
Python/C API Reference Manual
Release 1.5.2

Guido van Rossum

March 22, 2000

Corporation for National Research Initiatives
1895 Preston White Drive, Reston, VA 20191, USA

E-mail: guido@python.org

Copyright c© 1991-1995 by Stichting Mathematisch Centrum, Amsterdam, The Netherlands.

All Rights Reserved

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and
without fee is hereby granted, provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in supporting documentation, and that the
names of Stichting Mathematisch Centrum or CWI or Corporation for National Research Initiatives or
CNRI not be used in advertising or publicity pertaining to distribution of the software without specific,
written prior permission.

While CWI is the initial source for this software, a modified version is made available by the Corporation
for National Research Initiatives (CNRI) at the Internet address ftp://ftp.python.org.

STICHTING MATHEMATISCH CENTRUM AND CNRI DISCLAIM ALL WARRANTIES WITH RE-
GARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS, IN NO EVENT SHALL STICHTING MATHEMATISCH CENTRUM OR CNRI
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAM-
AGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN
AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Abstract

This manual documents the API used by C and C++ programmers who want to write extension modules
or embed Python. It is a companion to Extending and Embedding the Python Interpreter, which describes
the general principles of extension writing but does not document the API functions in detail.

Warning: The current version of this document is incomplete. I hope that it is nevertheless useful. I
will continue to work on it, and release new versions from time to time, independent from Python source
code releases.

CONTENTS

1 Introduction 1
1.1 Include Files . 1
1.2 Objects, Types and Reference Counts . 2
1.3 Exceptions . 5
1.4 Embedding Python . 7

2 The Very High Level Layer 9

3 Reference Counting 11

4 Exception Handling 13
4.1 Standard Exceptions . 15
4.2 Deprecation of String Exceptions . 16

5 Utilities 17
5.1 OS Utilities . 17
5.2 Process Control . 17
5.3 Importing Modules . 17

6 Abstract Objects Layer 21
6.1 Object Protocol . 21
6.2 Number Protocol . 23
6.3 Sequence Protocol . 24
6.4 Mapping Protocol . 25

7 Concrete Objects Layer 27
7.1 Fundamental Objects . 27
7.2 Sequence Objects . 27
7.3 Mapping Objects . 32
7.4 Numeric Objects . 33
7.5 Other Objects . 35

8 Initialization, Finalization, and Threads 39
8.1 Thread State and the Global Interpreter Lock . 42

9 Memory Management 47
9.1 Overview . 47
9.2 Memory Interface . 48
9.3 Examples . 48

10 Defining New Object Types 51
10.1 Common Object Structures . 51
10.2 Mapping Object Structures . 51
10.3 Number Object Structures . 51

i

10.4 Sequence Object Structures . 52
10.5 Buffer Object Structures . 52

Index 55

ii

CHAPTER

ONE

Introduction

The Application Programmer’s Interface to Python gives C and C++ programmers access to the Python
interpreter at a variety of levels. The API is equally usable from C++, but for brevity it is generally
referred to as the Python/C API. There are two fundamentally different reasons for using the Python/C
API. The first reason is to write extension modules for specific purposes; these are C modules that extend
the Python interpreter. This is probably the most common use. The second reason is to use Python as
a component in a larger application; this technique is generally referred to as embedding Python in an
application.

Writing an extension module is a relatively well-understood process, where a “cookbook” approach
works well. There are several tools that automate the process to some extent. While people have
embedded Python in other applications since its early existence, the process of embedding Python is less
straightforward that writing an extension.

Many API functions are useful independent of whether you’re embedding or extending Python; moreover,
most applications that embed Python will need to provide a custom extension as well, so it’s probably
a good idea to become familiar with writing an extension before attempting to embed Python in a real
application.

Python 1.5 introduces a number of new API functions as well as some changes to the build process that
make embedding much simpler. This manual describes the 1.5.2 state of affairs.

1.1 Include Files

All function, type and macro definitions needed to use the Python/C API are included in your code by
the following line:

#include "Python.h"

This implies inclusion of the following standard headers: <stdio.h>, <string.h>, <errno.h>, and
<stdlib.h> (if available).

All user visible names defined by Python.h (except those defined by the included standard headers)
have one of the prefixes ‘Py’ or ‘ Py’. Names beginning with ‘ Py’ are for internal use by the Python
implementation and should not be used by extension writers. Structure member names do not have a
reserved prefix.

Important: user code should never define names that begin with ‘Py’ or ‘ Py’. This confuses the reader,
and jeopardizes the portability of the user code to future Python versions, which may define additional
names beginning with one of these prefixes.

