baseclasses (which should
be a tuple of classes) and with namespace dict.

3.29 site — Site-specific configuration hook

This module is automatically imported during initialization.

In earlier versions of Python (up to and including 1.5a3), scripts or modules that needed to use site-
specific modules would place ‘import site’ somewhere near the top of their code. This is no longer
necessary.

This will append site-specific paths to the module search path.

It starts by constructing up to four directories from a head and a tail part. For the head part, it uses
sys.prefix and sys.exec_prefix; empty heads are skipped. For the tail part, it uses the empty string
(on Macintosh or Windows) or it uses first ‘lib/pythonversion /site-packages’ and then ‘lib/site-python’ (on
UNIx). For each of the distinct head-tail combinations, it sees if it refers to an existing directory, and if
so, adds to sys.path, and also inspected for path configuration files.

A path configuration file is a file whose name has the form ‘package.pth’; its contents are additional items
(one per line) to be added to sys.path. Non-existing items are never added to sys.path, but no check
is made that the item refers to a directory (rather than a file). No item is added to sys.path more than
once. Blank lines and lines beginning with # are skipped.

For example, suppose sys.prefix and sys.exec_prefix are set to ‘/usr/local’. The Python 1.5.2 library

3.28. new — Runtime implementation object creation 67

is then installed in ‘/usr/local/lib/python1.5’ (note that only the first three characters of sys.version are
used to form the path name). Suppose this has a subdirectory ‘/usr/local/lib/pythonl.5/site-packages’ with
three subsubdirectories, ‘foo’, ‘bar’ and ‘spam’, and two path configuration files, ‘foo.pth’ and ‘bar.pth’.
Assume ‘foo.pth’ contains the following:

foo package configuration

foo
bar
bletch

and ‘bar.pth’ contains:

bar package configuration

bar

Then the following directories are added to sys.path, in this order:

/usr/local/lib/pythonl.5/site-packages/bar
/usr/local/lib/pythonl.5/site-packages/foo

Note that ‘bletch’ is omitted because it doesn’t exist; the ‘bar’ directory precedes the ‘foo’ directory
because ‘bar.pth’ comes alphabetically before ‘foo.pth’; and ‘spam’ is omitted because it is not mentioned
in either path configuration file.

After these path manipulations, an attempt is made to import a module named sitecustomize, which
can perform arbitrary site-specific customizations. If this import fails with an ImportError exception,
it is silently ignored.

Note that for some non-UNIX systems, sys.prefix and sys.exec_prefix are empty, and the path
manipulations are skipped; however the import of sitecustomize is still attempted.

3.30 user — User-specific configuration hook

As a policy, Python doesn’t run user-specified code on startup of Python programs. (Ounly interactive
sessions execute the script specified in the SPYTHONSTARTUP environment variable if it exists).

However, some programs or sites may find it convenient to allow users to have a standard customization
file, which gets run when a program requests it. This module implements such a mechanism. A program
that wishes to use the mechanism must execute the statement

import user

The user module looks for a file ‘.pythonrc.py’ in the user’s home directory and if it can be opened,
exececutes it (using execfile()) in its own (i.e. the module user’s) global namespace. Errors during
this phase are not caught; that’s up to the program that imports the user module, if it wishes. The
home directory is assumed to be named by the SHOME environment variable; if this is not set, the
current directory is used.

¢

The user’s ‘.pythonrc.py’ could conceivably test for sys.version if it wishes to do different things de-
pending on the Python version.

3

A warning to users: be very conservative in what you place in your ‘.pythonrc.py’ file. Since you don’t
know which programs will use it, changing the behavior of standard modules or functions is generally

68 Chapter 3. Python Services

not a good idea.

A suggestion for programmers who wish to use this mechanism: a simple way to let users specify options
for your package is to have them define variables in their ‘.pythonrc.py’ file that you test in your module.
For example, a module spam that has a verbosity level can look for a variable user.spam_verbose, as
follows:

import user
try:

verbose = user.spam_verbose # user’s verbosity preference
except AttributeError:

verbose = 0 # default verbosity

Programs with extensive customization needs are better off reading a program-specific customization

file.

Programs with security or privacy concerns should not import this module; a user can easily break into
a program by placing arbitrary code in the ‘.pythonrc.py’ file.

Modules for general use should not import this module; it may interfere with the operation of the
importing program.

See Also:

Module site (section 3.29):
site-wide customization mechanism

3.31 __builtin__ — Built-in functions

This module provides direct access to all ‘built-in’ identifiers of Python; e.g. __builtin__.open is the
full name for the built-in function open(). See section 2.3, “Built-in Functions.”

332 _ _main — Top-level script environment.

This module represents the (otherwise anonymous) scope in which the interpreter’s main program exe-
cutes — commands read either from standard input or from a script file.

3.31. __builtin__ — Built-in functions 69

70

CHAPTER
FOUR

String Services

The modules described in this chapter provide a wide range of string manipulation operations. Here’s
an overview:

string Common string operations.

re Perl-style regular expression search and match operations.

regex Regular expression search and match operations.

regsub Substitution and splitting operations that use regular expressions.
struct Interpret strings as packed binary data.

fpformat General floating point formatting functions.
StringI0 Read and write strings as if they were files.
cStringI0 Faster version of StringI0, but not subclassable.

4.1 string — Common string operations

This module defines some constants useful for checking character classes and some useful string functions.
See the module re for string functions based on regular expressions.

The constants defined in this module are are:
digits
The string >0123456789°.

hexdigits
The string *0123456789abcdefABCDEF’.

letters
The concatenation of the strings lowercase () and uppercase() described below.

lowercase
A string containing all the characters that are considered lowercase letters. On most systems this
is the string ’abcdefghijklmnopqrstuvwxyz’. Do not change its definition — the effect on the
routines upper () and swapcase() is undefined.

octdigits
The string *01234567°.

uppercase
A string containing all the characters that are considered uppercase letters. On most systems this
is the string ’ABCDEFGHIJKLMNOPQRSTUVWXYZ’. Do not change its definition — the effect on the
routines lower () and swapcase() is undefined.

whitespace
A string containing all characters that are considered whitespace. On most systems this includes
the characters space, tab, linefeed, return, formfeed, and vertical tab. Do not change its definition
— the effect on the routines strip() and split() is undefined.

The functions defined in this module are:

atof (s)

71

Convert a string to a floating point number. The string must have the standard syntax for a

floating point literal in Python, optionally preceded by a sign (‘+” or ‘-=’). Note that this behaves
identical to the built-in function float () when passed a string.

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the
underlying C library. The specific set of strings accepted which cause these values to be returned
depends entirely on the C library and is known to vary.

atoi(s[, base])

Convert string s to an integer in the given base. The string must consist of one or more digits,
optionally preceded by a sign (‘+’ or ‘=’). The base defaults to 10. If it is 0, a default base is chosen
depending on the leading characters of the string (after stripping the sign): ‘0x’ or ‘0X’ means
16, ‘0’ means 8, anything else means 10. If base is 16, a leading ‘0x’ or ‘0X’ is always accepted.
Note that when invoked without base or with base set to 10, this behaves identical to the built-in
function int () when passed a string. (Also note: for a more flexible interpretation of numeric
literals, use the built-in function eval().)

atol(s[, base])
Convert string s to a long integer in the given base. The string must consist of one or more digits,
optionally preceded by a sign (‘+’ or ‘=’). The base argument has the same meaning as for atoi().
A trailing ‘1’ or ‘L’ is not allowed, except if the base is 0. Note that when invoked without base or
with base set to 10, this behaves identical to the built-in function long() when passed a string.

capitalize(word)
Capitalize the first character of the argument.

capwords (s)
Split the argument into words using split (), capitalize each word using capitalize(), and join
the capitalized words using join(). Note that this replaces runs of whitespace characters by a
single space, and removes leading and trailing whitespace.

expandtabs (s, [tabsize])
Expand tabs in a string, i.e. replace them by one or more spaces, depending on the current column
and the given tab size. The column number is reset to zero after each newline occurring in the
string. This doesn’t understand other non-printing characters or escape sequences. The tab size
defaults to 8.

find (s, sub[, start[,end]])
Return the lowest index in s where the substring sub is found such that sub is wholly contained
in s[start:end]. Return -1 on failure. Defaults for start and end and interpretation of negative
values is the same as for slices.

rfind(s, sub[, start[, end]])
Like £ind () but find the highest index.

index (s, sub[, start[, end]])
Like £ind () but raise ValueError when the substring is not found.

rindex (s, sub [, start[, end]])
Like rfind () but raise ValueError when the substring is not found.

count (s, sub[, start[, end]])
Return the number of (non-overlapping) occurrences of substring sub in string s [start: end]. De-
faults for start and end and interpretation of negative values is the same as for slices.

lower(s)
Return a copy of s, but with upper case letters converted to lower case.

maketrans (from, to)
Return a translation table suitable for passing to translate() or regex.compile(), that will map
each character in from into the character at the same position in to; from and to must have the
same length.

Warning: don’t use strings derived from lowercase and uppercase as arguments; in some locales,
these don’t have the same length. For case conversions, always use lower () and upper ().

72 Chapter 4. String Services

split(s[, sep [, ma:rsplit]])

Return a list of the words of the string s. If the optional second argument sep is absent or None,
the words are separated by arbitrary strings of whitespace characters (space, tab, newline, return,
formfeed). If the second argument sep is present and not None, it specifies a string to be used as the
word separator. The returned list will then have one more item than the number of non-overlapping
occurrences of the separator in the string. The optional third argument mazsplit defaults to 0. If
it is nonzero, at most mazsplit number of splits occur, and the remainder of the string is returned
as the final element of the list (thus, the list will have at most mazsplit+1 elements).

splitfields(s[, sep[, maxsplit]])
This function behaves identically to split(). (In the past, split() was only used with one
argument, while splitfields() was only used with two arguments.)

join(words [, sep])
Concatenate a list or tuple of words with intervening occurrences of sep. The default value for sep
is a single space character. It is always true that ‘string.join(string.split(s, sep), sep)’
equals s.

joinfields (words [, sep])
This function behaves identical to join(). (In the past, join() was only used with one argument,
while joinfields() was only used with two arguments.)

1strip(s)
Return a copy of s but without leading whitespace characters.

rstrip(s)
Return a copy of s but without trailing whitespace characters.

strip(s)
Return a copy of s without leading or trailing whitespace.

swapcase(s)
Return a copy of s, but with lower case letters converted to upper case and vice versa.

translate(s, table[, deletechars])
Delete all characters from s that are in deletechars (if present), and then translate the characters
using table, which must be a 256-character string giving the translation for each character value,
indexed by its ordinal.

upper(s)
Return a copy of s, but with lower case letters converted to upper case.

ljust (s, width)

rjust (s, width)

center (s, width)
These functions respectively left-justify, right-justify and center a string in a field of given width.
They return a string that is at least width characters wide, created by padding the string s with
spaces until the given width on the right, left or both sides. The string is never truncated.

zfi11 (s, width)
Pad a numeric string on the left with zero digits until the given width is reached. Strings starting
with a sign are handled correctly.

replace(str, old, new[, mamsplit])
Return a copy of string str with all occurrences of substring old replaced by new. If the optional
argument maxsplit is given, the first maxsplit occurrences are replaced.

This module is implemented in Python. Much of its functionality has been reimplemented in the built-in
module strop. However, you should never import the latter module directly. When string discovers
that strop exists, it transparently replaces parts of itself with the implementation from strop. After
initialization, there is no overhead in using string instead of strop.

4.1. string — Common string operations 73

4.2 re — Perl-style regular expression operations.

This module provides regular expression matching operations similar to those found in Perl. It’s 8-bit
clean: the strings being processed may contain both null bytes and characters whose high bit is set.
Regular expression pattern strings may not contain null bytes, but can specify the null byte using the
\number notation. Characters with the high bit set may be included. The re module is always available.

Regular expressions use the backslash character (‘\’) to indicate special forms or to allow special char-
acters to be used without invoking their special meaning. This collides with Python’s usage of the same
character for the same purpose in string literals; for example, to match a literal backslash, one might have
to write \\\\’ as the pattern string, because the regular expression must be ‘\\’, and each backslash
must be expressed as ‘\\’ inside a regular Python string literal.

The solution is to use Python’s raw string notation for regular expression patterns; backslashes are
not handled in any special way in a string literal prefixed with ‘r’. So r"\n" is a two-character string
containing ‘\’ and ‘n’, while "\n" is a one-character string containing a newline. Usually patterns will
be expressed in Python code using this raw string notation.

4.2.1 Regular Expression Syntax

A regular expression (or RE) specifies a set of strings that matches it; the functions in this module let you
check if a particular string matches a given regular expression (or if a given regular expression matches
a particular string, which comes down to the same thing).

Regular expressions can be concatenated to form new regular expressions; if A and B are both regular
expressions, then AB is also an regular expression. If a string p matches A and another string ¢ matches
B, the string pg will match AB. Thus, complex expressions can easily be constructed from simpler
primitive expressions like the ones described here. For details of the theory and implementation of
regular expressions, consult the Friedl book referenced below, or almost any textbook about compiler
construction.

A brief explanation of the format of regular expressions follows. For further information and a gentler
presentation, consult the Regular Expression HOWTO, accessible from http://www.python.org/doc/howto/.

Regular expressions can contain both special and ordinary characters. Most ordinary characters, like
‘A’ ‘a’, or ‘0’ are the simplest regular expressions; they simply match themselves. You can concatenate
ordinary characters, so last) matches the string ’last’. (In the rest of this section, we’ll write RE’s in
'this special stylej, usually without quotes, and strings to be matched ’in single quotes’.)
Some characters, like ‘|’ or ‘(’, are special. Special characters either stand for classes of ordinary
characters, or affect how the regular expressions around them are interpreted.

The special characters are:

.7 (Dot.) In the default mode, this matches any character except a newline. If the DOTALL flag
has been specified, this matches any character including a newline.

‘~? (Caret.) Matches the start of the string, and in MULTILINE mode also matches immediately
after each newline.

‘$’ Matches the end of the string, and in MULTILINE mode also matches before a newline. 'foo
matches both foo’ and "foobar’, while the regular expression foo$ matches only foo’.

‘*’ Causes the resulting RE to match 0 or more repetitions of the preceding RE, as many
repetitions as are possible. 'ab% will match ’a’, ’ab’, or ’a’ followed by any number of "b’s.

‘+’ Causes the resulting RE to match 1 or more repetitions of the preceding RE. ab+ will match
‘a’ followed by any non-zero number of 'b’s; it will not match just ’a’.

2’ Causes the resulting RE to match 0 or 1 repetitions of the preceding RE. 'ab? will match
either 'a’ or 'ab’.

74 Chapter 4. String Services

x7 +7 77 The ‘*’, ‘4’ and ‘?’ qualifiers are all greedy; they match as much text as possible. Sometimes
this behaviour isn’t desired; if the RE <.*> is matched against ’<H1>title</H1>’, it will
match the entire string, and not just ><H1>’. Adding ‘?’ after the qualifier makes it perform
the match in non-greedy or minimal fashion; as few characters as possible will be matched.
Using . *7) in the previous expression will match only ’<H1>’.

{m,n} Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting
to match as many repetitions as possible. For example, 'a{3,5}; will match from 3 to 5 ‘a’
characters. Omitting n specifies an infinite upper bound; you can’t omit m.

{m,n}? Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting to
match as few repetitions as possible. This is the non-greedy version of the previous qualifier.
For example, on the 6-character string ’aaaaaa’, 'a{3,5} will match 5 ‘a’ characters, while
fa{3,53}7 will only match 3 characters.

‘\” Either escapes special characters (permitting you to match characters like ‘*’, ‘?’, and so
forth), or signals a special sequence; special sequences are discussed below.

If you're not using a raw string to express the pattern, remember that Python also uses the
backslash as an escape sequence in string literals; if the escape sequence isn’t recognized by
Python’s parser, the backslash and subsequent character are included in the resulting string.
However, if Python would recognize the resulting sequence, the backslash should be repeated
twice. This is complicated and hard to understand, so it’s highly recommended that you use
raw strings for all but the simplest expressions.

[1 Used to indicate a set of characters. Characters can be listed individually, or a range of
characters can be indicated by giving two characters and separating them by a ‘=’. Special
characters are not active inside sets. For example, [akm$]; will match any of the characters
‘a’, ‘k’, ‘m’, or ‘¢’; "[a-z], will match any lowercase letter, and [a-zA-Z0-9] matches any
letter or digit. Character classes such as \w or \S (defined below) are also acceptable inside a
range. If you want to include a ‘]’ or a ‘-’ inside a set, precede it with a backslash, or place
it as the first character. The pattern [1]) will match *]°, for example.

You can match the characters not within a range by complementing the set. This is indicated
by including a as the first character of the set; ‘~’ elsewhere will simply match the <’
character. For example, '[~5]; will match any character except ‘5’.

(~)

A|B, where A and B can be arbitrary REs, creates a regular expression that will match either
A or B. This can be used inside groups (see below) as well. To match a literal ‘|, use \ |},
or enclose it inside a character class, as in [|1

(...) Matches whatever regular expression is inside the parentheses, and indicates the start and
end of a group; the contents of a group can be retrieved after a match has been performed,
and can be matched later in the string with the \number special sequence, described below.
To match the literals ‘C or *)’, use \(or \);, or enclose them inside a character class: "[(]

D1

(?7...) This is an extension notation (a ‘?’ following a ‘(’ is not meaningful otherwise). The first
character after the ‘?’ determines what the meaning and further syntax of the construct is.
Extensions usually do not create a new group; '(?P<name>. . .);is the only exception to this
rule. Following are the currently supported extensions.

DA 4

(?7ilmsx) (One or more letters from the set ‘i’, ‘L’, ‘m’, ‘s’, ‘x’.) The group matches the empty string;
the letters set the corresponding flags (re.I, re.L, re.M, re.S, re.X) for the entire regular
expression. This is useful if you wish to include the flags as part of the regular expression,
instead of passing a flag argument to the compile() function.

(7:...) A non-grouping version of regular parentheses. Matches whatever regular expression is inside
the parentheses, but the substring matched by the group cannot be retrieved after performing
a match or referenced later in the pattern.

(?P<name>...) Similar to regular parentheses, but the substring matched by the group is accessible via
the symbolic group name name. Group names must be valid Python identifiers. A symbolic

4.2. re — Perl-style regular expression operations. 75

group is also a numbered group, just as if the group were not named. So the group named
'id’ in the example above can also be referenced as the numbered group 1.

For example, if the pattern is (?P<id>[a-zA-Z_]\w%),, the group can be referenced by its
name in arguments to methods of match objects, such as m.group(’id’) or m.end(’id’),
and also by name in pattern text (e.g. '(?P=id))) and replacement text (e.g. \g<id>).

(?P=name) Matches whatever text was matched by the earlier group named name.

(7#...)

(7=...)

(7.0

A comment; the contents of the parentheses are simply ignored.

Matches if '. . .; matches next, but doesn’t consume any of the string. This is called a looka-
head assertion. For example, Tsaac (?=Asimov); will match ’Isaac ’ only if it’s followed
by ’Asimov’.

Matches if ... doesn’t match next. This is a negative lookahead assertion. For example,
MTsaac (?!'Asimov); will match ’Isaac ’ only if it’s not followed by ’Asimov’.

The special sequences consist of ‘\’ and a character from the list below. If the ordinary character is
not on the list, then the resulting RE will match the second character. For example, \$ matches the
character ‘$’.

\number

\A
\b

\B
\d
\D
\s
\S
\w

\W

\Z
\\

Matches the contents of the group of the same number. Groups are numbered starting from 1.
For example, '(.+) \1 matches >the the’ or ’55 55’, but not ’the end’ (note the space
after the group). This special sequence can only be used to match one of the first 99 groups.
If the first digit of number is 0, or number is 3 octal digits long, it will not be interpreted
as a group match, but as the character with octal value number. Inside the ‘[’ and ‘1’ of a
character class, all numeric escapes are treated as characters.

Matches only at the start of the string.

Matches the empty string, but only at the beginning or end of a word. A word is defined
as a sequence of alphanumeric characters, so the end of a word is indicated by whitespace
or a non-alphanumeric character. Inside a character range, \b represents the backspace
character, for compatibility with Python’s string literals.

Matches the empty string, but only when it is not at the beginning or end of a word.
Matches any decimal digit; this is equivalent to the set '[0-9]..

Matches any non-digit character; this is equivalent to the set '[~0-9],.

Matches any whitespace character; this is equivalent to the set '[\t\n\r\f\v],.
Matches any non-whitespace character; this is equivalent to the set [~ \t\n\r\f\v],

When the LOCALE flag is not specified, matches any alphanumeric character; this is equiva-
lent to the set Ma-zA-Z0-9_1. With LOCALE, it will match the set '[0-9_1, plus whatever
characters are defined as letters for the current locale.

When the LOCALE flag is not specified, matches any non-alphanumeric character; this is
equivalent to the set '[~a-zA-Z0-9_]. With LOCALE, it will match any character not in the
set '[0-9_1), and not defined as a letter for the current locale.

Matches only at the end of the string.

Matches a literal backslash.

76

Chapter 4. String Services

4.2.2 Matching vs. Searching

Python offers two different primitive operations based on regular expressions: match and search. If you
are accustomed to Perl’s semantics, the search operation is what you’re looking for. See the search()
function and corresponding method of compiled regular expression objects.

4

Note that match may differ from search using a regular expression beginning with ‘~’: ‘=’ matches only
at the start of the string, or in MULTILINE mode also immediately following a newline. The “match”
operation succeeds only if the pattern matches at the start of the string regardless of mode, or at the
starting position given by the optional pos argument regardless of whether a newline precedes it.

re.compile("a") .match("ba", 1) succeeds

re.compile("~a").search("ba", 1)

#

fails; ’a’ not at start
re.compile("~a").search("\na", 1) # fails; ’a’ not at start

#

#

re.compile(""a", re.M).search("\na", 1) succeeds
re.compile("~a", re.M).search("ba", 1) fails; no preceding \n

4.2.3 Module Contents

The module defines the following functions and constants, and an exception:

compile (pattern [, flags])
Compile a regular expression pattern into a regular expression object, which can be used for
matching using its match() and search() methods, described below.

The expression’s behaviour can be modified by specifying a flags value. Values can be any of the
following variables, combined using bitwise OR (the | operator).

The sequence

prog = re.compile(pat)
result = prog.match(str)

is equivalent to

result = re.match(pat, str)

but the version using compile() is more efficient when the expression will be used several times
in a single program.

I

IGNORECASE
Perform case-insensitive matching; expressions like "[A-Z]; will match lowercase letters, too. This
is not affected by the current locale.

L

LOCALE
Make \w, \W, \b, \B, dependent on the current locale.

M

MULTILINE
When specified, the pattern character ‘~’ matches at the beginning of the string and at the beginning
of each line (immediately following each newline); and the pattern character ‘¢’ matches at the
end of the string and at the end of each line (immediately preceding each newline). By default, <’
matches only at the beginning of the string, and ‘$’ only at the end of the string and immediately
before the newline (if any) at the end of the string.

S

DOTALL

Make the .’ special character match any character at all, including a newline; without this flag,

4.2. re — Perl-style regular expression operations. 7

X

[

will match anything except a newline.

VERBOSE

This flag allows you to write regular expressions that look nicer. Whitespace within the pattern is
ignored, except when in a character class or preceded by an unescaped backslash, and, when a line
contains a ‘#’ neither in a character class or preceded by an unescaped backslash, all characters
from the leftmost such ‘# through the end of the line are ignored.

search (pattern, string [, flags])

Scan through string looking for a location where the regular expression pattern produces a match,
and return a corresponding MatchObject instance. Return None if no position in the string matches
the pattern; note that this is different from finding a zero-length match at some point in the string.

match (pattern, string [, flags])

If zero or more characters at the beginning of string match the regular expression pattern, return a
corresponding MatchObject instance. Return None if the string does not match the pattern; note
that this is different from a zero-length match.

Note: If you want to locate a match anywhere in string, use search() instead.

split (pattern, string, [, mazxsplit = 0])

Split string by the occurrences of pattern. If capturing parentheses are used in pattern, then the
text of all groups in the pattern are also returned as part of the resulting list. If mazsplit is nonzero,
at most mazxsplit splits occur, and the remainder of the string is returned as the final element of
the list. (Incompatibility note: in the original Python 1.5 release, mazsplit was ignored. This has
been fixed in later releases.)

>>> re.split(’\W+’, ’Words, words, words.’)
[’Words’, ’words’, ’words’, ’’]

>>> re.split(’ (\W+)’, ’Words, words, words.’)
[’Words’, ’, ’, ’words’, ’, ’, ’words’, ’.’, ’’]
>>> re.split(’\W+’, ’Words, words, words.’, 1)
[’Words’, ’words, words.’]

This function combines and extends the functionality of the old regsub.split() and
regsub.splitx().

findall (pattern, string)

Return a list of all non-overlapping matches of pattern in string. If one or more groups are present
in the pattern, return a list of groups; this will be a list of tuples if the pattern has more than one
group. Empty matches are included in the result. New in version 1.5.2.

sub (pattern, repl, stm'ng[, count = 0])

Return the string obtained by replacing the leftmost non-overlapping occurrences of pattern in
string by the replacement repl. If the pattern isn’t found, string is returned unchanged. repl
can be a string or a function; if a function, it is called for every non-overlapping occurrence of
pattern. The function takes a single match object argument, and returns the replacement string.
For example:

>>> def dashrepl(matchobj):
if matchobj.group(0) == ’-’: return ’ ’
else: return ’-’
>>> re.sub(’-{1,2}’, dashrepl, ’pro----gram-files’)
’pro--gram files’

The pattern may be a string or a regex object; if you need to specify regular expression flags, you
must use a regex object, or use embedded modifiers in a pattern; e.g. ‘sub("(?1)b+", "x", "bbbb
BBBB")’ returns ’x x’.

The optional argument count is the maximum number of pattern occurrences to be replaced; count
must be a non-negative integer, and the default value of 0 means to replace all occurrences.

78

Chapter 4. String Services

Empty matches for the pattern are replaced only when not adjacent to a previous match, so
‘sub(’x*’, ’-’, ’abc’)’ returns ’-a-b-c-’.

If repl is a string, any backslash escapes in it are processed. That is, ‘\n’ is converted to a single
newline character, ‘\r’ is converted to a linefeed, and so forth. Unknown escapes such as ‘\j’ are
left alone. Backreferences, such as ‘\6’, are replaced with the substring matched by group 6 in the
pattern.

In addition to character escapes and backreferences as described above, ‘\g<name>’ will use the sub-
string matched by the group named ‘name’, as defined by the (?P<name>. . .) syntax. ‘\g<number>’
uses the corresponding group number; ‘\g<2>’ is therefore equivalent to ‘\2’; but isn’t ambiguous
in a replacement such as ‘\g<2>0’. ‘\20’ would be interpreted as a reference to group 20, not a
reference to group 2 followed by the literal character ‘0.

subn (pattern, repl, stm'ng[, count = 0])
Perform the same operation as sub(), but return a tuple (new_string, number_of_subs_made).

escape (string)
Return string with all non-alphanumerics backslashed; this is useful if you want to match an
arbitrary literal string that may have regular expression metacharacters in it.

error
Exception raised when a string passed to one of the functions here is not a valid regular expression
(e.g., unmatched parentheses) or when some other error occurs during compilation or matching. It
is never an error if a string contains no match for a pattern.

4.2.4 Regular Expression Objects

Compiled regular expression objects support the following methods and attributes:

search (string [, pos] [, endpos])
Scan through string looking for a location where this regular expression produces a match, and
return a corresponding MatchObject instance. Return None if no position in the string matches
the pattern; note that this is different from finding a zero-length match at some point in the string.

The optional pos and endpos parameters have the same meaning as for the match() method.

match (string [, POS] [, endpos])
If zero or more characters at the beginning of string match this regular expression, return a
corresponding MatchObject instance. Return None if the string does not match the pattern; note
that this is different from a zero-length match.

Note: If you want to locate a match anywhere in string, use search() instead.

The optional second parameter pos gives an index in the string where the search is to start; it
defaults to 0. This is not completely equivalent to slicing the string; the ’>~’ pattern character
matches at the real beginning of the string and at positions just after a newline, but not necessarily
at the index where the search is to start.

The optional parameter endpos limits how far the string will be searched; it will be as if the string
is endpos characters long, so only the characters from pos to endpos will be searched for a match.

split (string, [, maxsplit = 0])
Identical to the split () function, using the compiled pattern.

findall (string)
Identical to the findall() function, using the compiled pattern.

sub (repl, stm’ng[, count = 0])
Identical to the sub() function, using the compiled pattern.

subn (repl, string [, count = 0])
Identical to the subn() function, using the compiled pattern.

flags
The flags argument used when the regex object was compiled, or 0 if no flags were provided.

4.2. re — Perl-style regular expression operations. 79

groupindex
A dictionary mapping any symbolic group names defined by '(?P<id>)) to group numbers. The
dictionary is empty if no symbolic groups were used in the pattern.

pattern
The pattern string from which the regex object was compiled.

425 Match Objects

MatchObject instances support the following methods and attributes:

group ([group], group?2, ...])
Returns one or more subgroups of the match. If there is a single argument, the result is a single
string; if there are multiple arguments, the result is a tuple with one item per argument. Without
arguments, group! defaults to zero (i.e. the whole match is returned). If a groupN argument is
zero, the corresponding return value is the entire matching string; if it is in the inclusive range
[1..99], it is the string matching the the corresponding parenthesized group. If a group number
is negative or larger than the number of groups defined in the pattern, an IndexError exception
is raised. If a group is contained in a part of the pattern that did not match, the corresponding
result is None. If a group is contained in a part of the pattern that matched multiple times, the
last match is returned.

If the regular expression uses the '(?P<name>...)| syntax, the groupN arguments may also be
strings identifying groups by their group name. If a string argument is not used as a group name
in the pattern, an IndexError exception is raised.

A moderately complicated example:

m = re.match(r" (?P<int>\d+)\.(\d*)", ’3.14’°)

After performing this match, m.group(1) is ’3’, as is m.group(’int’), and m.group(2) is *14’.

groups ([default])
Return a tuple containing all the subgroups of the match, from 1 up to however many groups are
in the pattern. The default argument is used for groups that did not participate in the match; it
defaults to None. (Incompatibility note: in the original Python 1.5 release, if the tuple was one
element long, a string would be returned instead. In later versions (from 1.5.1 on), a singleton
tuple is returned in such cases.)

groupdict ([default])
Return a dictionary containing all the named subgroups of the match, keyed by the subgroup name.
The default argument is used for groups that did not participate in the match; it defaults to None.

start([group])

end ([gmup])
Return the indices of the start and end of the substring matched by group; group defaults to zero
(meaning the whole matched substring). Return None if group exists but did not contribute to
the match. For a match object m, and a group ¢ that did contribute to the match, the substring
matched by group ¢ (equivalent to m.group(g)) is

m.string[m.start(g) :m.end(g)]

Note that m.start (group) will equal m.end (group) if group matched a null string. For example,
after m = re.search(’b(c?)’, ’cba’), m.start(0) is 1, m.end(0) is 2, m.start(1) and
m.end (1) are both 2, and m.start(2) raises an IndexError exception.

span([group])
For MatchObject m, return the 2-tuple (m.start(group), m.end(group)). Note that if group
did not contribute to the match, this is (None, None). Again, group defaults to zero.

80 Chapter 4. String Services

pos
The value of pos which was passed to the search() or match() function. This is the index into
the string at which the regex engine started looking for a match.

endpos
The value of endpos which was passed to the search() or match() function. This is the index into
the string beyond which the regex engine will not go.

re
The regular expression object whose match() or search() method produced this MatchObject
instance.

string
The string passed to match() or search().

See Also:

Jeffrey Friedl, Mastering Regular Expressions, O’Reilly. The Python material in this book dates from
before the re module, but it covers writing good regular expression patterns in great detail.

4.3 regex — Regular expression search and match operations.

This module provides regular expression matching operations similar to those found in Emacs.

Obsolescence note: This module is obsolete as of Python version 1.5; it is still being maintained
because much existing code still uses it. All new code in need of regular expressions should use the
new re module, which supports the more powerful and regular Perl-style regular expressions. Existing
code should be converted. The standard library module reconvert helps in converting regex style
regular expressions to re style regular expressions. (For more conversion help, see Andrew Kuchling’s
“regex-to-re HOWTO” at http://www.python.org/doc/howto/regex-to-re/.)

By default the patterns are Emacs-style regular expressions (with one exception). There is a way to
change the syntax to match that of several well-known UNIX utilities. The exception is that Emacs’ ‘\s’
pattern is not supported, since the original implementation references the Emacs syntax tables.

This module is 8-bit clean: both patterns and strings may contain null bytes and characters whose high
bit is set.

Please note: There is a little-known fact about Python string literals which means that you don’t usually
have to worry about doubling backslashes, even though they are used to escape special characters in string
literals as well as in regular expressions. This is because Python doesn’t remove backslashes from string
literals if they are followed by an unrecognized escape character. However, if you want to include a literal
backslash in a regular expression represented as a string literal, you have to quadruple it or enclose it in
a singleton character class. E.g. to extract BTEX ‘\section{...}’ headers from a document, you can
use this pattern: ’[\Isection{\(.*\)}’. Another exception: the escape sequece ‘\b’ is significant in
string literals (where it means the ASCII bell character) as well as in Emacs regular expressions (where
it stands for a word boundary), so in order to search for a word boundary, you should use the pattern
’\\b’. Similarly, a backslash followed by a digit 0-7 should be doubled to avoid interpretation as an
octal escape.

4.3.1 Regular Expressions

A regular expression (or RE) specifies a set of strings that matches it; the functions in this module let you
check if a particular string matches a given regular expression (or if a given regular expression matches
a particular string, which comes down to the same thing).

Regular expressions can be concatenated to form new regular expressions; if A and B are both regular
expressions, then AB is also an regular expression. If a string p matches A and another string ¢ matches
B, the string pg will match AB. Thus, complex expressions can easily be constructed from simpler ones
like the primitives described here. For details of the theory and implementation of regular expressions,
consult almost any textbook about compiler construction.

4.3. regex — Regular expression search and match operations. 81

A brief explanation of the format of regular expressions follows.