The header files are typically installed with Python. On Unix, these are located in the di-
rectories ‘$prefix/include/pythonversion/’ and ‘$exec prefix/include/pythonversion/’, where $prefix and
$exec prefix are defined by the corresponding parameters to Python’s configure script and version
is sys.version[:3]. On Windows, the headers are installed in ‘$prefix/include’, where $prefix is the
installation directory specified to the installer.

1

To include the headers, place both directories (if different) on your compiler’s search path for includes.
Do not place the parent directories on the search path and then use ‘#include <python1.5/Python.h>’;
this will break on multi-platform builds since the platform independent headers under $prefix include
the platform specific headers from $exec prefix.

1.2 Objects, Types and Reference Counts

Most Python/C API functions have one or more arguments as well as a return value of type PyObject*.
This type is a pointer to an opaque data type representing an arbitrary Python object. Since all Python
object types are treated the same way by the Python language in most situations (e.g., assignments,
scope rules, and argument passing), it is only fitting that they should be represented by a single C type.
Almost all Python objects live on the heap: you never declare an automatic or static variable of type
PyObject, only pointer variables of type PyObject* can be declared. The sole exception are the type
objects; since these must never be deallocated, they are typically static PyTypeObject objects.

All Python objects (even Python integers) have a type and a reference count. An object’s type determines
what kind of object it is (e.g., an integer, a list, or a user-defined function; there are many more as
explained in the Python Reference Manual). For each of the well-known types there is a macro to check
whether an object is of that type; for instance, ‘PyList Check(a)’ is true if (and only if) the object
pointed to by a is a Python list.

1.2.1 Reference Counts

The reference count is important because today’s computers have a finite (and often severely limited)
memory size; it counts how many different places there are that have a reference to an object. Such a
place could be another object, or a global (or static) C variable, or a local variable in some C function.
When an object’s reference count becomes zero, the object is deallocated. If it contains references to
other objects, their reference count is decremented. Those other objects may be deallocated in turn, if
this decrement makes their reference count become zero, and so on. (There’s an obvious problem with
objects that reference each other here; for now, the solution is “don’t do that.”)

Reference counts are always manipulated explicitly. The normal way is to use the macro Py INCREF()
to increment an object’s reference count by one, and Py DECREF() to decrement it by one. The
Py DECREF() macro is considerably more complex than the incref one, since it must check whether
the reference count becomes zero and then cause the object’s deallocator to be called. The deallocator
is a function pointer contained in the object’s type structure. The type-specific deallocator takes care of
decrementing the reference counts for other objects contained in the object if this is a compound object
type, such as a list, as well as performing any additional finalization that’s needed. There’s no chance
that the reference count can overflow; at least as many bits are used to hold the reference count as there
are distinct memory locations in virtual memory (assuming sizeof(long) >= sizeof(char*)). Thus,
the reference count increment is a simple operation.

It is not necessary to increment an object’s reference count for every local variable that contains a pointer
to an object. In theory, the object’s reference count goes up by one when the variable is made to point
to it and it goes down by one when the variable goes out of scope. However, these two cancel each other
out, so at the end the reference count hasn’t changed. The only real reason to use the reference count
is to prevent the object from being deallocated as long as our variable is pointing to it. If we know that
there is at least one other reference to the object that lives at least as long as our variable, there is no
need to increment the reference count temporarily. An important situation where this arises is in objects
that are passed as arguments to C functions in an extension module that are called from Python; the
call mechanism guarantees to hold a reference to every argument for the duration of the call.

However, a common pitfall is to extract an object from a list and hold on to it for a while without
incrementing its reference count. Some other operation might conceivably remove the object from the
list, decrementing its reference count and possible deallocating it. The real danger is that innocent-
looking operations may invoke arbitrary Python code which could do this; there is a code path which
allows control to flow back to the user from a Py DECREF(), so almost any operation is potentially
dangerous.

2 Chapter 1. Introduction

A safe approach is to always use the generic operations (functions whose name begins with ‘PyObject ’,
‘PyNumber ’, ‘PySequence ’ or ‘PyMapping ’). These operations always increment the reference count
of the object they return. This leaves the caller with the responsibility to call Py DECREF() when they
are done with the result; this soon becomes second nature.

Reference Count Details

The reference count behavior of functions in the Python/C API is best explained in terms of ownership
of references. Note that we talk of owning references, never of owning objects; objects are always shared!
When a function owns a reference, it has to dispose of it properly — either by passing ownership on
(usually to its caller) or by calling Py DECREF() or Py XDECREF(). When a function passes ownership of
a reference on to its caller, the caller is said to receive a new reference. When no ownership is transferred,
the caller is said to borrow the reference. Nothing needs to be done for a borrowed reference.