Regular expressions can contain both special and ordinary characters. Ordinary characters, like 'A’, ’a’,
or ’0’, are the simplest regular expressions; they simply match themselves. You can concatenate ordinary
characters, so "last’ matches the characters ’last’. (In the rest of this section, we’ll write RE’s in this
special font, usually without quotes, and strings to be matched ’in single quotes’.)

Special characters either stand for classes of ordinary characters, or affect how the regular expressions
around them are interpreted.

The special characters are:

. (Dot.) Matches any character except a newline.

(1

(Caret.) Matches the start of the string.

Matches the end of the string. foo matches both foo’ and ’foobar’, while the regular expression
'foo$’ matches only 'foo’.

Causes the resulting RE to match 0 or more repetitions of the preceding RE. ab* will match ’a’,
"ab’; or ’a’ followed by any number of 'b’s.

Causes the resulting RE to match 1 or more repetitions of the preceding RE. ab+ will match ’a’
followed by any non-zero number of 'b’s; it will not match just 'a’.

Causes the resulting RE to match 0 or 1 repetitions of the preceding RE. ab? will match either ’a’
or 'ab’.

Either escapes special characters (permitting you to match characters like "*?+&$%’), or signals
a special sequence; special sequences are discussed below. Remember that Python also uses the
backslash as an escape sequence in string literals; if the escape sequence isn’t recognized by Python’s
parser, the backslash and subsequent character are included in the resulting string. However, if
Python would recognize the resulting sequence, the backslash should be repeated twice.

Used to indicate a set of characters. Characters can be listed individually, or a range is indicated
by giving two characters and separating them by a ’-’. Special characters are not active inside sets.
For example, [akm$] will match any of the characters ’a’, ’k’, 'm’, or ’$’; [a-z] will match any
lowercase letter.

If you want to include a] inside a set, it must be the first character of the set; to include a -, place
it as the first or last character.

Characters not within a range can be matched by including a ~ as the first character of the set; =
elsewhere will simply match the '~’ character.

The special sequences consist of '\’ and a character from the list below. If the ordinary character is
not on the list, then the resulting RE will match the second character. For example, \$ matches the
character '$’. Ones where the backslash should be doubled in string literals are indicated.

A\

NCV)

\\1,

\\b

A\ |B, where A and B can be arbitrary REs, creates a regular expression that will match either A
or B. This can be used inside groups (see below) as well.

Indicates the start and end of a group; the contents of a group can be matched later in the string
with the \ [1-9] special sequence, described next.

\\7, \8, \9
Matches the contents of the group of the same number. For example, \ (.+\) \\1 matches ’the
the’ or '55 55’, but not 'the end’ (note the space after the group). This special sequence can only
be used to match one of the first 9 groups; groups with higher numbers can be matched using the
\v sequence. (\8 and \9 don’t need a double backslash because they are not octal digits.)

Matches the empty string, but only at the beginning or end of a word. A word is defined as a
sequence of alphanumeric characters, so the end of a word is indicated by whitespace or a non-
alphanumeric character.

82

Chapter 4. String Services

\B
\v

\w
\W
\<

\>
ASAN
\ ¢
\\’

Matches the empty string, but when it is not at the beginning or end of a word.

Must be followed by a two digit decimal number, and matches the contents of the group of the
same number. The group number must be between 1 and 99, inclusive.

Matches any alphanumeric character; this is equivalent to the set [a-zA-Z0-9].
Matches any non-alphanumeric character; this is equivalent to the set [“a-zA-Z0-9].

Matches the empty string, but only at the beginning of a word. A word is defined as a sequence of
alphanumeric characters, so the end of a word is indicated by whitespace or a non-alphanumeric
character.

Matches the empty string, but only at the end of a word.
Matches a literal backslash.
Like =, this only matches at the start of the string.

Like $, this only matches at the end of the string.

4.3.2 Module Contents

The module defines these functions, and an exception:

match (pattern, string)

Return how many characters at the beginning of string match the regular expression pattern.
Return -1 if the string does not match the pattern (this is different from a zero-length match!).

search (pattern, string)

Return the first position in string that matches the regular expression pattern. Return -1 if no
position in the string matches the pattern (this is different from a zero-length match anywhere!).

compile (pattern [, translate])

Compile a regular expression pattern into a regular expression object, which can be used for
matching using its match() and search() methods, described below. The optional argument
translate, if present, must be a 256-character string indicating how characters (both of the pattern
and of the strings to be matched) are translated before comparing them; the i-th element of the
string gives the translation for the character with Ascir code i. This can be used to implement
case-insensitive matching; see the casefold data item below.

The sequence
prog = regex.compile(pat)
result = prog.match(str)

is equivalent to

result = regex.match(pat, str)

but the version using compile () is more efficient when multiple regular expressions are used con-
currently in a single program. (The compiled version of the last pattern passed to regex.match()
or regex.search() is cached, so programs that use only a single regular expression at a time
needn’t worry about compiling regular expressions.)

set_syntax (flags)

Set the syntax to be used by future calls to compile (), match() and search(). (Already compiled
expression objects are not affected.) The argument is an integer which is the OR of several flag
bits. The return value is the previous value of the syntax flags. Names for the flags are defined in
the standard module regex_syntax; read the file ‘regex_syntax.py’ for more information.

get_syntax()

Returns the current value of the syntax flags as an integer.

4.3. regex — Regular expression search and match operations. 83

symcomp (pattern [, translate])
This is like compile(), but supports symbolic group names: if a parenthesis-enclosed group be-
gins with a group name in angular brackets, e.g. >\ (<id>[a-z] [a-z0-9]*\)’, the group can be
referenced by its name in arguments to the group() method of the resulting compiled regular
expression object, like this: p.group(’id’). Group names may contain alphanumeric characters
and ’_’ only.

error
Exception raised when a string passed to one of the functions here is not a valid regular expression
(e.g., unmatched parentheses) or when some other error occurs during compilation or matching.
(It is never an error if a string contains no match for a pattern.)

casefold
A string suitable to pass as the translate argument to compile() to map all upper case characters
to their lowercase equivalents.

Compiled regular expression objects support these methods:

match (string [, pos])
Return how many characters at the beginning of string match the compiled regular expression.
Return -1 if the string does not match the pattern (this is different from a zero-length match!).

The optional second parameter, pos, gives an index in the string where the search is to start; it
defaults to 0. This is not completely equivalent to slicing the string; the >~ pattern character
matches at the real beginning of the string and at positions just after a newline, not necessarily at
the index where the search is to start.

search (string [, pos])
Return the first position in string that matches the regular expression pattern. Return -1 if no
position in the string matches the pattern (this is different from a zero-length match anywhere!).

The optional second parameter has the same meaning as for the match() method.

group (indezx, indez, ...)

This method is only valid when the last call to the match() or search() method found a match. It
returns one or more groups of the match. If there is a single index argument, the result is a single
string; if there are multiple arguments, the result is a tuple with one item per argument. If the
index is zero, the corresponding return value is the entire matching string; if it is in the inclusive
range [1..99], it is the string matching the the corresponding parenthesized group (using the default
syntax, groups are parenthesized using \ (and \)). If no such group exists, the corresponding result
is None.

If the regular expression was compiled by symcomp() instead of compile(), the index arguments
may also be strings identifying groups by their group name.

Compiled regular expressions support these data attributes:

regs
When the last call to the match() or search() method found a match, this is a tuple of pairs of
indexes corresponding to the beginning and end of all parenthesized groups in the pattern. Indices
are relative to the string argument passed to match() or search(). The 0-th tuple gives the
beginning and end or the whole pattern. When the last match or search failed, this is None.

last
When the last call to the match() or search() method found a match, this is the string argument
passed to that method. When the last match or search failed, this is None.

translate
This is the value of the translate argument to regex.compile () that created this regular expression
object. If the translate argument was omitted in the regex.compile() call, this is None.

givenpat
The regular expression pattern as passed to compile() or symcomp().

realpat
The regular expression after stripping the group names for regular expressions compiled with

84 Chapter 4. String Services

symcomp (). Same as givenpat otherwise.

groupindex
A dictionary giving the mapping from symbolic group names to numerical group indexes for regular
expressions compiled with symcomp (). None otherwise.

4.4 regsub — String operations using regular expressions

This module defines a number of functions useful for working with regular expressions (see built-in
module regex).

Warning: these functions are not thread-safe.

Obsolescence note: This module is obsolete as of Python version 1.5; it is still being maintained
because much existing code still uses it. All new code in need of regular expressions should use the
new re module, which supports the more powerful and regular Perl-style regular expressions. Existing
code should be converted. The standard library module reconvert helps in converting regex style
regular expressions to re style regular expressions. (For more conversion help, see Andrew Kuchling’s
“regex-to-re HOWTO” at http://www.python.org/doc/howto/regex-to-re/.)

sub (pat, repl, str)
Replace the first occurrence of pattern pat in string str by replacement repl. If the pattern isn’t
found, the string is returned unchanged. The pattern may be a string or an already compiled
pattern. The replacement may contain references ‘\digit’ to subpatterns and escaped backslashes.

gsub (pat, repl, str)
Replace all (non-overlapping) occurrences of pattern pat in string str by replacement repl. The
same rules as for sub() apply. Empty matches for the pattern are replaced only when not adjacent
to a previous match, so e.g. gsub(’’, ’-’, ’abc’) returns ’-a-b-c-’.

split(str, pat [, maxsplit])
Split the string str in fields separated by delimiters matching the pattern pat, and return a list
containing the fields. Only non-empty matches for the pattern are considered, so e.g. split(’a:b’,
>:%?) returns [’a’, ’b’] and split(’abc’, ’’) returns [’abc’]. The mazsplit defaults to 0.
If it is nonzero, only mazsplit number of splits occur, and the remainder of the string is returned
as the final element of the list.

splitx(str, pat[, maxsplz't])
Split the string str in fields separated by delimiters matching the pattern pat, and return a list
containing the fields as well as the separators. For example, splitx(’a:::b’, ’:%’) returns
[’a’, ’:::7, °b’]. Otherwise, this function behaves the same as split.

capwords(s[, pat])
Capitalize words separated by optional pattern pat. The default pattern uses any characters
except letters, digits and underscores as word delimiters. Capitalization is done by changing the
first character of each word to upper case.

clear_cache()
The regsub module maintains a cache of compiled regular expressions, keyed on the regular ex-
pression string and the syntax of the regex module at the time the expression was compiled. This
function clears that cache.

4.5 struct — Interpret strings as packed binary data.

This module performs conversions between Python values and C structs represented as Python strings.
It uses format strings (explained below) as compact descriptions of the lay-out of the C structs and the
intended conversion to/from Python values.

The module defines the following exception and functions:

error

4.4. regsub — String operations using regular expressions 85

Exception raised on various occasions; argument is a string describing what is wrong.

pack(fmt, vi, v2, ...)
Return a string containing the values v1, v2, ... packed according to the given format. The
arguments must match the values required by the format exactly.

unpack (fmt, string)
Unpack the string (presumably packed by pack(fmt, ...)) according to the given format. The
result is a tuple even if it contains exactly one item. The string must contain exactly the amount
of data required by the format (i.e. len(string) must equal calcsize (fmt)).

calcsize (fmt)
Return the size of the struct (and hence of the string) corresponding to the given format.

Format characters have the following meaning; the conversion between C and Python values should be
obvious given their types:

Format | C Type Python Notes
‘x’ pad byte no value
‘c’ char string of length 1
‘b’ signed char integer
‘B’ unsigned char | integer
‘h’ short integer
‘" unsigned short | integer
‘i’ int integer
‘T unsigned int long (1)
‘1’ long integer
‘v’ unsigned long | long
‘£ float float
‘a’ double float
‘s’ char[] string
‘P’ char[] string
‘P’ void * integer

Notes:

(1) The ‘T’ conversion code will convert to a Python long if the C int is the same size as a C long,
which is typical on most modern systems. If a C int is smaller than a C long, an Python integer
will be created instead.

A format character may be preceded by an integral repeat count; e.g. the format string ’4h’ means
exactly the same as >hhhh’.

Whitespace characters between formats are ignored; a count and its format must not contain whitespace
though.

For the ‘s’ format character, the count is interpreted as the size of the string, not a repeat count like for
the other format characters; e.g. >10s’ means a single 10-byte string, while >10c’ means 10 characters.
For packing, the string is truncated or padded with null bytes as appropriate to make it fit. For unpacking,
the resulting string always has exactly the specified number of bytes. As a special case, >0s’ means a
single, empty string (while >0c’ means 0 characters).

The ‘p’ format character can be used to encode a Pascal string. The first byte is the length of the stored
string, with the bytes of the string following. If count is given, it is used as the total number of bytes
used, including the length byte. If the string passed in to pack() is too long, the stored representation
is truncated. If the string is too short, padding is used to ensure that exactly enough bytes are used to
satisfy the count.

For the ‘I’ and ‘L’ format characters, the return value is a Python long integer.

For the ‘P’ format character, the return value is a Python integer or long integer, depending on the size
needed to hold a pointer when it has been cast to an integer type. A NULL pointer will always be returned

86 Chapter 4. String Services

as the Python integer 0. When packing pointer-sized values, Python integer or long integer objects may
be used. For example, the Alpha and Merced processors use 64-bit pointer values, meaning a Python
long integer will be used to hold the pointer; other platforms use 32-bit pointers and will use a Python
integer.

By default, C numbers are represented in the machine’s native format and byte order, and properly
aligned by skipping pad bytes if necessary (according to the rules used by the C compiler).

Alternatively, the first character of the format string can be used to indicate the byte order, size and
alignment of the packed data, according to the following table:

Character | Byte order Size and alignment
‘@’ native native
=’ native standard
<’ little-endian standard
©>’ big-endian standard
o’ network (= big-endian) | standard

If the first character is not one of these, ‘@’ is assumed.

Native byte order is big-endian or little-endian, depending on the host system (e.g. Motorola and Sun
are big-endian; Intel and DEC are little-endian).

Native size and alignment are determined using the C compiler’s sizeof expression. This is always
combined with native byte order.

Standard size and alignment are as follows: no alignment is required for any type (so you have to use
pad bytes); short is 2 bytes; int and long are 4 bytes. float and double are 32-bit and 64-bit IEEE
floating point numbers, respectively.

Note the difference between ‘@’ and ‘=": both use native byte order, but the size and alignment of the
latter is standardized.

The form ¢!’ is available for those poor souls who claim they can’t remember whether network byte
order is big-endian or little-endian.

There is no way to indicate non-native byte order (i.e. force byte-swapping); use the appropriate choice
of ‘<’ or >,

The ‘P’ format character is only available for the native byte ordering (selected as the default or with the
‘@ byte order character). The byte order character ‘=" chooses to use little- or big-endian ordering based
on the host system. The struct module does not interpret this as native ordering, so the ‘P’ format is
not available.

Examples (all using native byte order, size and alignment, on a big-endian machine):

>>> from struct import *

>>> pack(’hhl’, 1, 2, 3)
’\000\001\000\002\000\000\000\003"

>>> unpack(’hhl’, ’\000\001\000\002\000\000\000\003’)

(1, 2, 3)
>>> calcsize(’hhl’)
8

Hint: to align the end of a structure to the alignment requirement of a particular type, end the format
with the code for that type with a repeat count of zero, e.g. the format >11h01’ specifies two pad bytes
at the end, assuming longs are aligned on 4-byte boundaries. This only works when native size and
alignment are in effect; standard size and alignment does not enforce any alignment.

See Also:

Module array (section 5.6):
packed binary storage of homogeneous data

4.5. struct — Interpret strings as packed binary data. 87

Module xdrlib (section 12.13):
packing and unpacking of XDR data

4.6 fpformat — Floating point conversions

The fpformat module defines functions for dealing with floating point numbers representations in 100%
pure Python. Note: This module is unneeded: everything here could be done via the % string interpo-
lation operator.

The fpformat module defines the following functions and an exception:

fix(x, digs)
Format = as [-]ddd.ddd with digs digits after the point and at least one digit before. If digs <=
0, the decimal point is suppressed.

x can be either a number or a string that looks like one. digs is an integer.
Return value is a string.
sci(z, digs)

Format z as [-]d.dddE[+-]ddd with digs digits after the point and exactly one digit before. If
digs <= 0, one digit is kept and the point is suppressed.

x can be either a real number, or a string that looks like one. digs is an integer.
Return value is a string.

NotANumber
Exception raised when a string does not look like a number when the documentation says it should.

Example:

>>> import fpformat
>>> fpformat.fix(1.23, 1)
’1.27

4.7 StringI0 — Read and write strings as files

This module implements a file-like class, StringI0, that reads and writes a string buffer (also known as
memory files). See the description on file objects for operations (section 2.1.7).

StringI0([buﬁer])
When a StringI0 object is created, it can be initialized to an existing string by passing the string
to the constructor. If no string is given, the StringI0 will start empty.

The following methods of StringI0 objects require special mention:

getvalue ()
Retrieve the entire contents of the “file” at any time before the StringI0 object’s close () method
is called.

close()
Free the memory buffer.

4.8 cStringI0 — Faster version of StringIO

The module cStringI0 provides an interface similar to that of the StringI0 module. Heavy use of
StringI0.StringI0 objects can be made more efficient by using the function StringI0() from this
module instead.