Conversely, when calling a function passes it a reference to an object, there are two possibilities: the
function steals a reference to the object, or it does not. Few functions steal references; the two notable
exceptions are PyList SetItem() and PyTuple SetItem(), which steal a reference to the item (but
not to the tuple or list into which the item is put!). These functions were designed to steal a reference
because of a common idiom for populating a tuple or list with newly created objects; for example, the
code to create the tuple (1, 2, "three") could look like this (forgetting about error handling for the
moment; a better way to code this is shown below):

PyObject *t;

t = PyTuple_New(3);

PyTuple_SetItem(t, 0, PyInt_FromLong(1L));

PyTuple_SetItem(t, 1, PyInt_FromLong(2L));

PyTuple_SetItem(t, 2, PyString_FromString("three"));

Incidentally, PyTuple SetItem() is the only way to set tuple items; PySequence SetItem() and
PyObject SetItem() refuse to do this since tuples are an immutable data type. You should only
use PyTuple SetItem() for tuples that you are creating yourself.

Equivalent code for populating a list can be written using PyList New() and PyList SetItem(). Such
code can also use PySequence SetItem(); this illustrates the difference between the two (the extra
Py DECREF() calls):

PyObject *l, *x;

l = PyList_New(3);

x = PyInt_FromLong(1L);

PySequence_SetItem(l, 0, x); Py_DECREF(x);

x = PyInt_FromLong(2L);

PySequence_SetItem(l, 1, x); Py_DECREF(x);

x = PyString_FromString("three");

PySequence_SetItem(l, 2, x); Py_DECREF(x);

You might find it strange that the “recommended” approach takes more code. However, in practice,
you will rarely use these ways of creating and populating a tuple or list. There’s a generic function,
Py BuildValue(), that can create most common objects from C values, directed by a format string.
For example, the above two blocks of code could be replaced by the following (which also takes care of
the error checking):

1.2. Objects, Types and Reference Counts 3

PyObject *t, *l;

t = Py_BuildValue("(iis)", 1, 2, "three");

l = Py_BuildValue("[iis]", 1, 2, "three");

It is much more common to use PyObject SetItem() and friends with items whose references you are
only borrowing, like arguments that were passed in to the function you are writing. In that case, their
behaviour regarding reference counts is much saner, since you don’t have to increment a reference count
so you can give a reference away (“have it be stolen”). For example, this function sets all items of a list
(actually, any mutable sequence) to a given item:

int set_all(PyObject *target, PyObject *item)

{

int i, n;

n = PyObject_Length(target);

if (n < 0)

return -1;

for (i = 0; i < n; i++) {

if (PyObject_SetItem(target, i, item) < 0)

return -1;

}

return 0;

}

The situation is slightly different for function return values. While passing a reference to most functions
does not change your ownership responsibilities for that reference, many functions that return a referece
to an object give you ownership of the reference. The reason is simple: in many cases, the returned
object is created on the fly, and the reference you get is the only reference to the object. Therefore, the
generic functions that return object references, like PyObject GetItem() and PySequence GetItem(),
always return a new reference (i.e., the caller becomes the owner of the reference).

It is important to realize that whether you own a reference returned by a function depends on which func-
tion you call only — the plumage (i.e., the type of the type of the object passed as an argument to the func-
tion) doesn’t enter into it! Thus, if you extract an item from a list using PyList GetItem(), you don’t
own the reference — but if you obtain the same item from the same list using PySequence GetItem()
(which happens to take exactly the same arguments), you do own a reference to the returned object.

Here is an example of how you could write a function that computes the sum of the items in a list of
integers; once using PyList GetItem(), and once using PySequence GetItem().

long sum_list(PyObject *list)

{

int i, n;

long total = 0;

PyObject *item;

n = PyList_Size(list);

if (n < 0)

return -1; /* Not a list */

for (i = 0; i < n; i++) {

item = PyList_GetItem(list, i); /* Can’t fail */

if (!PyInt_Check(item)) continue; /* Skip non-integers */

total += PyInt_AsLong(item);

}

return total;

}

4 Chapter 1. Introduction

long sum_sequence(PyObject *sequence)

{

int i, n;

long total = 0;

PyObject *item;

n = PySequence_Length(sequence);

if (n < 0)

return -1; /* Has no length */

for (i = 0; i < n; i++) {

item = PySequence_GetItem(sequence, i);

if (item == NULL)

return -1; /* Not a sequence, or other failure */

if (PyInt_Check(item))

total += PyInt_AsLong(item);

Py_DECREF(item); /* Discard reference ownership */

}

return total;

}

1.2.2 Types

There are few other data types that play a significant role in the Python/C API; most are simple C types
such as int, long, double and char*. A few structure types are used to describe static tables used to
list the functions exported by a module or the data attributes of a new object type, and another is used
to describe the value of a complex number. These will be discussed together with the functions that use
them.

1.3 Exceptions

The Python programmer only needs to deal with exceptions if specific error handling is required; un-
handled exceptions are automatically propagated to the caller, then to the caller’s caller, and so on,
until they reach the top-level interpreter, where they are reported to the user accompanied by a stack
traceback.