88 Chapter 4. String Services

Since this module provides a factory function which returns objects of built-in types, there’s no way to

build your own version using subclassing. Use the original StringI0 module in that case.

The following data objects are provided as well:

InputType

The type object of the objects created by calling StringI0 with a string parameter.

OutputType
The type object of the objects returned by calling StringI0 with no parameters.

There is a C API to the module as well; refer to the module source for more information.

4.8. cStringI0 — Faster version of StringIO

89

90

CHAPTER
FIVE

Miscellaneous Services

The modules described in this chapter provide miscellaneous services that are available in all Python
versions. Here’s an overview:

math Mathematical functions (sin() etc.).

cmath Mathematical functions for complex numbers.

random Generate pseudo-random numbers with various common distributions.

whrandom Floating point pseudo-random number generator.

bisect Array bisection algorithms for binary searching.

array Efficient arrays of uniformly typed numeric values.

ConfigParser Configuration file parser.

fileinput Perl-like iteration over lines from multiple input streams, with “save in place” capability.
calendar General functions for working with the calendar, including some emulation of the UNIX cal program.
cmd Build line-oriented command interpreters; this is used by module pdb.

shlex Simple lexical analysis for UNIX shell-like languages.

5.1 math — Mathematical functions

This module is always available. It provides access to the mathematical functions defined by the C
standard.

These functions cannot be used with complex numbers; use the functions of the same name from the
cmath module if you require support for complex numbers. The distinction between functions which
support complex numbers and those which don’t is made since most users do not want to learn quite
as much mathematics as required to understand complex numbers. Receiving an exception instead of a
complex result allows earlier detection of the unexpected complex number used as a parameter, so that
the programmer can determine how and why it was generated in the first place.

The following functions provided by this module:

acos(zx)
Return the arc cosine of z.

asin(z)
Return the arc sine of z.

atan(x)
Return the arc tangent of x.

atan2(y, z)
Return atan(y /).

ceil(z)
Return the ceiling of = as a real.

cos(xz)
Return the cosine of z.

cosh(z)

91

Return the hyperbolic cosine of z.

exp(x)
Return ex*z.

fabs(x)
Return the absolute value of the real z.

floor(zx)
Return the floor of z as a real.

fmod (z,)
Return z % y.

frexp(z)
Return the matissa and exponent for z. The mantissa is positive.

hypot (z,)

Return the Euclidean distance, sqrt (z*xz + y*y).
ldexp(z,)

Return z * (2%xi).

log(x)
Return the natural logarithm of z.

logl0(z)
Return the base-10 logarithm of z.

modf (z)
Return the fractional and integer parts of x. Both results carry the sign of . The integer part is
returned as a real.

pow(z, y)
Return x*x*y.

sin(z)
Return the sine of z.

sinh(z)
Return the hyperbolic sine of z.

sqrt(z)
Return the square root of z.

tan(z)
Return the tangent of x.

tanh(z)
Return the hyperbolic tangent of z.

Note that frexp() and modf () have a different call/return pattern than their C equivalents: they take
a single argument and return a pair of values, rather than returning their second return value through
an ‘output parameter’ (there is no such thing in Python).

The module also defines two mathematical constants:

pi

The mathematical constant pi.
e

The mathematical constant e.
See Also:

Module cmath (section 5.2):
Complex number versions of many of these functions.

92 Chapter 5. Miscellaneous Services

5.2 cmath — Mathematical functions for complex numbers

This module is always available. It provides access to mathematical functions for complex numbers. The
functions are:

acos(x)
Return the arc cosine of z.

acosh(z)
Return the hyperbolic arc cosine of z.

asin(z)
Return the arc sine of z.

asinh(z)
Return the hyperbolic arc sine of z.

atan(z)
Return the arc tangent of x.

atanh(z)
Return the hyperbolic arc tangent of z.

cos(xz)
Return the cosine of z.

cosh(z)
Return the hyperbolic cosine of z.

exp(z)
Return the exponential value e**z.

log(x)
Return the natural logarithm of z.

logl0(x)
Return the base-10 logarithm of z.

sin(z)
Return the sine of z.

sinh(x)
Return the hyperbolic sine of z.

sqrt(z)
Return the square root of z.

tan(x)
Return the tangent of z.

tanh (z)
Return the hyperbolic tangent of z.

The module also defines two mathematical constants:

pi
The mathematical constant pi, as a real.

The mathematical constant e, as a real.

Note that the selection of functions is similar, but not identical, to that in module math. The reason for
having two modules is that some users aren’t interested in complex numbers, and perhaps don’t even
know what they are. They would rather have math.sqrt(-1) raise an exception than return a complex
number. Also note that the functions defined in cmath always return a complex number, even if the
answer can be expressed as a real number (in which case the complex number has an imaginary part of
Z€ro).

5.2. cmath — Mathematical functions for complex numbers 93

5.3 random — Generate pseudo-random numbers

This module implements pseudo-random number generators for various distributions: on the real line,
there are functions to compute normal or Gaussian, lognormal, negative exponential, gamma, and beta
distributions. For generating distribution of angles, the circular uniform and von Mises distributions are
available.

The random module supports the Random Number Generator interface, described in section 5.3.1. This
interface of the module, as well as the distribution-specific functions described below, all use the pseudo-
random generator provided by the whrandom module.

The following functions are defined to support specific distributions, and all return real values. Function
parameters are named after the corresponding variables in the distribution’s equation, as used in common
mathematical practice; most of these equations can be found in any statistics text. These are expected
to become part of the Random Number Generator interface in a future release.

betavariate Calpha, beta)
Beta distribution. Conditions on the parameters are alpha > -1 and beta > -1. Returned values
range between 0 and 1.

cunifvariate (mean, arc)
Circular uniform distribution. mean is the mean angle, and arc is the range of the distribution,
centered around the mean angle. Both values must be expressed in radians, and can range between
0 and pi. Returned values will range between mean - arc/2 and mean + arc/2.

expovariate (lambd)
Exponential distribution. lambd is 1.0 divided by the desired mean. (The parameter would be
called “lambda”, but that is a reserved word in Python.) Returned values will range from 0 to
positive infinity.

gamma Calpha, beta)
Gamma distribution. (Not the gamma function!) Conditions on the parameters are alpha > -1
and beta > 0.

gauss (mu, sigma)
Gaussian distribution. mu is the mean, and sigma is the standard deviation. This is slightly faster
than the normalvariate() function defined below.

lognormvariate (mu, sigma)
Log normal distribution. If you take the natural logarithm of this distribution, you’ll get a normal
distribution with mean mu and standard deviation sigma. mu can have any value, and sigma must
be greater than zero.

normalvariate (mu, sigma)
Normal distribution. mu is the mean, and sigma is the standard deviation.

vonmisesvariate (mu, kappa)
mu is the mean angle, expressed in radians between 0 and 2*pi, and kappa is the concentration
parameter, which must be greater than or equal to zero. If kappa is equal to zero, this distribution
reduces to a uniform random angle over the range 0 to 2*pi.

paretovariate (alpha)
Pareto distribution. alpha is the shape parameter.

weibullvariate (alpha, beta)
Weibull distribution. alpha is the scale parameter and beta is the shape parameter.

See Also:

Module whrandom (section 5.4):
The standard Python random number generator.

94 Chapter 5. Miscellaneous Services

5.3.1 The Random Number Generator Interface

The Random Number Generator interface describes the methods which are available for all random
number generators. This will be enhanced in future releases of Python.

In this release of Python, the modules random, whrandom, and instances of the whrandom.whrandom class
all conform to this interface.

choice(seq)
Chooses a random element from the non-empty sequence seq and returns it.

randint (a, b)
Returns a random integer N such that a <= N <= b.

random ()
Returns the next random floating point number in the range [0.0 ... 1.0).

uniform(a, b)
Returns a random real number N such that ¢ <= N < b.

5.4 whrandom — Pseudo-random number generator

This module implements a Wichmann-Hill pseudo-random number generator class that is also named
whrandom. Instances of the whrandom class conform to the Random Number Generator interface described
in section 5.3.1. They also offer the following method, specific to the Wichmann-Hill algorithm:

seed([:z:, v, z])
Initializes the random number generator from the integers z, y and z. When the module is first
imported, the random number is initialized using values derived from the current time. If z, y,
and z are either omitted or 0, the seed will be computed from the current system time. If one or
two of the parameters are 0, but not all three, the zero values are replaced by ones. This causes
some apparently different seeds to be equal, with the corresponding result on the pseudo-random
series produced by the generator.

When imported, the whrandom module also creates an instance of the whrandom class, and makes
the methods of that instance available at the module level. Therefore one can write either N =
whrandom.random() or:

generator = whrandom.whrandom()
N = generator.random()

Note that using separate instances of the generator leads to independent sequences of pseudo-random
numbers.

See Also:

Module random (section 5.3):
Generators for various random distributions and documentation for the Random Number Generator
interface.

Wichmann, B. A. & Hill, I. D., “Algorithm AS 183: An efficient and portable pseudo-random number
generator”, Applied Statistics 31 (1982) 188-190.

5.5 bisect — Array bisection algorithm

This module provides support for maintaining a list in sorted order without having to sort the list after
each insertion. For long lists of items with expensive comparison operations, this can be an improvement
over the more common approach. The module is called bisect because it uses a basic bisection algorithm
to do its work. The source code may be most useful as a working example of the algorithm (i.e., the

5.4. whrandom — Pseudo-random number generator 95

boundary conditions are already right!).

The following functions are provided:

bisect (list, item[, lo[, hi]])
Locate the proper insertion point for item in list to maintain sorted order. The parameters lo and
hi may be used to specify a subset of the list which should be considered. The return value is
suitable for use as the first parameter to list.insert ().

insort (list, z'tem[, lo[, hz’]])
Insert item in list in sorted order. This is equivalent to list.insert (bisect.bisect (list, item,
lo, hi), item).

5.5.1 Example

The bisect () function is generally useful for categorizing numeric data. This example uses bisect ()
to look up a letter grade for an exam total (say) based on a set of ordered numeric breakpoints: 85 and
up is an ‘A’; 75..84 is a ‘B’, etc.

>>> grades = "FEDCBA"
>>> breakpoints = [30, 44, 66, 75, 85]
>>> from bisect import bisect
>>> def grade(total):
return grades[bisect(breakpoints, total)]

>>> grade(66)

,C’

>>> map(grade, [33, 99, 77, 44, 12, 88])
[,E’, ,A’,)B),)D” ’F” ’A’]

5.6 array — Efficient arrays of numeric values

This module defines a new object type which can efficiently represent an array of basic values: characters,
integers, floating point numbers. Arrays are sequence types and behave very much like lists, except that
the type of objects stored in them is constrained. The type is specified at object creation time by using
a type code, which is a single character. The following type codes are defined:

Type code | C Type Minimum size in bytes
’c? character 1
b’ signed int 1
’B? unsigned int 1
’h’ signed int 2
"H? unsigned int 2
71 signed int 2
1 unsigned int 2
1 signed int 4
'L unsigned int 4
£ float 4
’q’ double 8

The actual representation of values is determined by the machine architecture (strictly speaking, by the
C implementation). The actual size can be accessed through the itemsize attribute. The values stored
for L’ and I’ items will be represented as Python long integers when retrieved, because Python’s plain
integer type cannot represent the full range of C’s unsigned (long) integers.

The module defines the following function and type object:

96 Chapter 5. Miscellaneous Services

array (typecode [, inatializer])
Return a new array whose items are restricted by typecode, and initialized from the optional
initializer value, which must be a list or a string. The list or string is passed to the new array’s
fromlist() or fromstring() method (see below) to add initial items to the array.

ArrayType
Type object corresponding to the objects returned by array().

Array objects support the following data items and methods:

typecode
The typecode character used to create the array.

itemsize
The length in bytes of one array item in the internal representation.

append (x)
Append a new item with value z to the end of the array.

buffer_info()
Return a tuple (address, length) giving the current memory address and the length in bytes of
the buffer used to hold array’s contents. This is occasionally useful when working with low-level
(and inherently unsafe) I/O interfaces that require memory addresses, such as certain ioctl()
operations. The returned numbers are valid as long as the array exists and no length-changing
operations are applied to it.

byteswap ()
“Byteswap” all items of the array. This is only supported for values which are 1, 2, 4, or 8 bytes
in size; for other types of values, RuntimeError is raised. It is useful when reading data from a file
written on a machine with a different byte order.

fromfile(f, n)
Read n items (as machine values) from the file object f and append them to the end of the array.
If less than n items are available, EOFError is raised, but the items that were available are still
inserted into the array. f must be a real built-in file object; something else with a read () method
won’t do.

fromlist (list)
Append items from the list. This is equivalent to ‘for x in list: a.append(x)’ except that if
there is a type error, the array is unchanged.

fromstring(s)
Appends items from the string, interpreting the string as an array of machine values (i.e. as if it
had been read from a file using the fromfile () method).

insert (i, z)
Insert a new item with value x in the array before position 3.

read(f, n)
Deprecated since release 1.5.1. Use the fromfile() method.
Read n items (as machine values) from the file object f and append them to the end of the array.
If less than n items are available, EOFError is raised, but the items that were available are still
inserted into the array. f must be a real built-in file object; something else with a read () method
won'’t do.

reverse()
Reverse the order of the items in the array.

tofile(f)
Write all items (as machine values) to the file object f.

tolist()
Convert the array to an ordinary list with the same items.

tostring()
Convert the array to an array of machine values and return the string representation (the same

5.6. array — Efficient arrays of numeric values 97

sequence of bytes that would be written to a file by the tofile() method.)

write(f)
Deprecated since release 1.5.1. Use the tofile() method.

Write all items (as machine values) to the file object f.

When an array object is printed or converted to a string, it is represented as array (typecode , initializer).
The initializer is omitted if the array is empty, otherwise it is a string if the typecode is ’c’, otherwise
it is a list of numbers. The string is guaranteed to be able to be converted back to an array with the
same type and value using reverse quotes (¢), so long as the array () function has been imported using
‘from array import array’. Examples:

array(’1l’)

array(’c’, ’hello world’)
array(’1’, [1, 2, 3, 4, 5])
array(’d’, [1.0, 2.0, 3.14])

See Also:

Module struct (section 4.5):
packing and unpacking of heterogeneous binary data

Module xdrlib (section 12.13):
packing and unpacking of XDR data

The Numeric Python extension (NumPy) defines another array type; see The Numerical Python Manual
for additional information (available online at ftp://ftp-icf.llnl.gov/pub/python/numericalpython.pdf). Further
information about NumPy is available at http://www.python.org/topics/scicomp/numpy.html.

5.7 ConfigParser — Configuration file parser

This module defines the class ConfigParser. The ConfigParser class implements a basic configuration
file parser language which provides a structure similar to what you would find on Microsoft Windows
INT files. You can use this to write Python programs which can be customized by end users easily.

The configuration file consists of sections, lead by a ‘[section]’ header and followed by ‘name: value’
entries, with continuations in the style of RFC 822; ‘name=value’ is also accepted. Note that leading
whitespace is removed from values. The optional values can contain format strings which refer to other
values in the same section, or values in a special DEFAULT section. Additional defaults can be provided
upon initialization and retrieval. Lines beginning with ‘#’ or ‘;’ are ignored and may be used to provide
comments.

For example:

foodir: %(dir)s/whatever
dir=frob

would resolve the ‘% (dir)s’ to the value of ‘dir’ (‘frob’ in this case). All reference expansions are done
on demand.

Default values can be specified by passing them into the ConfigParser constructor as a dictionary.
Additional defaults may be passed into the get () method which will override all others.

ConfigParser ([defaults])
Return a new instance of the ConfigParser class. When defaults is given, it is initialized into the
dictionairy of intrinsic defaults. They keys must be strings, and the values must be appropriate
for the ‘% () s’ string interpolation. Note that __name__ is always an intrinsic default; its value is
the section name.

98 Chapter 5. Miscellaneous Services

NoSectionError
Exception raised when a specified section is not found.

DuplicateSectionError
Exception raised when mutliple sections with the same name are found, or if add_section() is
called with the name of a section that is already present.

NoOptionError
Exception raised when a specified option is not found in the specified section.

InterpolationError
Exception raised when problems occur performing string interpolation.

MissingSectionHeaderError
Exception raised when attempting to parse a file which has no section headers.

ParsingError
Exception raised when errors occur attempting to parse a file.

See Also:

Module shlex (section 5.11):
Support for a creating UNIX shell-like minilanguages which can be used as an alternate format for
application configuration files.

5.7.1 ConfigParser Objects

ConfigParser instances have the following methods:

defaults()
Return a dictionairy containing the instance-wide defaults.

sections()
Return a list of the sections available; DEFAULT is not included in the list.

add_section(section)
Add a section named section to the instance. If a section by the given name already exists,
DuplicateSectionError is raised.

has_section(section)
Indicates whether the named section is present in the configuration. The DEFAULT section is not
acknowledged.

options (section)
Returns a list of options available in the specified section.

read (filenames)
Read and parse a list of filenames.

get (section, option[, mw[, vars]])
Get an option value for the provided section. All the ‘%’ interpolations are expanded in the return
values, based on the defaults passed into the constructor, as well as the options wars provided,
unless the raw argument is true.

getint (section, option)
A convenience method which coerces the option in the specified section to an integer.

getfloat (section, option)
A convenience method which coerces the option in the specified section to a floating point number.

getboolean (section, option)
A convenience method which coerces the option in the specified section to a boolean value. Note
that the only accepted values for the option are ‘0’ and ‘1’, any others will raise ValueError.