For C programmers, however, error checking always has to be explicit. All functions in the Python/C
API can raise exceptions, unless an explicit claim is made otherwise in a function’s documentation. In
general, when a function encounters an error, it sets an exception, discards any object references that it
owns, and returns an error indicator — usually NULL or -1. A few functions return a Boolean true/false
result, with false indicating an error. Very few functions return no explicit error indicator or have an
ambiguous return value, and require explicit testing for errors with PyErr Occurred().

Exception state is maintained in per-thread storage (this is equivalent to using global storage in an
unthreaded application). A thread can be in one of two states: an exception has occurred, or not.
The function PyErr Occurred() can be used to check for this: it returns a borrowed reference to the
exception type object when an exception has occurred, and NULL otherwise. There are a number of
functions to set the exception state: PyErr SetString() is the most common (though not the most
general) function to set the exception state, and PyErr Clear() clears the exception state.

The full exception state consists of three objects (all of which can be NULL): the exception type, the
corresponding exception value, and the traceback. These have the same meanings as the Python
objects sys.exc type, sys.exc value, and sys.exc traceback; however, they are not the same: the
Python objects represent the last exception being handled by a Python try . . . except statement, while
the C level exception state only exists while an exception is being passed on between C functions until it
reaches the Python bytecode interpreter’s main loop, which takes care of transferring it to sys.exc type
and friends.

Note that starting with Python 1.5, the preferred, thread-safe way to access the exception state from

1.3. Exceptions 5

Python code is to call the function sys.exc info(), which returns the per-thread exception state for
Python code. Also, the semantics of both ways to access the exception state have changed so that a
function which catches an exception will save and restore its thread’s exception state so as to preserve
the exception state of its caller. This prevents common bugs in exception handling code caused by an
innocent-looking function overwriting the exception being handled; it also reduces the often unwanted
lifetime extension for objects that are referenced by the stack frames in the traceback.

As a general principle, a function that calls another function to perform some task should check whether
the called function raised an exception, and if so, pass the exception state on to its caller. It should
discard any object references that it owns, and return an error indicator, but it should not set another
exception — that would overwrite the exception that was just raised, and lose important information
about the exact cause of the error.

A simple example of detecting exceptions and passing them on is shown in the sum sequence() example
above. It so happens that that example doesn’t need to clean up any owned references when it detects
an error. The following example function shows some error cleanup. First, to remind you why you like
Python, we show the equivalent Python code:

def incr_item(dict, key):

try:

item = dict[key]

except KeyError:

item = 0

return item + 1

Here is the corresponding C code, in all its glory:

6 Chapter 1. Introduction

int incr_item(PyObject *dict, PyObject *key)

{

/* Objects all initialized to NULL for Py_XDECREF */

PyObject *item = NULL, *const_one = NULL, *incremented_item = NULL;

int rv = -1; /* Return value initialized to -1 (failure) */

item = PyObject_GetItem(dict, key);

if (item == NULL) {

/* Handle KeyError only: */

if (!PyErr_ExceptionMatches(PyExc_KeyError)) goto error;

/* Clear the error and use zero: */

PyErr_Clear();

item = PyInt_FromLong(0L);

if (item == NULL) goto error;

}

const_one = PyInt_FromLong(1L);

if (const_one == NULL) goto error;

incremented_item = PyNumber_Add(item, const_one);

if (incremented_item == NULL) goto error;

if (PyObject_SetItem(dict, key, incremented_item) < 0) goto error;

rv = 0; /* Success */

/* Continue with cleanup code */

error:

/* Cleanup code, shared by success and failure path */

/* Use Py_XDECREF() to ignore NULL references */

Py_XDECREF(item);

Py_XDECREF(const_one);

Py_XDECREF(incremented_item);

return rv; /* -1 for error, 0 for success */

}

This example represents an endorsed use of the goto statement in C! It illustrates the use of
PyErr ExceptionMatches() and PyErr Clear() to handle specific exceptions, and the use of
Py XDECREF() to dispose of owned references that may be NULL (note the ‘X’ in the name; Py DECREF()
would crash when confronted with a NULL reference). It is important that the variables used to hold
owned references are initialized to NULL for this to work; likewise, the proposed return value is initialized
to -1 (failure) and only set to success after the final call made is successful.

1.4 Embedding Python

The one important task that only embedders (as opposed to extension writers) of the Python interpreter
have to worry about is the initialization, and possibly the finalization, of the Python interpreter. Most
functionality of the interpreter can only be used after the interpreter has been initialized.

The basic initialization function is Py Initialize(). This initializes the table of loaded modules, and
creates the fundamental modules builtin , main and sys. It also initializes the module search
path (sys.path).