5.7. ConfigParser — Configuration file parser 99

5.8 fileinput — lterate over lines from multiple input streams

This module implements a helper class and functions to quickly write a loop over standard input or a
list of files.

The typical use is:

import fileinput
for line in fileinput.inputQ):
process(line)

This iterates over the lines of all files listed in sys.argv[1:], defaulting to sys.stdin if the list is empty.
If a filename is -, it is also replaced by sys.stdin. To specify an alternative list of filenames, pass it
as the first argument to input (). A single file name is also allowed.

All files are opened in text mode. If an I/O error occurs during opening or reading a file, I0Error is
raised.

If sys.stdin is used more than once, the second and further use will return no lines, except perhaps for
interactive use, or if it has been explicitly reset (e.g. using sys.stdin.seek(0)).

Empty files are opened and immediately closed; the only time their presence in the list of filenames is
noticeable at all is when the last file opened is empty.

It is possible that the last line of a file does not end in a newline character; lines are returned including
the trailing newline when it is present.

The following function is the primary interface of this module:

input([ﬁles[, inplace[, backup]]])
Create an instance of the FileInput class. The instance will be used as global state for the
functions of this module, and is also returned to use during iteration.

The following functions use the global state created by input (); if there is no active state, RuntimeError
is raised.

filename ()
Return the name of the file currently being read. Before the first line has been read, returns None.

lineno ()
Return the cumulative line number of the line that has just been read. Before the first line has
been read, returns 0. After the last line of the last file has been read, returns the line number of
that line.

filelineno()
Return the line number in the current file. Before the first line has been read, returns 0. After the
last line of the last file has been read, returns the line number of that line within the file.

isfirstline()
Returns true the line just read is the first line of its file, otherwise returns false.

isstdin()
Returns true if the last line was read from sys.stdin, otherwise returns false.

nextfile()
Close the current file so that the next iteration will read the first line from the next file (if any);
lines not read from the file will not count towards the cumulative line count. The filename is not
changed until after the first line of the next file has been read. Before the first line has been read,
this function has no effect; it cannot be used to skip the first file. After the last line of the last file
has been read, this function has no effect.

close()
Close the sequence.

The class which implements the sequence behavior provided by the module is available for subclassing

100 Chapter 5. Miscellaneous Services

as well:

FileInput([ﬁles[, inplace [, backup]]])
Class FileInput is the implementation; its methods filename(), lineno(), fileline(),
isfirstline(), isstdin(), nextfile() and close() correspond to the functions of the same
name in the module. In addition it has a readline() method which returns the next input line,
and a __getitem__ () method which implements the sequence behavior. The sequence must be
accessed in strictly sequential order; random access and readline() cannot be mixed.

Optional in-place filtering: if the keyword argument inplace=1 is passed to input() or to the
FileInput constructor, the file is moved to a backup file and standard output is directed to the in-
put file. This makes it possible to write a filter that rewrites its input file in place. If the keyword
argument backup=’.<some extension>’ is also given, it specifies the extension for the backup file, and
the backup file remains around; by default, the extension is ’.bak’ and it is deleted when the output
file is closed. In-place filtering is disabled when standard input is read.

Caveat: The current implementation does not work for MS-DOS 843 filesystems.

5.9 calendar — General calendar-related functions

This module allows you to output calendars like the UNIX cal program, and provides additional useful
functions related to the calendar.

isleap(year)
Returns true if year is a leap year.

leapdays (yearl, year2)
Return the number of leap years in the range [year!. .. year2].

weekday (year, month, day)
Returns the day of the week (0 is Monday) for year (1970—...), month (1-12), day (1-31).

monthrange (year, month)
Returns weekday of first day of the month and number of days in month, for the specified year
and month.

monthcalendar (year, month)
Returns a matrix representing a month’s calendar. Each row represents a week; days outside of
the month a represented by zeros.

prmonth (year, month[, width[, length]])
Prints a month’s calendar. If width is provided, it specifies the width of the columns that the
numbers are centered in. If length is given, it specifies the number of lines that each week will use.

prcal (year)
Prints the calendar for the year year.

timegm (tuple)
An unrelated but handy function that takes a time tuple such as returned by the gmtime () function
in the time module, and returns the corresponding Unix timestamp value, assuming an epoch of
1970, and the POSIX encoding. In fact, time.gmtime() and timegm() are each others’ inverse.

See Also:

Module time (section 6.9):
Low-level time related functions.

5.10 cmd — Build line-oriented command interpreters.

The Cmd class provides a simple framework for writing line-oriented command interpreters. These are
often useful for test harnesses, administrative tools, and prototypes that will later be wrapped in a more
sophisticated interface.

5.9. calendar — General calendar-related functions 101

Cmd ()
A Cmd instance or subclass instance is a line-oriented interpreter framework. There is no good
reason to instantiate Cmd itself; rather, it’s useful as a superclass of an interpreter class you define
yourself in order to inherit Cmd’s methods and encapsulate action methods.

5.10.1 Cmd Objects

A Cmd instance has the following methods:

cmdloop ([mtm])
Repeatedly issue a prompt, accept input, parse an initial prefix off the received input, and dispatch
to action methods, passing them the remainder of the line as argument.

The optional argument is a banner or intro string to be issued before the first prompt (this overrides
the intro class member).

If the readline module is loaded, input will automatically inherit bash-like history-list editing
(e.g. Ctrl-P scrolls back to the last command, Ctrl-N forward to the next one, Ctr1-F moves the
cursor to the right non-destructively, Ctr1-B moves the cursor to the left non-destructively, etc.).

An end-of-file on input is passed back as the string *EOF’.

An interpreter instance will recognize a command name ‘foo’ if and only if it has a method
do_foo(). As a special case, a line containing only the character ‘?’ is dispatched to the method
do_help(). As another special case, a line containing only the character ‘!’ is dispatched to the
method do_shell (if such a method is defined).

All subclasses of Cmd inherit a predefined do_help. This method, called with an argument bar,
invokes the corresponding method help_bar(). With no argument, do_help() lists all available
help topics (that is, all commands with corresponding help_*() methods), and also lists any
undocumented commands.

onecmd (str)
Interpret the argument as though it had been typed in in response to the prompt.

emptyline()
Method called when an empty line is entered in response to the prompt. If this method is not
overridden, it repeats the last nonempty command entered.

default (line)
Method called on an input line when the command prefix is not recognized. If this method is not
overridden, it prints an error message and returns.

precmd)
Hook method executed just before the input prompt is issued. This method is a stub in Cmd; it
exists to be overridden by subclasses.

postemd)
Hook method executed just after a command dispatch is finished. This method is a stub in Cmd; it
exists to be overridden by subclasses.

preloop()
Hook method executed once when cmdloop() is called. This method is a stub in Cmd; it exists to
be overridden by subclasses.

postloop()
Hook method executed once when cmdloop() is about to return. This method is a stub in Cmd; it
exists to be overridden by subclasses.

Instances of Cmd subclasses have some public instance variables:
prompt
The prompt issued to solicit input.

identchars
The string of characters accepted for the command prefix.

102 Chapter 5. Miscellaneous Services

lastcmd
The last nonempty command prefix seen.

intro
A string to issue as an intro or banner. May be overridden by giving the cmdloop() method an
argument.

doc_header
The header to issue if the help output has a section for documented commands.

misc_header
The header to issue if the help output has a section for miscellaneous help topics (that is, there are
help_*() methods without corresponding do_*() methods).

undoc_header
The header to issue if the help output has a section for undocumented commands (that is, there
are do_*() methods without corresponding help_*() methods).

ruler
The character used to draw separator lines under the help-message headers. If empty, no ruler line
is drawn. It defaults to ‘=’.

5.11 shlex — Simple lexical analysis

New in version 1.5.2.

The shlex class makes it easy to write lexical analyzers for simple syntaxes resembling that of the UNIX
shell. This will often be useful for writing minilanguages, e.g. in run control files for Python applications.

shlex([stream])
A shlex instance or subclass instance is a lexical analyzer object. The initialization argument,
if present, specifies where to read characters from. It must be a file- or stream-like object with
read() and readline() methods. If no argument is given, input will be taken from sys.stdin.

See Also:

Module ConfigParser (section 5.7):
Parser for configuration files similar to the Windows “.ini’ files.

5.11.1 shlex Objects

A shlex instance has the following methods:

get_token()
Return a token. If tokens have been stacked using push_token(), pop a token off the stack.
Otherwise, read one from the input stream. If reading encounters an immediate end-of-file, an
empty string is returned.

push_token(str)
Push the argument onto the token stack.

Instances of shlex subclasses have some public instance variables which either control lexical analysis
or can be used for debugging:

commenters
The string of characters that are recognized as comment beginners. All characters from the com-
ment beginner to end of line are ignored. Includes just ‘#’ by default.

wordchars
The string of characters that will accumulate into multi-character tokens. By default, includes all
ASCII alphanumerics and underscore.

whitespace
Characters that will be considered whitespace and skipped. Whitespace bounds tokens. By default,

5.11. shlex — Simple lexical analysis 103

includes space, tab, linefeed and carriage-return.

quotes
Characters that will be considered string quotes. The token accumulates until the same quote
is encountered again (thus, different quote types protect each other as in the shell.) By default,
includes AsciI single and double quotes.

Note that any character not declared to be a word character, whitespace, or a quote will be returned as
a single-character token.

Quote and comment characters are not recognized within words. Thus, the bare words ‘ain’t’ and
‘ain#t’ would be returned as single tokens by the default parser.

lineno
Source line number (count of newlines seen so far plus one).

token
The token buffer. It may be useful to examine this when catching exceptions.

104 Chapter 5. Miscellaneous Services

CHAPTER
SIX

Generic Operating System Services

The modules described in this chapter provide interfaces to operating system features that are available
on (almost) all operating systems, such as files and a clock. The interfaces are generally modelled after
the UNIX or C interfaces, but they are available on most other systems as well. Here’s an overview:

os Miscellaneous OS interfaces.

os.path Common pathname manipulations.

dircache Return directory listing, with cache mechanism.

stat Utilities for interpreting the results of os.stat(), os.1stat() and os.fstat().
statcache Stat files, and remember results.

statvfs Constants for interpreting the result of os.statvfs().
cmp Compare files very efficiently.

cmpcache Compare files very efficiently.

time Time access and conversions.

sched General purpose event scheduler.

getpass Portable reading of passwords and retrieval of the userid.
curses An interface to the curses library.

getopt Parser for command line options.

tempfile Generate temporary file names.

errno Standard errno system symbols.

glob UNix shell style pathname pattern expansion.

fnmatch UNiX shell style filename pattern matching.

shutil High-level file operations, including copying.

locale Internationalization services.

mutex Lock and queue for mutual exclusion.

6.1 os — Miscellaneous OS interfaces

This module provides a more portable way of using operating system (OS) dependent functionality than
importing an OS dependent built-in module like posix or nt.

This module searches for an OS dependent built-in module like mac or posix and exports the same
functions and data as found there. The design of all Python’s built-in OS dependent modules is such that
as long as the same functionality is available, it uses the same interface; e.g., the function os.stat (path)
returns stat information about path in the same format (which happens to have originated with the
POSIX interface).

Extensions peculiar to a particular OS are also available through the os module, but using them is of
course a threat to portability!

Note that after the first time os is imported, there is no performance penalty in using functions from os
instead of directly from the OS dependent built-in module, so there should be no reason not to use os!

error
This exception is raised when a function returns a system-related error (e.g., not for illegal argument
types). This is also known as the built-in exception 0SError. The accompanying value is a pair
containing the numeric error code from errno and the corresponding string, as would be printed

105

name

path

by the C function perror(). See the module errno, which contains names for the error codes
defined by the underlying operating system.

When exceptions are classes, this exception carries two attributes, errno and strerror. The first
holds the value of the C errno variable, and the latter holds the corresponding error message
from strerror(). For exceptions that involve a file system path (e.g. chdir() or unlink()), the
exception instance will contain a third attribute, filename, which is the file name passed to the
function.

When exceptions are strings, the string for the exception is >0SError’.

The name of the OS dependent module imported. The following names have currently been regis-
tered: ’posix’, ’nt’, ’dos’, ’mac’, ’0s2’, ’ce’.

The corresponding OS dependent standard module for pathname operations, e.g., posixpath or
macpath. Thus, given the proper imports, os.path.split (file) is equivalent to but more portable
than posixpath.split(file). Note that this is also a valid module: it may be imported directly
as os.path.

6.1.1 Process Parameters

These functions and data items provide information and operate on the current process and user.

environ

A mapping object representing the string environment. For example, environ[’HOME’] is the
pathname of your home directory (on some platforms), and is equivalent to getenv("HOME") in C.

If the platform supports the putenv() function, this mapping may be used to modify the environ-
ment as well as query the environment. putenv() will be called automatically when the mapping
is modified.

If putenv() is not provided, this mapping may be passed to the appropriate process-creation
functions to cause child processes to use a modified environment.

chdir (path)
getcwd)

These functions are described in “Files and Directories” (section 6.1.4).

getegid O

Return the current process’ effective group id. Availability: UNIX.

geteuid ()

Return the current process’ effective user id. Availability: UNIX.

getgid()

Return the current process’ group id. Availability: UNIX.

getpgrp)

Return the current process group id. Availability: UNIX.

getpid()

Return the current process id. Availability: UNIX, Windows.

getppid O

Return the parent’s process id. Availability: UNIX.

getuid()

Return the current process’ user id. Availability: UNIX.

putenv (varname, value)

Set the environment variable named varname to the string value. Such changes to the environment
affect subprocesses started with os.system(), popen() or fork() and execv(). Availability: most
flavors of UNIX, Windows.

When putenv () is supported, assignments to items in os.environ are automatically translated

106

Chapter 6. Generic Operating System Services

into corresponding calls to putenv(); however, calls to putenv() don’t update os.environ, so it
is actually preferable to assign to items of os.environ.

setgid(gid)
Set the current process’ group id. Availability: UNIX.

setpgrp()
Calls the system call setpgrp() or setpgrp(0, 0) depending on which version is implemented (if
any). See the UNIX manual for the semantics. Availability: UNIX.

setpgid(pid, pgrp)
Calls the system call setpgid(). See the UNIX manual for the semantics. Availability: UNIX.

setsid ()
Calls the system call setsid(). See the UNIX manual for the semantics. Availability: UNIX.

setuid (uid)
Set the current process’ user id. Availability: UNIX.

strerror (code)
Return the error message corresponding to the error code in code. Availability: UNIX, Windows.

umask (mask)
Set the current numeric umask and returns the previous umask. Availability: UNix, Windows.

uname ()
Return a 5-tuple containing information identifying the current operating system. The tuple con-
tains 5 strings: (sysmame, nodename, release, wversion, machine). Some systems truncate the
nodename to 8 characters or to the leading component; a better way to get the hostname is
socket.gethostname() or even socket.gethostbyaddr(socket.gethostname()). Availabil-
ity: recent flavors of UNIX.

6.1.2 File Object Creation

These functions create new file objects.

fdopen(fd [, mode[, bufsize]])
Return an open file object connected to the file descriptor fd. The mode and bufsize arguments have
the same meaning as the corresponding arguments to the built-in open() function. Availability:
Macintosh, UNiX, Windows.

popen(command[, mode[, bufsize]])

Open a pipe to or from command. The return value is an open file object connected to the pipe,
which can be read or written depending on whether mode is >r’ (default) or *w’. The bufsize
argument has the same meaning as the corresponding argument to the built-in open() function.
The exit status of the command (encoded in the format specified for wait()) is available as the
return value of the close() method of the file object, except that when the exit status is zero
(termination without errors), None is returned. Note: This function behaves unreliably under
Windows due to the native implementation of popen(). Availability: Unix, Windows.

6.1.3 File Descriptor Operations

These functions operate on I/O streams referred to using file descriptors.

close(fd)
Close file descriptor fd. Availability: Macintosh, UNIX, Windows.

Note: this function is intended for low-level I/O and must be applied to a file descriptor as returned
by open() or pipe(). To close a “file object” returned by the built-in function open() or by
popen() or fdopen(), use its close() method.

dup (fd)
Return a duplicate of file descriptor fd. Availability: Macintosh, UNIX, Windows.

6.1. os — Miscellaneous OS interfaces 107

dup2(fd, fd2)
Duplicate file descriptor fd to fd2, closing the latter first if necessary. Availability: UNIxX, Windows.

fstat (fd)
Return status for file descriptor fd, like stat (). Availability: UNIX, Windows.

fstatvis(fd)
Return information about the filesystem containing the file associated with file descriptor fd, like
statvfs(). Availability: UNIX.

ftruncate (fd, length)
Truncate the file corresponding to file descriptor fd, so that it is at most length bytes in size.
Availability: UNIX.