Py Initialize() does not set the “script argument list” (sys.argv). If this variable is needed by
Python code that will be executed later, it must be set explicitly with a call to PySys SetArgv(argc,
argv) subsequent to the call to Py Initialize().

1.4. Embedding Python 7

On most systems (in particular, on Unix and Windows, although the details are slightly different),
Py Initialize() calculates the module search path based upon its best guess for the location of the
standard Python interpreter executable, assuming that the Python library is found in a fixed location
relative to the Python interpreter executable. In particular, it looks for a directory named ‘lib/python1.5’
(replacing ‘1.5’ with the current interpreter version) relative to the parent directory where the executable
named ‘python’ is found on the shell command search path (the environment variable $PATH).

For instance, if the Python executable is found in ‘/usr/local/bin/python’, it will assume that the libraries
are in ‘/usr/local/lib/python1.5’. (In fact, this particular path is also the “fallback” location, used when no
executable file named ‘python’ is found along $PATH.) The user can override this behavior by setting the
environment variable $PYTHONHOME, or insert additional directories in front of the standard path by
setting $PYTHONPATH.

The embedding application can steer the search by calling Py SetProgramName(file) before calling
Py Initialize(). Note that $PYTHONHOME still overrides this and $PYTHONPATH is still inserted
in front of the standard path. An application that requires total control has to provide its own imple-
mentation of Py GetPath(), Py GetPrefix(), Py GetExecPrefix(), and Py GetProgramFullPath()
(all defined in ‘Modules/getpath.c’).

Sometimes, it is desirable to “uninitialize” Python. For instance, the application may want to start over
(make another call to Py Initialize()) or the application is simply done with its use of Python and
wants to free all memory allocated by Python. This can be accomplished by calling Py Finalize().
The function Py IsInitialized() returns true if Python is currently in the initialized state. More
information about these functions is given in a later chapter.

8 Chapter 1. Introduction

CHAPTER

TWO

The Very High Level Layer

The functions in this chapter will let you execute Python source code given in a file or a buffer, but they
will not let you interact in a more detailed way with the interpreter.

Several of these functions accept a start symbol from the grammar as a parameter. The available start
symbols are Py eval input, Py file input, and Py single input. These are described following
the functions which accept them as parameters.

int PyRun AnyFile(FILE *fp, char *filename)
If fp refers to a file associated with an interactive device (console or terminal input or Unix

pseudo-terminal), return the value of PyRun InteractiveLoop(), otherwise return the result of
PyRun SimpleFile(). If filename is NULL, this function uses "???" as the filename.

int PyRun SimpleString(char *command)
Executes the Python source code from command in the main module. If main does not
already exist, it is created. Returns 0 on success or -1 if an exception was raised. If there was an
error, there is no way to get the exception information.

int PyRun SimpleFile(FILE *fp, char *filename)
Similar to PyRun SimpleString(), but the Python source code is read from fp instead of an
in-memory string. filename should be the name of the file.

int PyRun InteractiveOne(FILE *fp, char *filename)

int PyRun InteractiveLoop(FILE *fp, char *filename)

struct node* PyParser SimpleParseString(char *str, int start)
Parse Python source code from str using the start token start . The result can be used to create a
code object which can be evaluated efficiently. This is useful if a code fragment must be evaluated
many times.

struct node* PyParser SimpleParseFile(FILE *fp, char *filename, int start)
Similar to PyParser SimpleParseString(), but the Python source code is read from fp instead
of an in-memory string. filename should be the name of the file.

PyObject* PyRun String(char *str, int start, PyObject *globals, PyObject *locals)
Return value: New reference.
Execute Python source code from str in the context specified by the dictionaries globals and locals.
The parameter start specifies the start token that should be used to parse the source code.

Returns the result of executing the code as a Python object, or NULL if an exception was raised.

PyObject* PyRun File(FILE *fp, char *filename, int start, PyObject *globals, PyObject *locals)
Return value: New reference.
Similar to PyRun String(), but the Python source code is read from fp instead of an in-memory
string. filename should be the name of the file.

PyObject* Py CompileString(char *str, char *filename, int start)
Return value: New reference.
Parse and compile the Python source code in str , returning the resulting code object. The start
token is given by start ; this can be used to constrain the code which can be compiled and should
be Py eval input, Py file input, or Py single input. The filename specified by filename

9

is used to construct the code object and may appear in tracebacks or SyntaxError exception
messages. This returns NULL if the code cannot be parsed or compiled.

int Py eval input
The start symbol from the Python grammar for isolated expressions; for use with
Py CompileString().

int Py file input
The start symbol from the Python grammar for sequences of statements as read from a file or other
source; for use with Py CompileString(). This is the symbol to use when compiling arbitrarily
long Python source code.

int Py single input
The start symbol from the Python grammar for a single statement; for use with
Py CompileString(). This is the symbol used for the interactive interpreter loop.

10 Chapter 2. The Very High Level Layer

CHAPTER

THREE

Reference Counting

The macros in this section are used for managing reference counts of Python objects.

void Py INCREF(PyObject *o)
Increment the reference count for object o. The object must not be NULL; if you aren’t sure that
it isn’t NULL, use Py XINCREF().

void Py XINCREF(PyObject *o)
Increment the reference count for object o. The object may be NULL, in which case the macro has
no effect.

void Py DECREF(PyObject *o)
Decrement the reference count for object o. The object must not be NULL; if you aren’t sure that it
isn’t NULL, use Py XDECREF(). If the reference count reaches zero, the object’s type’s deallocation
function (which must not be NULL) is invoked.

Warning: The deallocation function can cause arbitrary Python code to be invoked (e.g. when a
class instance with a del () method is deallocated). While exceptions in such code are not
propagated, the executed code has free access to all Python global variables. This means that any
object that is reachable from a global variable should be in a consistent state before Py DECREF()
is invoked. For example, code to delete an object from a list should copy a reference to the deleted
object in a temporary variable, update the list data structure, and then call Py DECREF() for the
temporary variable.

void Py XDECREF(PyObject *o)
Decrement the reference count for object o. The object may be NULL, in which case the macro has
no effect; otherwise the effect is the same as for Py DECREF(), and the same warning applies.

The following functions or macros are only for use within the interpreter core: Py Dealloc(),
Py ForgetReference(), Py NewReference(), as well as the global variable Py RefTotal.

11

12

CHAPTER

FOUR

Exception Handling

The functions described in this chapter will let you handle and raise Python exceptions. It is important
to understand some of the basics of Python exception handling. It works somewhat like the Unix errno
variable: there is a global indicator (per thread) of the last error that occurred. Most functions don’t
clear this on success, but will set it to indicate the cause of the error on failure. Most functions also
return an error indicator, usually NULL if they are supposed to return a pointer, or -1 if they return
an integer (exception: the PyArg Parse*() functions return 1 for success and 0 for failure). When a
function must fail because some function it called failed, it generally doesn’t set the error indicator; the
function it called already set it.

The error indicator consists of three Python objects corresponding to the Python variables
sys.exc type, sys.exc value and sys.exc traceback. API functions exist to interact with the
error indicator in various ways. There is a separate error indicator for each thread.

void PyErr Print()
Print a standard traceback to sys.stderr and clear the error indicator. Call this function only
when the error indicator is set. (Otherwise it will cause a fatal error!)

PyObject* PyErr Occurred()
Return value: Borrowed reference.
Test whether the error indicator is set. If set, return the exception type (the first argument to the
last call to one of the PyErr Set*() functions or to PyErr Restore()). If not set, return NULL.
You do not own a reference to the return value, so you do not need to Py DECREF() it. Note:
Do not compare the return value to a specific exception; use PyErr ExceptionMatches() instead,
shown below. (The comparison could easily fail since the exception may be an instance instead of
a class, in the case of a class exception, or it may the a subclass of the expected exception.)

int PyErr ExceptionMatches(PyObject *exc)
Equivalent to ‘PyErr GivenExceptionMatches(PyErr Occurred(), exc)’. This should only be
called when an exception is actually set; a memory access violation will occur if no exception has
been raised.

int PyErr GivenExceptionMatches(PyObject *given, PyObject *exc)
Return true if the given exception matches the exception in exc. If exc is a class object, this also
returns true when given is an instance of a subclass. If exc is a tuple, all exceptions in the tuple
(and recursively in subtuples) are searched for a match. If given is NULL, a memory access violation
will occur.

void PyErr NormalizeException(PyObject**exc, PyObject**val, PyObject**tb)
Under certain circumstances, the values returned by PyErr Fetch() below can be “unnormalized”,
meaning that *exc is a class object but *val is not an instance of the same class. This function can
be used to instantiate the class in that case. If the values are already normalized, nothing happens.
The delayed normalization is implemented to improve performance.

void PyErr Clear()
Clear the error indicator. If the error indicator is not set, there is no effect.

void PyErr Fetch(PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)
Retrieve the error indicator into three variables whose addresses are passed. If the error indicator

13

is not set, set all three variables to NULL. If it is set, it will be cleared and you own a reference
to each object retrieved. The value and traceback object may be NULL even when the type object
is not. Note: This function is normally only used by code that needs to handle exceptions or by
code that needs to save and restore the error indicator temporarily.