1seek (fd, pos, how)
Set the current position of file descriptor fd to position pos, modified by how: 0 to set the position
relative to the beginning of the file; 1 to set it relative to the current position; 2 to set it relative
to the end of the file. Availability: Macintosh, UNIX, Windows.

open(file, flags [, mode])
Open the file file and set various flags according to flags and possibly its mode according to mode.
The default mode is 0777 (octal), and the current umask value is first masked out. Return the file
descriptor for the newly opened file. Availability: Macintosh, UNIX, Windows.

For a description of the flag and mode values, see the C run-time documentation; flag constants
(like 0_RDONLY and 0_WRONLY) are defined in this module too (see below).

Note: this function is intended for low-level I/O. For normal usage, use the built-in function open(),
which returns a “file object” with read () and write() methods (and many more).

pipe)
Create a pipe. Return a pair of file descriptors (r, w) usable for reading and writing, respectively.
Availability: UN1x, Windows.

read(fd, n)
Read at most n bytes from file descriptor fd. Return a string containing the bytes read. Availability:
Macintosh, UN1X, Windows.

Note: this function is intended for low-level I/O and must be applied to a file descriptor as returned
by open() or pipe(). Toread a “file object” returned by the built-in function open () or by popen ()
or fdopen(), or sys.stdin, use its read() or readline() methods.

tcgetpgrp (fd)
Return the process group associated with the terminal given by fd (an open file descriptor as
returned by open()). Availability: UNIX.

tcsetpgrp (fd, pg)
Set the process group associated with the terminal given by fd (an open file descriptor as returned
by open()) to pg. Availability: UNIX.

ttyname (fd)
Return a string which specifies the terminal device associated with file-descriptor fd. If fd is not
associated with a terminal device, an exception is raised. Availability: UNIX.

write(fd, str)
Write the string str to file descriptor fd. Return the number of bytes actually written. Availability:
Macintosh, UNIX, Windows.

Note: this function is intended for low-level I/O and must be applied to a file descriptor as returned
by open() or pipe(). To write a “file object” returned by the built-in function open() or by
popen() or fdopen(), or sys.stdout or sys.stderr, use its write() method.

The following data items are available for use in constructing the flags parameter to the open() function.

0_RDONLY
0_WRONLY
0_RDWR

0_NDELAY

108 Chapter 6. Generic Operating System Services

0_NONBLOCK

0_APPEND

0_DSYNC

0_RSYNC

0_SYNC

0_NOCTTY

0_CREAT

0_EXCL

0_TRUNC
Options for the flag argument to the open() function. These can be bit-wise OR’d together.
Availability: Macintosh, UNIX, Windows.

6.1.4 Files and Directories

access (path, mode)
Check read/write/execute permissions for this process or existence of file path. mode should be
F_OK to test the existence of path, or it can be the inclusive OR of one or more of R_0K, W_0K, and
X_0OK to test permissions. Return 1 if access is allowed, 0 if not. See the UNIX man page access(2)
for more information. Availability: UNIX.

F_OK
Value to pass as the mode parameter of access() to test the existence of path.

R_OK
Value to include in the mode parameter of access() to test the readability of path.

W_0K
Value to include in the mode parameter of access() to test the writability of path.

X_0K
Value to include in the mode parameter of access() to determine if path can be executed.

chdir (path)
Change the current working directory to path. Availability: Macintosh, UNIX, Windows.

getcwd)
Return a string representing the current working directory. Availability: Macintosh, UNiX, Win-
dows.

chmod (path, mode)
Change the mode of path to the numeric mode. Availability: UNIX, Windows.

chown (path, uid, gid)
Change the owner and group id of path to the numeric uid and gid. Availability: UNIX.

link(sre, dst)
Create a hard link pointing to src named dst. Availability: UNIX.

listdir(path)
Return a list containing the names of the entries in the directory. The list is in arbitrary order.
It does not include the special entries >.’> and ’..° even if they are present in the directory.
Availability: Macintosh, UNIX, Windows.

1stat (path)
Like stat (), but do not follow symbolic links. Availability: UNIX.

mkfifo(path[, mode])
Create a FIFO (a named pipe) named path with numeric mode mode. The default mode is 0666
(octal). The current umask value is first masked out from the mode. Availability: UNIX.

FIFOs are pipes that can be accessed like regular files. FIFOs exist until they are deleted (for ex-
ample with os.unlink()). Generally, FIFOs are used as rendezvous between “client” and “server”
type processes: the server opens the FIFO for reading, and the client opens it for writing. Note
that mkfifo () doesn’t open the FIFO — it just creates the rendezvous point.

6.1. os — Miscellaneous OS interfaces 109

mkdir(path[, mode])
Create a directory named path with numeric mode mode. The default mode is 0777 (octal). On
some systems, mode is ignored. Where it is used, the current umask value is first masked out.
Availability: Macintosh, UNIX, Windows.

makedirs(path[, mode])
Recursive directory creation function. Like mkdir (), but makes all intermediate-level directories
needed to contain the leaf directory. Throws an error exception if the leaf directory already exists
or cannot be created. The default mode is 0777 (octal). New in version 1.5.2.

readlink (path)
Return a string representing the path to which the symbolic link points. Availability: UNIX.

remove (path)
Remove the file path. See rmdir () below to remove a directory. This is identical to the unlink ()
function documented below. Availability: Macintosh, UNIX, Windows.

removedirs (path)
Recursive directory removal function. Works like rmdir() except that, if the leaf directory is
successfully removed, directories corresponding to rightmost path segments will be pruned way
until either the whole path is consumed or an error is raised (which is ignored, because it generally
means that a parent directory is not empty). Throws an error exception if the leaf directory could
not be successfully removed. New in version 1.5.2.

rename (src, dst)
Rename the file or directory src to dst. Availability: Macintosh, UNIX, Windows.

renames (old, new)
Recursive directory or file renaming function. Works like rename (), except creation of any inter-
mediate directories needed to make the new pathname good is attempted first. After the rename,
directories corresponding to rightmost path segments of the old name will be pruned away using
removedirs().

Note: this function can fail with the new directory structure made if you lack permissions needed
to remove the leaf directory or file. New in version 1.5.2.

rmdir (path)
Remove the directory path. Availability: Macintosh, UNIX, Windows.

stat (path)
Perform a stat () system call on the given path. The return value is a tuple of at least 10 integers
giving the most important (and portable) members of the stat structure, in the order st_mode,
st_ino, st_dev, st_nlink, st_uid, st_gid, st_size, st_atime, st_mtime, st_ctime. More
items may be added at the end by some implementations. (On MS Windows, some items are filled
with dummy values.) Availability: Macintosh, UNIX, Windows.

Note: The standard module stat defines functions and constants that are useful for extracting
information from a stat structure.

statvfs(path)
Perform a statvfs() system call on the given path. The return value is a tuple of 10 integers
giving the most common members of the statvfs structure, in the order f_bsize, f_frsize,
f_blocks, f_bfree, f_bavail, f_files, f_ffree, f_favail, f_flag, f_namemax. Availability:
UNIX.

Note: The standard module statvfs defines constants that are useful for extracting information
from a statvfs structure.

symlink(src, dst)
Create a symbolic link pointing to src named dst. Availability: UNIX.

unlink (path)
Remove the file path. This is the same function as remove (); the unlink () name is its traditional
UNIX name. Availability: Macintosh, UNIx, Windows.

utime (path, (atime, mtime))

110 Chapter 6. Generic Operating System Services

Set the access and modified time of the file to the given values. (The second argument is a tuple
of two items.) Availability: Macintosh, UNIX, Windows.

6.1.5 Process Management

These functions may be used to create and manage additional processes.

execl(path, arg0, argl, ...)
This is equivalent to ‘execv(path, (arg0, argl, ...)) . Availability: UNIX, Windows.

execle(path, arg0, argl, ..., env)
This is equivalent to ‘execve(path, (arg0, argl, ...), env)’. Availability: UNiX, Windows.

execlp(path, arg0, argl, ...)
This is equivalent to ‘execvp(path, (arg0, argl, ...))’. Availability: Unix, Windows.

execv (path, args)
Execute the executable path with argument list args, replacing the current process (i.e., the Python
interpreter). The argument list may be a tuple or list of strings. Availability: UNix, Windows.

execve (path, args, env)
Execute the executable path with argument list args, and environment env, replacing the current
process (i.e., the Python interpreter). The argument list may be a tuple or list of strings. The
environment must be a dictionary mapping strings to strings. Availability: UNix, Windows.

execvp (path, args)
This is like ‘execv (path, args)’ but duplicates the shell’s actions in searching for an executable file
in a list of directories. The directory list is obtained from environ[’PATH’]. Availability: UNIX,
Windows.

execvpe (path, args, env)
This is a cross between execve () and execvp(). The directory list is obtained from env [?’PATH’].
Availability: UNix, Windows.

—_exit(n)
Exit to the system with status m, without calling cleanup handlers, flushing stdio buffers, etc.
Availability: Unix, Windows.

Note: the standard way to exit is sys.exit(n). _exit() should normally only be used in the
child process after a fork().

fork()
Fork a child process. Return 0 in the child, the child’s process id in the parent. Availability: UNIX.

kill(pid, sig)
Kill the process pid with signal sig. Availability: UNIX.

nice (increment)
Add increment to the process’s “niceness”. Return the new niceness. Availability: UNIX.

plock(op)
Lock program segments into memory. The value of op (defined in <sys/lock.h>) determines which
segments are locked. Availability: UNIX.

spawnv (mode, path, args)
Execute the program path in a new process, passing the arguments specified in args as command-
line parameters. args may be a list or a tuple. mode is a magic operational constant. See the
Visual C++ Runtime Library documentation for further information; the constants are exposed
to the Python programmer as listed below. Availability: Windows. New in version 1.5.2.

spawnve (mode, path, args, env)
Execute the program path in a new process, passing the arguments specified in args as command-
line parameters and the contents of the mapping env as the environment. args may be a list or a
tuple. mode is a magic operational constant. See the Visual C++ Runtime Library documentation
for further information; the constants are exposed to the Python programmer as listed below.

6.1. os — Miscellaneous OS interfaces 111

Availability: Windows. New in version 1.5.2.

P_WAIT

P_NOWAIT

P_NOWAITO

P_OVERLAY

P_DETACH
Possible values for the mode parameter to spawnv () and spawnve (). Availability: Windows. New
in version 1.5.2.

system(command)

Execute the command (a string) in a subshell. This is implemented by calling the Standard C
function system(), and has the same limitations. Changes to posix.environ, sys.stdin, etc. are
not reflected in the environment of the executed command. The return value is the exit status of
the process encoded in the format specified for wait (), except on Windows 95 and 98, where it is
always 0. Note that POSIX does not specify the meaning of the return value of the C system()
function, so the return value of the Python function is system-dependent. Availability: UNIX,
Windows.

times ()
Return a 5-tuple of floating point numbers indicating accumulated (CPU or other) times, in seconds.
The items are: user time, system time, children’s user time, children’s system time, and elapsed
real time since a fixed point in the past, in that order. See the UNIX manual page times(2) or the
corresponding Windows Platform API documentation. Availability: UNix, Windows.

wait ()
Wait for completion of a child process, and return a tuple containing its pid and exit status
indication: a 16-bit number, whose low byte is the signal number that killed the process, and
whose high byte is the exit status (if the signal number is zero); the high bit of the low byte is set
if a core file was produced. Availability: UNIX.

waitpid(pid, options)
Wait for completion of a child process given by process id pid, and return a tuple containing its
process id and exit status indication (encoded as for wait ()). The semantics of the call are affected
by the value of the integer options, which should be 0 for normal operation. Availability: UNIX.
If pid is greater than 0, waitpid() requests status information for that specific process. If pid is
0, the request is for the status of any child in the process group of the current process. If pid is -1,

the request pertains to any child of the current process. If pid is less than -1, status is requested
for any process in the process group -pid (the absolute value of pid).

WNOHANG
The option for waitpid() to avoid hanging if no child process status is available immediately.
Availability: UNIX.

The following functions take a process status code as returned by system(), wait(), or waitpid() as a
parameter. They may be used to determine the disposition of a process.

WIFSTOPPED (status)
Return true if the process has been stopped. Availability: UNIX.

WIFSIGNALED (status)
Return true if the process exited due to a signal. Availability: UNIX.

WIFEXITED (status)
Return true if the process exited using the ezit(2) system call. Availability: UNIX.

WEXITSTATUS (status)
If WIFEXITED (status) is true, return the integer parameter to the exzit(2) system call. Otherwise,
the return value is meaningless. Availability: UNIX.

WSTOPSIG (status)
Return the signal which caused the process to stop. Availability: UNIX.

WTERMSIG (status)
Return the signal which caused the process to exit. Availability: UNIX.

112 Chapter 6. Generic Operating System Services

6.1.6 Miscellanenous System Data

The follow data values are used to support path manipulation operations. These are defined for all
platforms.

Higher-level operations on pathnames are defined in the os.path module.

curdir
The constant string used by the OS to refer to the current directory, e.g. .’ for POSIX or ’:?
for the Macintosh.

pardir
The constant string used by the OS to refer to the parent directory, e.g. ..’ for POSIX or *::’
for the Macintosh.

sep
The character used by the OS to separate pathname components, e.g. */’ for POSIX or ‘:’ for the
Macintosh. Note that knowing this is not sufficient to be able to parse or concatenate pathnames
— use os.path.split() and os.path.join() — but it is occasionally useful.
altsep
An alternative character used by the OS to separate pathname components, or None if only one
separator character exists. This is set to ‘/” on DOS and Windows systems where sep is a backslash.
pathsep
The character conventionally used by the OS to separate search patch components (as in $PATH),
e.g. ;7 for POSIX or *;’ for DOS and Windows.
defpath
The default search path used by exec*p#* () if the environment doesn’t have a >PATH’ key.
linesep

The string used to separate (or, rather, terminate) lines on the current platform. This may be a
single character, e.g. >\n’ for POSIX or ’\r’ for MacOS, or multiple characters, e.g. >\r\n’ for
MS-DOS and MS Windows.

6.2 os.path — Common pathname manipulations

This module implements some useful functions on pathnames.

abspath (path)
Return a normalized absolutized version of the pathname path. On most platforms, this is equiv-
alent to normpath(join(os.getcwd(), path)). New in version 1.5.2.

basename (path)
Return the base name of pathname path. This is the second half of the pair returned by
split (path).

commonprefix (list)
Return the longest string that is a prefix of all strings in list. If list is empty, return the empty
string (??).

dirname (path)
Return the directory name of pathname path. This is the first half of the pair returned by
split (path).

exists (path)
Return true if path refers to an existing path.

expanduser (path)
Return the argument with an initial component of ‘= or ‘“user’ replaced by that wuser’s home
directory. An initial ‘~’ is replaced by the environment variable $HOME; an initial ‘~user’ is

looked up in the password directory through the built-in module pwd. If the expansion fails, or
if the path does not begin with a tilde, the path is returned unchanged. On the Macintosh, this

6.2. os.path — Common pathname manipulations 113

always returns path unchanged.

expandvars (path)
Return the argument with environment variables expanded. Substrings of the form ‘$name’ or
‘${namel}’ are replaced by the value of environment variable name. Malformed variable names and
references to non-existing variables are left unchanged. On the Macintosh, this always returns path
unchanged.

getatime (path)
Return the time of last access of filename. The return value is integer giving the number of seconds
since the epoch (see the time module). Raise os.error if the file does not exist or is inaccessible.
New in version 1.5.2.

getmtime (path)
Return the time of last modification of filename. The return value is integer giving the number
of seconds since the epoch (see the time module). Raise os.error if the file does not exist or is
inaccessible. New in version 1.5.2.

getsize (path)
Return the size, in bytes, of filename. Raise os.error if the file does not exist or is inaccessible.
New in version 1.5.2.

isabs(path)
Return true if path is an absolute pathname (begins with a slash).

isfile(path)
Return true if path is an existing regular file. This follows symbolic links, so both islink() and
isfile() can be true for the same path.

isdir (path)
Return true if path is an existing directory. This follows symbolic links, so both islink() and
isdir () can be true for the same path.

islink(path)
Return true if path refers to a directory entry that is a symbolic link. Always false if symbolic links
are not supported.

ismount (path)
Return true if pathname path is a mount point: a point in a file system where a different file system
has been mounted. The function checks whether path’s parent, ‘path/..’, is on a different device
than path, or whether ‘path/..” and path point to the same i-node on the same device — this should
detect mount points for all UNIX and POSIX variants.

join(pathl [, path,@[,]])
Joins one or more path components intelligently. If any component is an absolute path, all previous
components are thrown away, and joining continues. The return value is the concatenation of pathl,
and optionally path2, etc., with exactly one slash (’/°) inserted between components, unless path
is empty.

normcase (path)
Normalize the case of a pathname. On UNIX, this returns the path unchanged; on case-insensitive
filesystems, it converts the path to lowercase. On Windows, it also converts forward slashes to
backward slashes.

normpath (path)
Normalize a pathname. This collapses redundant separators and up-level references, e.g. A//B,
A/./B and A/foo/../B all become A/B. It does not normalize the case (use normcase() for that).
On Windows, it converts forward slashes to backward slashes.

samefile(pathl, path2)
Return true if both pathname arguments refer to the same file or directory (as indicated by device
number and i-node number). Raise an exception if a os.stat() call on either pathname fails.
Availability: Macintosh, UNIX.

sameopenfile(fpl, fp2)

114 Chapter 6. Generic Operating System Services

Return true if the file objects fpI and fp2 refer to the same file. The two file objects may represent
different file descriptors. Availability: Macintosh, UNIX.

samestat (stat!, stat2)
Return true if the stat tuples stat! and stat2 refer to the same file. These structures may have been
returned by fstat(), 1stat(), or stat(). This function implements the underlying comparison
used by samefile() and sameopenfile(). Availability: Macintosh, UNIX.

split(path)
Split the pathname path into a pair, (head, tail) where tail is the last pathname component and
head is everything leading up to that. The tail part will never contain a slash; if path ends in a
slash, tail will be empty. If there is no slash in path, head will be empty. If path is empty, both
head and tail are empty. Trailing slashes are stripped from head unless it is the root (one or more
slashes only). In nearly all cases, join(head, tail) equals path (the only exception being when
there were multiple slashes separating head from tail).

splitdrive (path)
Split the pathname path into a pair (drive, tail) where drive is either a drive specification or the
empty string. On systems which do not use drive specifications, drive will always be the empty
string. In all cases, drive + tail will be the same as path.

splitext (path)
Split the pathname path into a pair (root, ext) such that root + ext == path, and ext is empty
or begins with a period and contains at most one period.

walk (path, visit, arg)
Calls the function wvisit with arguments (arg, dirname, names) for each directory in the di-
rectory tree rooted at path (including path itself, if it is a directory). The argument dirname
specifies the visited directory, the argument names lists the files in the directory (gotten from
os.listdir(dirname)). The wvisit function may modify names to influence the set of directories
visited below dirname, e.g., to avoid visiting certain parts of the tree. (The object referred to by
names must be modified in place, using del or slice assignment.)