void PyErr Restore(PyObject *type, PyObject *value, PyObject *traceback)
Set the error indicator from the three objects. If the error indicator is already set, it is cleared
first. If the objects are NULL, the error indicator is cleared. Do not pass a NULL type and non-NULL
value or traceback. The exception type should be a string or class; if it is a class, the value should
be an instance of that class. Do not pass an invalid exception type or value. (Violating these rules
will cause subtle problems later.) This call takes away a reference to each object, i.e. you must
own a reference to each object before the call and after the call you no longer own these references.
(If you don’t understand this, don’t use this function. I warned you.) Note: This function is
normally only used by code that needs to save and restore the error indicator temporarily.

void PyErr SetString(PyObject *type, char *message)
This is the most common way to set the error indicator. The first argument specifies the exception
type; it is normally one of the standard exceptions, e.g. PyExc RuntimeError. You need not
increment its reference count. The second argument is an error message; it is converted to a string
object.

void PyErr SetObject(PyObject *type, PyObject *value)
This function is similar to PyErr SetString() but lets you specify an arbitrary Python object for
the “value” of the exception. You need not increment its reference count.

void PyErr SetNone(PyObject *type)
This is a shorthand for ‘PyErr SetObject(type, Py None)’.

int PyErr BadArgument()
This is a shorthand for ‘PyErr SetString(PyExc TypeError, message)’, where message indi-
cates that a built-in operation was invoked with an illegal argument. It is mostly for internal
use.

PyObject* PyErr NoMemory()
Return value: Borrowed reference.
This is a shorthand for ‘PyErr SetNone(PyExc MemoryError)’; it returns NULL so an object allo-
cation function can write ‘return PyErr NoMemory();’ when it runs out of memory.

PyObject* PyErr SetFromErrno(PyObject *type)
Return value: Borrowed reference.
This is a convenience function to raise an exception when a C library function has returned an error
and set the C variable errno. It constructs a tuple object whose first item is the integer errno
value and whose second item is the corresponding error message (gotten from strerror()), and
then calls ‘PyErr SetObject(type, object)’. On Unix, when the errno value is EINTR, indicating
an interrupted system call, this calls PyErr CheckSignals(), and if that set the error indicator,
leaves it set to that. The function always returns NULL, so a wrapper function around a system call
can write ‘return PyErr SetFromErrno();’ when the system call returns an error.

void PyErr BadInternalCall()
This is a shorthand for ‘PyErr SetString(PyExc TypeError, message)’, where message indi-
cates that an internal operation (e.g. a Python/C API function) was invoked with an illegal
argument. It is mostly for internal use.

int PyErr CheckSignals()
This function interacts with Python’s signal handling. It checks whether a signal has been sent
to the processes and if so, invokes the corresponding signal handler. If the signal module is
supported, this can invoke a signal handler written in Python. In all cases, the default effect for
SIGINT is to raise the KeyboardInterrupt exception. If an exception is raised the error indicator
is set and the function returns 1; otherwise the function returns 0. The error indicator may or may
not be cleared if it was previously set.

void PyErr SetInterrupt()
This function is obsolete. It simulates the effect of a SIGINT signal arriving — the next time

14 Chapter 4. Exception Handling

PyErr CheckSignals() is called, KeyboardInterrupt will be raised. It may be called without
holding the interpreter lock.

PyObject* PyErr NewException(char *name, PyObject *base, PyObject *dict)
Return value: New reference.
This utility function creates and returns a new exception object. The name argument must be the
name of the new exception, a C string of the form module.class. The base and dict arguments
are normally NULL. Normally, this creates a class object derived from the root for all exceptions,
the built-in name Exception (accessible in C as PyExc Exception). In this case the module
attribute of the new class is set to the first part (up to the last dot) of the name argument, and the
class name is set to the last part (after the last dot). When the user has specified the -X command
line option to use string exceptions, for backward compatibility, or when the base argument is not
a class object (and not NULL), a string object created from the entire name argument is returned.
The base argument can be used to specify an alternate base class. The dict argument can be used
to specify a dictionary of class variables and methods.

4.1 Standard Exceptions

All standard Python exceptions are available as global variables whose names are ‘PyExc ’ followed by
the Python exception name. These have the type PyObject*; they are all either class objects or string
objects, depending on the use of the -X option to the interpreter. For completeness, here are all the
variables:

C Name Python Name Notes
PyExc Exception Exception (1)
PyExc StandardError StandardError (1)
PyExc ArithmeticError ArithmeticError (1)
PyExc LookupError LookupError (1)
PyExc AssertionError AssertionError
PyExc AttributeError AttributeError
PyExc EOFError EOFError
PyExc EnvironmentError EnvironmentError (1)
PyExc FloatingPointError FloatingPointError
PyExc IOError IOError
PyExc ImportError ImportError
PyExc IndexError IndexError
PyExc KeyError KeyError
PyExc KeyboardInterrupt KeyboardInterrupt
PyExc MemoryError MemoryError
PyExc NameError NameError
PyExc NotImplementedError NotImplementedError
PyExc OSError OSError
PyExc OverflowError OverflowError
PyExc RuntimeError RuntimeError
PyExc SyntaxError SyntaxError
PyExc SystemError SystemError
PyExc SystemExit SystemExit
PyExc TypeError TypeError
PyExc ValueError ValueError
PyExc ZeroDivisionError ZeroDivisionError

Note:

(1) This is a base class for other standard exceptions. If the -X interpreter option is used, these will be
tuples containing the string exceptions which would have otherwise been subclasses.