6.3 dircache — Cached directory listings

The dircache module defines a function for reading directory listing using a cache, and cache invalidation
using the mtime of the directory. Additionally, it defines a function to annotate directories by appending
a slash.

The dircache module defines the following functions:

listdir(path)
Return a directory listing of path, as gotten from os.listdir(). Note that unless path changes,
further call to 1listdir () will not re-read the directory structure.

Note that the list returned should be regarded as read-only. (Perhaps a future version should
change it to return a tuple?)

opendir (path)
Same as listdir(). Defined for backwards compatability.

annotate (head, list)
Assume list is a list of pathes relative to head, and append, in place, a ¢/’ to each path which
points to a directory.

6.3. dircache — Cached directory listings 115

>>> import dircache
>>> a=dircache.listdir(’/’)
>>> a=a[:] # Copy the return value so we can change ’a’

>>> a

[’bin’, ’boot’, ’cdrom’, ’dev’, ’etc’, ’floppy’, ’home’, ’initrd’, ’1lib’, ’lost+
found’, ’mnt’, ’proc’, ’root’, ’sbin’, ’tmp’, ’usr’, ’var’, ’vmlinuz’]

>>> dircache.annotate(’/’, a)

>>> a

[’bin/’, ’boot/’, ’cdrom/’, ’dev/’, ’etc/’, ’floppy/’, ’home/’, ’initrd/’, ’lib/
>, ’lost+found/’, ’mnt/’, ’proc/’, ’root/’, ’sbin/’, ’tmp/’, ’usr/’, ’var/’, ’vm
linuz’]

6.4 stat — Interpreting stat () results

The stat module defines constants and functions for interpreting the results of os.stat(), os.fstat()
and os.lstat() (if they exist). For complete details about the stat(), fstat() and 1lstat() calls,
consult the documentation for your system.

The stat module defines the following functions to test for specific file types:

S_ISDIR(mode)
Return non-zero if the mode is from a directory.

S_ISCHR (mode)
Return non-zero if the mode is from a character special device file.

S_ISBLK (mode)
Return non-zero if the mode is from a block special device file.

S_ISREG(mode)
Return non-zero if the mode is from a regular file.

S_ISFIFO(mode)
Return non-zero if the mode is from a FIFO (named pipe).

S_ISLNK(mode)
Return non-zero if the mode is from a symbolic link.

S_ISSOCK (mode)
Return non-zero if the mode is from a socket.

Two additional functions are defined for more general manipulation of the file’s mode:

S_IMODE (mode)
Return the portion of the file’s mode that can be set by os.chmod ()—that is, the file’s permission
bits, plus the sticky bit, set-group-id, and set-user-id bits (on systems that support them).

S_IFMT (mode)
Return the portion of the file’s mode that describes the file type (used by the S_IS*() functions
above).

Normally, you would use the os.path.is*() functions for testing the type of a file; the functions here
are useful when you are doing multiple tests of the same file and wish to avoid the overhead of the
stat () system call for each test. These are also useful when checking for information about a file that
isn’t handled by os.path, like the tests for block and character devices.

All the variables below are simply symbolic indexes into the 10-tuple returned by os.stat (), os.fstat()
or os.lstat().

ST_MODE
Inode protection mode.

ST_INO

116 Chapter 6. Generic Operating System Services

Inode number.

ST_DEV
Device inode resides on.

ST_NLINK
Number of links to the inode.

ST_UID
User id of the owner.

ST_GID
Group id of the owner.

ST_SIZE
File size in bytes.

ST_ATIME
Time of last access.

ST_MTIME
Time of last modification.

ST_CTIME
Time of last status change (see manual pages for details).

Example:

import os, sys
from stat import *

def walktree(dir, callback):
’?’recursively descend the directory rooted at dir,
calling the callback function for each regular file’’’

for f in os.listdir(dir):

pathname = ’¥%s/%s’ % (dir, f)

mode = os.stat(pathname) [ST_MODE]

if S_ISDIR(mode):
It’s a directory, recurse into it
walktree (pathname, callback)

elif S_ISREG(mode):
It’s a file, call the callback function
callback(pathname)

else:
Unknown file type, print a message
print ’Skipping %s’ % pathname

def visitfile(file):
print ’visiting’, file

if __name__ == ’__main__’:
walktree(sys.argv[1], visitfile)

6.5 statcache — An optimization of os.stat()

The statcache module provides a simple optimization to os.stat (): remembering the values of previous
invocations.

The statcache module defines the following functions:

stat (path)
This is the main module entry-point. Identical for os.stat (), except for remembering the result

6.5. statcache — An optimization of os.stat() 117

for future invocations of the function.
The rest of the functions are used to clear the cache, or parts of it.

reset ()
Clear the cache: forget all results of previous stat () calls.

forget (path)
Forget the result of stat (path), if any.

forget_prefix(prefix)
Forget all results of stat(path) for path starting with prefiz.

forget_dir (prefix)
Forget all results of stat(path) for path a file in the directory prefiz, including stat (prefiz).

forget_except_prefix(prefir)
Similar to forget_prefix(), but for all path values not starting with prefiz.

Example:

>>> import os, statcache

>>> statcache.stat(’.’)

(16893, 2049, 772, 18, 1000, 1000, 2048, 929609777, 929609777, 929609777)
>>> os.stat(’.?)

(16893, 2049, 772, 18, 1000, 1000, 2048, 929609777, 929609777, 929609777)

6.6 statvfs — Constants used with os.statvfs()

The statvfs module defines constants so interpreting the result if os.statvfs(), which returns a tuple,
can be made without remembering “magic numbers.” Each of the constants defined in this module is
the index of the entry in the tuple returned by os.statvfs() that contains the specified information.

F_BSIZE
Preferred file system block size.

F_FRSIZE
Fundamental file system block size.

F_BLOCKS
Total number of blocks in the filesystem.

F_BFREE
Total number of free blocks.

F_BAVAIL
Free blocks available to non-super user.

F_FILES
Total number of file nodes.

F_FFREE
Total number of free file nodes.

F_FAVAIL
Free nodes available to non-super user.

F_FLAG
Flags. System dependant: see statvfs() man page.

F_NAMEMAX
Maximum file name length.

118 Chapter 6. Generic Operating System Services

6.7 cmp — File comparisons

The cmp module defines a function to compare files, taking all sort of short-cuts to make it a highly
efficient operation.

The cmp module defines the following function:

cmp (f1, f2)

Compare two files given as names. The following tricks are used to optimize the comparisons:

eFiles with identical type, size and mtime are assumed equal.
eFiles with different type or size are never equal.

eThe module only compares files it already compared if their signature (type, size and mtime)
changed.

eNo external programs are called.

Example:

>>> import cmp

>>> cmp.cmp(’libundoc.tex’, ’libundoc.tex’)
1

>>> cmp.cmp(’libundoc.tex’, ’lib.tex’)

0

6.8 cmpcache — Efficient file comparisons

The cmpcache module provides an identical interface and similar functionality as the cmp module, but
can be a bit more efficient as it uses statcache.stat () instead of os.stat () (see the statcache module

for

information on the difference).

Note: Using the statcache module to provide stat () information results in trashing the cache invali-
dation mechanism: results are not as reliable. To ensure “current” results, use cmp.cmp () instead of the
version defined in this module, or use statcache.forget () to invalidate the appropriate entries.

6.9 time — Time access and conversions

This module provides various time-related functions. It is always available, but not all functions are
available on all platforms.

An explanation of some terminology and conventions is in order.

e The epoch is the point where the time starts. On January 1st of that year, at 0 hours, the “time
since the epoch” is zero. For UNIX, the epoch is 1970. To find out what the epoch is, look at
gmtime (0).

e The functions in this module do not handle dates and times before the epoch or far in the future.
The cut-off point in the future is determined by the C library; for UNIX, it is typically in 2038.

e Year 2000 (Y2K) issues: Python depends on the platform’s C library, which generally doesn’t
have year 2000 issues, since all dates and times are represented internally as seconds since the
epoch. Functions accepting a time tuple (see below) generally require a 4-digit year. For backward
compatibility, 2-digit years are supported if the module variable accept2dyear is a non-zero integer;
this variable is initialized to 1 unless the environment variable $PYTHONY2K is set to a non-empty
string, in which case it is initialized to 0. Thus, you can set $SPYTHONY2K to a non-empty string

6.7.

cmp — File comparisons 119

in the environment to require 4-digit years for all year input. When 2-digit years are accepted,
they are converted according to the POSIX or X/Open standard: values 69-99 are mapped to
1969-1999, and values 0-68 are mapped to 2000-2068. Values 100-1899 are always illegal. Note
that this is new as of Python 1.5.2(a2); earlier versions, up to Python 1.5.1 and 1.5.2al, would add
1900 to year values below 1900.

e UTC is Coordinated Universal Time (formerly known as Greenwich Mean Time, or GMT). The
acronym UTC is not a mistake but a compromise between English and French.

e DST is Daylight Saving Time, an adjustment of the timezone by (usually) one hour during part of
the year. DST rules are magic (determined by local law) and can change from year to year. The
C library has a table containing the local rules (often it is read from a system file for flexibility)
and is the only source of True Wisdom in this respect.

e The precision of the various real-time functions may be less than suggested by the units in which
their value or argument is expressed. E.g. on most UNIX systems, the clock “ticks” only 50 or 100
times a second, and on the Mac, times are only accurate to whole seconds.

e On the other hand, the precision of time() and sleep() is better than their UNIX equivalents:
times are expressed as floating point numbers, time () returns the most accurate time available
(using UNIX gettimeofday() where available), and sleep() will accept a time with a nonzero
fraction (UNIX select() is used to implement this, where available).

e The time tuple as returned by gmtime(), localtime(), and strptime(), and accepted by
asctime(), mktime() and strftime(), is a tuple of 9 integers:

Index | Field Values
0 | year (e.g. 1993)
1 | month range [1,12]
2 | day range [1,31]
3 | hour range [0,23]
4 | minute range [0,59]
5 | second range [0,61]; see (1) in strftime() description
6 | weekday range [0,6], monday is 0
7 | Julian day range [1,366]
8 | daylight savings flag | 0, 1 or -1; see below

Note that unlike the C structure, the month value is a range of 1-12, not 0-11. A year value will be
handled as described under “Year 2000 (Y2K) issues” above. A -1 argument as daylight savings
flag, passed to mktime () will usually result in the correct daylight savings state to be filled in.

The module defines the following functions and data items:

accept2dyear
Boolean value indicating whether two-digit year values will be accepted. This is true by default,
but will be set to false if the environment variable $PYTHONY2K has been set to a non-empty
string. It may also be modified at run time.

altzone
The offset of the local DST timezone, in seconds west of the Oth meridian, if one is defined. Negative
if the local DST timezone is east of the Oth meridian (as in Western Europe, including the UK).
Only use this if daylight is nonzero.

asctime (tuple)
Convert a tuple representing a time as returned by gmtime() or localtime() to a 24-character
string of the following form: ’Sun Jun 20 23:21:05 1993’. Note: unlike the C function of the
same name, there is no trailing newline.

clock()
Return the current CPU time as a floating point number expressed in seconds. The precision, and
in fact the very definiton of the meaning of “CPU time”, depends on that of the C function of
the same name, but in any case, this is the function to use for benchmarking Python or timing
algorithms.

120 Chapter 6. Generic Operating System Services

ctime (secs)
Convert a time expressed in seconds since the epoch to a string representing local time. ctime (secs)
is equivalent to asctime(localtime(secs)).

daylight
Nonzero if a DST timezone is defined.

gmtime (secs)
Convert a time expressed in seconds since the epoch to a time tuple in UTC in which the dst flag
is always zero. Fractions of a second are ignored. See above for a description of the tuple lay-out.

localtime(secs)
Like gmtime () but converts to local time. The dst flag is set to 1 when DST applies to the given
time.

mktime (tuple)
This is the inverse function of localtime(). Its argument is the full 9-tuple (since the dst flag
is needed — pass -1 as the dst flag if it is unknown) which expresses the time in local time, not
UTC. It returns a floating point number, for compatibility with time (). If the input value cannot
be represented as a valid time, OverflowError is raised.

sleep(secs)
Suspend execution for the given number of seconds. The argument may be a floating point number
to indicate a more precise sleep time. The actual suspension time may be less than that requested
because any caught signal will terminate the sleep() following execution of that signal’s catching
routine. Also, the suspension time may be longer than requested by an arbitrary amount because
of the scheduling of other activity in the system.

strftime (format, tuple)
Convert a tuple representing a time as returned by gmtime () or localtime () to a string as specified
by the format argument. format must be a string.

The following directives can be embedded in the format string. They are shown without the
optional field width and precision specification, and are replaced by the indicated characters in the
strftime() result:

6.9. time — Time access and conversions 121

Directive | Meaning Notes

%ha Locale’s abbreviated weekday name.

%A Locale’s full weekday name.

AS) Locale’s abbreviated month name.

%B Locale’s full month name.

%e Locale’s appropriate date and time representation.

%d Day of the month as a decimal number [01,31].

%H Hour (24-hour clock) as a decimal number [00,23].

A Hour (12-hour clock) as a decimal number [01,12].

% Day of the year as a decimal number [001,366].

%m Month as a decimal number [01,12].

M Minute as a decimal number [00,59].

pAS) Locale’s equivalent of either AM or PM.

%S Second as a decimal number [00,61]. (1)
YAY Week number of the year (Sunday as the first day of the

week) as a decimal number [00,53]. All days in a new
year preceding the first Sunday are considered to be in

week 0.
YA Weekday as a decimal number [0(Sunday),6].
YAl Week number of the year (Monday as the first day of

the week) as a decimal number [00,53]. All days in a
new year preceding the first Sunday are considered to
be in week 0.

%x Locale’s appropriate date representation.

%X Locale’s appropriate time representation.

%y Year without century as a decimal number [00,99].

%Y Year with century as a decimal number.

hZ Time zone name (or by no characters if no time zone
exists).

Toe A literal ‘%’ character.

Notes:

(1)The range really is 0 to 61; this accounts for leap seconds and the (very rare) double leap
seconds.

Additional directives may be supported on certain platforms, but only the ones listed here have a
meaning standardized by ANSI C.

On some platforms, an optional field width and precision specification can immediately follow the
initial ‘%4’ of a directive in the following order; this is also not portable. The field width is normally
2 except for %j where it is 3.

strptime (string [, format])
Parse a string representing a time according to a format. The return value is a tuple as returned
by gmtime() or localtime(). The format parameter uses the same directives as those used by
strftime (); it defaults to "%a %b %d %H:%M:%S %Y" which matches the formatting returned by
ctime (). The same platform caveats apply; see the local UNIX documentation for restrictions or
additional supported directives. If string cannot be parsed according to format, ValueError is
raised.

Availability: Most modern UNIX systems.

time ()
Return the time as a floating point number expressed in seconds since the epoch, in UTC. Note
that even though the time is always returned as a floating point number, not all systems provide
time with a better precision than 1 second.

timezone
The offset of the local (non-DST) timezone, in seconds west of the Oth meridian (i.e. negative in
most of Western Europe, positive in the US, zero in the UK).

122 Chapter 6. Generic Operating System Services

tzname
A tuple of two strings: the first is the name of the local non-DST timezone, the second is the name
of the local DST timezone. If no DST timezone is defined, the second string should not be used.

See Also:

Module locale (section 6.19):
Internationalization services. The locale settings can affect the return values for some of the
functions in the time module.

6.10 sched — Event scheduler

The sched module defines a class which implements a general purpose event scheduler:

scheduler (timefunc, delayfunc)
The scheduler class defines a generic interface to scheduling events. It needs two functions to
actually deal with the “outside world” — timefunc should be callable without arguments, and
return a number (the “time”, in any units whatsoever). The delayfunc function should be callable
with one argument, compatible with the output of timefunc, and should delay that many time
units. delayfunc will also be called with the argument 0 after each event is run to allow other
threads an opportunity to run in multi-threaded applications.

Example:

>>> import sched, time
>>> s=sched.scheduler(time.time, time.sleep)
>>> def print_time(): print "From print_time", time.time()

>>> def print_some_times():
print time.time()
s.enter(5, 1, print_time, ())
s.enter(10, 1, print_time, ())
s.run()
print time.time()

>>> print_some_times()
930343690.257

From print_time 930343695.274
From print_time 930343700.273
930343700.276

6.10.1 Scheduler Objects

scheduler instances have the following methods:

enterabs (time, priority, action, argument)
Schedule a new event. The time argument should be a numeric type compatible with the return
value of the timefunc function passed to the constructor. Events scheduled for the same time will
be executed in the order of their priority.

Executing the event means executing apply Caction, argument). argument must be a tuple holding
the parameters for action.

Return value is an event which may be used for later cancellation of the event (see cancel()).

enter (delay, priority, action, argument)
Schedule an event for delay more time units. Other then the relative time, the other arguments,
the effect and the return value are the same as those for enterabs().

cancel (event)

6.10. sched — Event scheduler 123

Remove the event from the queue. If event is not an event currently in the queue, this method will
raise a RuntimeError.

empty ()
Return true if the event queue is empty.

run()

Run all scheduled events. This function will wait (using the delayfunc function passed to the
constructor) for the next event, then execute it and so on until there are no more scheduled events.

Either action or delayfunc can raise an exception. In either case, the scheduler will maintain a
consistent state and propagate the exception. If an exception is raised by action, the event will
not be attempted in future calls to run().

If a sequence of events takes longer to run than the time available before the next event, the
scheduler will simply fall behind. No events will be dropped; the calling code is responsible for
cancelling events which are no longer pertinent.

6.11 getpass — Portable password input

The getpass module provides two functions:

getpass ([prompt])
Prompt the user for a password without echoing. The user is prompted using the string prompt,
which defaults to *Password: . Availability: Macintosh, UNIX, Windows.

getuser ()
Return the “login name” of the user. Availability: UNix, Windows.

This function checks the environment variables SLOGNAME, $USER, $SLNAME and $USER-
NAME, in order, and returns the value of the first one which is set to a non-empty string. If none
are set, the login name from the password database is returned on systems which support the pwd
module, otherwise, an exception is raised.

6.12 curses — Terminal independant console handling

The curses module provides an interface to the curses UNIX library, the de-facto standard for portable
advanced terminal handling.

While curses is most widely used in the UNIX environment, versions are available for DOS, OS/2, and
possibly other systems as well. The extension module has not been tested with all available versions of
curses.

See Also:

Tutorial material on using curses with Python is available on the Python Web site as Andrew Kuchling’s
Clurses Programming with Python, at http://www.python.org/doc/howto/curses/curses.html.

6.12.1 Constants and Functions

The curses module defines the following data members:

version
A string representing the current version of the module.

A_NORMAL
Normal attribute.

A_STANDOUT
Standout mode.

124 Chapter 6. Generic Operating System Services

A_UNDERLINE
Underline mode.

A_BLINK
Blink mode.

A_DIM
Dim mode.

A_BOLD
Bold mode.

A_ALTCHARSET
Alternate character set mode.

KEY_x*
Names for various keys. The exact names available are system dependant.

ACS_x*
Names for various characters: ACS_ULCORNER, ACS_LLCORNER, ACS_URCORNER, ACS_LRCORNER,
ACS_RTEE, ACS_LTEE, ACS_BTEE, ACS_TTEE, ACS_HLINE, ACS_VLINE, ACS_PLUS, ACS_S1, ACS_S9,
ACS_DIAMOND, ACS_CKBOARD, ACS_DEGREE, ACS_PLMINUS, ACS_BULLET, ACS_LARROW, ACS_RARROW,
ACS_DARROW.

Note: These are available only after initscr() has been called.

The module curses defines the following exception:
error
Curses function returned an error status.
Note: Whenever z or y arguments to a function or a method are optional, they default to the current
cursor location. Whenever attr is optional, it defaults to A_NORMAL.

The module curses defines the following functions:

initscr()
Initialize the library. Returns a WindowObject which represents the whole screen.

endwin()
De-initialize the library, and return terminal to normal status.

isendwin()
Returns true if endwin() has been called.

doupdate ()
Update the screen.

newwin([nlines, ncols,] begin_y, begin_x)
Return a new window, whose left-upper corner is at (begin_y, begin_z), and whose height /width
is nlines /ncols.
By default, the window will extend from the specified position to the lower right corner of the
screen.

beep()
Emit a short sound.

flash()
Flash the screen.

ungetch(ch)
Push ch so the next getch() will return it; ch is an integer specifying the character to be pushed.
Note: only one ch can be pushed before getch() is called.

flushinp()
Flush all input buffers.

cbreak()
Enter cbreak mode.

6.12. curses — Terminal independant console handling 125

nocbreak()
Leave cbreak mode.

echo()
Enter echo mode.

noecho ()
Leave echo mode.

nl()
Enter nl mode.

nonl ()
Leave nl mode.

raw()
Enter raw mode.

noraw ()
Leave raw mode.

meta(yes)
If yes is 1, allow 8-bit characters. If yes is 0, allow only 7-bit chars.

keyname (k)
Return the name of the key numbered k.

6.12.2 Window Objects

Window objects, as returned by initscr() and newwin() above, have the following methods:

refresh()
Update the display immediately (sync actual screen with previous drawing/deleting methods).

nooutrefresh()
Mark for refresh but wait.

mvwin(new_y, new_x)
Move the window so its upper-left corner is at (new_y, new_zx).

move (new_y, new_x)
Move cursor to (new_y, new_zx).

subwin([nlines, ncols,] begin_y, begin_y)
Return a sub-window, whose upper-left corner is at (begin_y, begin_x), and whose width/height
is neols /nlines.

By default, the sub-window will extend from the specified position to the lower right corner of the
window.

addch([y, :U,] ch[, attr])
Note: A character means a C character (i.e., an ASCII code), rather then a Python character (a
string of length 1). (This note is true whenever the documentation mentions a character.)
Paint character ch at (y, z) with attributes attr, overwriting any character previously painter
at that location. By default, the character position and attributes are the current settings for the
window object.

insch([y, x,] ch[, attr])
Paint character ch at (y, z) with attributes attr, moving the line from position z right by one
character.

delch([m, y])
Delete any character at (y, x).

echochar(ch[, attr])
Add character ch with attribute attr, and immediately call refresh.

126 Chapter 6. Generic Operating System Services

addstr([y, x,] str[, attr])
Paint string str at (y, x) with attributes atir, overwriting anything previously on the display.

attron(attr)
Turn on attribute attr.

attroff (attr)
Turn off attribute attr.

setattr (attr)
Set the current attributes to attr.

standend ()
Turn off all attributes.

standout ()
Turn on attribute A_STANDOUT.

border([ls[, rs[, ts[, bs[, tl[, tr[, bl[, br””””)

Draw a border around the edges of the window. Each parameter specifies the character to use for
a specific part of the border; see the table below for more details. The characters must be specified
as integers; using one-character strings will cause TypeError to be raised.

Note: A 0 value for any parameter will cause the default character to be used for that parameter.
Keyword parameters can not be used. The defaults are listed in this table:

Parameter | Description Default value
ls Left side ACS_VLINE
rSs Right side ACS_VLINE
ts Top ACS_HLINE
bs Bottom ACS_HLINE
tl Upper-left corner ACS_ULCORNER
tr Upper-right corner ACS_URCORNER
bl Bottom-left corner ACS_BLCORNER
br Bottom-right corner | ACS_BRCORNER

box([vertch, horch])
Similar to border (), but both Ils and rs are vertch and both ts and bs are horch. The default
corner characters are always used by this function.

hline([y, x,] ch, n)
Display a horizontal line starting at (y, z) with length n consisting of the character ch.

vline([y, a:,] ch, n)
Display a vertical line starting at (y, z) with length n consisting of the character ch.

erase()
Clear the screen.

deletln()
Delete the line under the cursor. All following lines are moved up by 1 line.

insertln()
Insert a blank line under the cursor. All following lines are moved down by 1 line.

getyx ()
Return a tuple (y, z) of current cursor position.

getbegyx ()
Return a tuple (y, z) of co-ordinates of upper-left corner.

getmaxyx ()
Return a tuple (y, z) of the height and width of the window.

clear()
Like erase (), but also causes the whole screen to be repainted upon next call to refresh().

clrtobot ()

6.12. curses — Terminal independant console handling 127

Erase from cursor to the end of the screen: all lines below the cursor are deleted, and then the
equivalent of clrtoeol() is performed.

clrtoeol()
Erase from cursor to the end of the line.

scroll([lines =1])
Scroll the screen upward by lines lines.

touchwin()
Pretend the whole window has been changed, for purposes of drawing optimizations.

touchline (start, count)
Pretend count lines have been changed, starting with line start.

getch([l’, y])
Get a character. Note that the integer returned does not have to be in AscII range: function keys,
keypad keys and so on return numbers higher then 256. In no-delay mode, an exception is raised
if there is no input.

getstr([x, y])
Read a string from the user, with primitive line editing capacity.

inch([:ﬂ, y])
Return the character at the given position in the window. The bottom 8 bits are the character
proper, and upper bits are the attributes.

clearok(yes)
If yes is 1, the next call to refresh() will clear the screen completely.

idlok (yes)
If called with yes equal to 1, curses will try and use hardware line editing facilities. Otherwise,
line insertion/deletion are disabled.

leaveok (yes)
If yes is 1, cursor is left where it is, instead of being at “cursor position.” This reduces cursor
movement where possible. If possible it will be made invisible.

If yes is 0, cursor will always be at “cursor position” after an update.

setscrreg(top, bottom)
Set the scrolling region from line top to line bottom. All scrolling actions will take place in this
region.

keypad (yes)
If yes is 1, escape sequences generated by some keys (keypad, function keys) will be interpreted by
curses.

If yes is 0, escape sequences will be left as is in the input stream.

nodelay (yes)
If yes is 1, getch() will be non-blocking.

notimeout (yes)
If yes is 1, escape sequences will not be timed out.

If yes is 0, after a few milliseconds, an escape sequence will not be interpreted, and will be left in
the input stream as is.

6.13 getopt — Parser for command line options.

This module helps scripts to parse the command line arguments in sys.argv. It supports the same
conventions as the UNIX getopt () function (including the special meanings of arguments of the form ‘-’
and ‘--’). Long options similar to those supported by GNU software may be used as well via an optional
third argument. This module provides a single function and an exception:

128 Chapter 6. Generic Operating System Services

getopt (args, options [, long_options])

Parses command line options and parameter list. args is the argument list to be parsed, without
the leading reference to the running program. Typically, this means ‘sys.argv[1:]’. options is the
string of option letters that the script wants to recognize, with options that require an argument
followed by a colon (i.e., the same format that UNIX getopt () uses). If specified, long_options is
a list of strings with the names of the long options which should be supported. The leading >--"
characters should not be included in the option name. Options which require an argument should
be followed by an equal sign (’=?).

The return value consists of two elements: the first is a list of (option, wvalue) pairs; the second is
the list of program arguments left after the option list was stripped (this is a trailing slice of the first
argument). Each option-and-value pair returned has the option as its first element, prefixed with
a hyphen for short options (e.g., ?-x’) or two hyphens for long options (e.g., >~-long-option’),
and the option argument as its second element, or an empty string if the option has no argument.
The options occur in the list in the same order in which they were found, thus allowing multiple
occurrences. Long and short options may be mixed.

error
This is raised when an unrecognized option is found in the argument list or when an option requiring
an argument is given none. The argument to the exception is a string indicating the cause of the

error. For long options, an argument given to an option which does not require one will also cause
this exception to be raised.

An example using only UNIX style options:

>>> import getopt, string

>>> args = string.split(’-a -b -cfoo -d bar al a2’)
>>> args

[)_al’ J_b)’)_Cfoo)’ J_di,)bar)’ Jali,)az)]

>>> optlist, args = getopt.getopt(args, ’abc:d:’)

>>> optlist

[(J_a)’)J)’ ()_bi, 77)’ (,_C’,)foof)’ ()_d)’ 7bar2)]
>>> args

[’a1’, ’a2’]

>>>

Using long option names is equally easy:

>>> s = ’--condition=foo --testing --output-file abc.def -x al a2’

>>> args = string.split(s)

>>> args

[’--condition=foo’, ’--testing’, ’--output-file’, ’abc.def’, ’-x’, ’al’, ’a2’]

>>> optlist, args = getopt.getopt(args, ’x’, [

e >condition=’, ’output-file=’, ’testing’])

>>> optlist

[(’--condition’, ’foo’), (’--testing’, ’’), (’--output-file’, ’abc.def’), (’-x’,
)7)]

>>> args

[’a1’, ’a2’]

>>>

6.14 tempfile — Generate temporary file names

This module generates temporary file names. It is not UNIX specific, but it may require some help on
non-UNIX systems.

Note: the modules does not create temporary files, nor does it automatically remove them when the

6.14. tempfile — Generate temporary file names 129

current process exits or dies.
The module defines a single user-callable function:

mktemp ()
Return a unique temporary filename. This is an absolute pathname of a file that does not exist at
the time the call is made. No two calls will return the same filename.

The module uses two global variables that tell it how to construct a temporary name. The caller may
assign values to them; by default they are initialized at the first call to mktemp().

tempdir
When set to a value other than None, this variable defines the directory in which filenames returned
by mktemp() reside. The default is taken from the environment variable $STMPDIR; if this is not
set, either ‘/usr/tmp’ is used (on UNIX), or the current working directory (all other systems). No
check is made to see whether its value is valid.

template
When set to a value other than None, this variable defines the prefix of the final component of the
filenames returned by mktemp(). A string of decimal digits is added to generate unique filenames.
The default is either ‘@pid.” where pid is the current process ID (on UNIX), or ‘tmp’ (all other
systems).

Warning: if a UNIX process uses mktemp (), then calls fork() and both parent and child continue to
use mktemp (), the processes will generate conflicting temporary names. To resolve this, the child process
should assign None to template, to force recomputing the default on the next call to mktemp ().

6.15 errno — Standard errno system symbols.

This module makes available standard errno system symbols. The value of each symbol is the correspond-
ing integer value. The names and descriptions are borrowed from ‘linux/include/errno.h’; which should be
pretty all-inclusive.

errorcode
Dictionary providing a mapping from the errno value to the string name in the underlying system.
For instance, errno.errorcode [errno.EPERM] maps to >EPERM’.

To translate a numeric error code to an error message, use os.strerror().

Of the following list, symbols that are not used on the current platform are not defined by the module.
Symbols available can include:

EPERM
Operation not permitted

ENOENT
No such file or directory

ESRCH
No such process

EINTR
Interrupted system call

EIO
I/0O error

ENXIO
No such device or address

E2BIG
Arg list too long

ENOEXEC
Exec format error

130 Chapter 6. Generic Operating System Services

EBADF
Bad file number

ECHILD
No child processes

EAGAIN
Try again

ENOMEM
Out of memory

EACCES
Permission denied

EFAULT
Bad address

ENOTBLK
Block device required

EBUSY
Device or resource busy

EEXIST
File exists

EXDEV
Cross-device link

ENODEV
No such device

ENOTDIR
Not a directory

EISDIR
Is a directory

EINVAL
Invalid argument

ENFILE
File table overflow

EMFILE
Too many open files

ENOTTY
Not a typewriter

ETXTBSY
Text file busy

EFBIG
File too large

ENOSPC
No space left on device

ESPIPE
Illegal seek

EROFS
Read-only file system

EMLINK
Too many links

EPIPE

6.15. errno — Standard errno system symbols.

131

Broken pipe

EDOM
Math argument out of domain of func

ERANGE
Math result not representable

EDEADLK
Resource deadlock would occur

ENAMETOOLONG
File name too long

ENOLCK
No record locks available

ENOSYS
Function not implemented

ENOTEMPTY
Directory not empty

ELOQOP
Too many symbolic links encountered

EWOULDBLOCK
Operation would block

ENOMSG
No message of desired type

EIDRM
Identifier removed

ECHRNG
Channel number out of range

EL2NSYNC
Level 2 not synchronized

EL3HLT
Level 3 halted

EL3RST
Level 3 reset

ELNRNG
Link number out of range

EUNATCH
Protocol driver not attached

ENOCSI
No CSI structure available

EL2HLT
Level 2 halted

EBADE
Invalid exchange

EBADR
Invalid request descriptor

EXFULL
Exchange full

ENOANO
No anode

132 Chapter 6.

Generic Operating System Services

EBADRQC
Invalid request code

EBADSLT

Invalid slot
EDEADLOCK

File locking deadlock error
EBFONT

Bad font file format
ENOSTR

Device not a stream
ENODATA

No data available
ETIME

Timer expired
ENOSR

Out of streams resources
ENONET

Machine is not