4.1. Standard Exceptions 15

4.2 Deprecation of String Exceptions

The -X command-line option will be removed in Python 1.6. All exceptions built into Python or provided
in the standard library will be classes derived from Exception.

String exceptions will still be supported in the interpreter to allow existing code to run unmodified, but
this will also change in a future release.

16 Chapter 4. Exception Handling

CHAPTER

FIVE

Utilities

The functions in this chapter perform various utility tasks, such as parsing function arguments and
constructing Python values from C values.

5.1 OS Utilities

int Py FdIsInteractive(FILE *fp, char *filename)
Return true (nonzero) if the standard I/O file fp with name filename is deemed interactive. This is
the case for files for which ‘isatty(fileno(fp))’ is true. If the global flag Py InteractiveFlag
is true, this function also returns true if the name pointer is NULL or if the name is equal to one of
the strings "<stdin>" or "???".

long PyOS GetLastModificationTime(char *filename)
Return the time of last modification of the file filename. The result is encoded in the same way as
the timestamp returned by the standard C library function time().

5.2 Process Control

void Py FatalError(char *message)
Print a fatal error message and kill the process. No cleanup is performed. This function should
only be invoked when a condition is detected that would make it dangerous to continue using the
Python interpreter; e.g., when the object administration appears to be corrupted. On Unix, the
standard C library function abort() is called which will attempt to produce a ‘core’ file.

void Py Exit(int status)
Exit the current process. This calls Py Finalize() and then calls the standard C library function
exit(status).

int Py AtExit(void (*func) ())
Register a cleanup function to be called by Py Finalize(). The cleanup function will be called
with no arguments and should return no value. At most 32 cleanup functions can be registered.
When the registration is successful, Py AtExit() returns 0; on failure, it returns -1. The cleanup
function registered last is called first. Each cleanup function will be called at most once. Since
Python’s internal finallization will have completed before the cleanup function, no Python APIs
should be called by func.

5.3 Importing Modules

PyObject* PyImport ImportModule(char *name)
Return value: New reference.
This is a simplified interface to PyImport ImportModuleEx() below, leaving the globals and locals
arguments set to NULL. When the name argument contains a dot (i.e., when it specifies a sub-
module of a package), the fromlist argument is set to the list [’*’] so that the return value is

17

the named module rather than the top-level package containing it as would otherwise be the case.
(Unfortunately, this has an additional side effect when name in fact specifies a subpackage instead
of a submodule: the submodules specified in the package’s all variable are loaded.) Return
a new reference to the imported module, or NULL with an exception set on failure (the module may
still be created in this case — examine sys.modules to find out).

PyObject* PyImport ImportModuleEx(char *name, PyObject *globals, PyObject *locals, PyObject *fromlist)
Return value: New reference.
Import a module. This is best described by referring to the built-in Python function

import (), as the standard import () function calls this function directly.

The return value is a new reference to the imported module or top-level package, or NULL with an
exception set on failure (the module may still be created in this case). Like for import (),
the return value when a submodule of a package was requested is normally the top-level package,
unless a non-empty fromlist was given.

PyObject* PyImport Import(PyObject *name)
Return value: New reference.
This is a higher-level interface that calls the current “import hook function”. It invokes the

import () function from the builtins of the current globals. This means that the
import is done using whatever import hooks are installed in the current environment, e.g. by
rexec or ihooks.

PyObject* PyImport ReloadModule(PyObject *m)
Return value: New reference.
Reload a module. This is best described by referring to the built-in Python function reload(), as
the standard reload() function calls this function directly. Return a new reference to the reloaded
module, or NULL with an exception set on failure (the module still exists in this case).

PyObject* PyImport AddModule(char *name)
Return value: Borrowed reference.
Return the module object corresponding to a module name. The name argument may be of
the form package.module). First check the modules dictionary if there’s one there, and if not,
create a new one and insert in in the modules dictionary. Warning: this function does not load
or import the module; if the module wasn’t already loaded, you will get an empty module object.
Use PyImport ImportModule() or one of its variants to import a module. Return NULL with an
exception set on failure.

PyObject* PyImport ExecCodeModule(char *name, PyObject *co)
Return value: New reference.
Given a module name (possibly of the form package.module) and a code object read from a Python
bytecode file or obtained from the built-in function compile(), load the module. Return a new
reference to the module object, or NULL with an exception set if an error occurred (the module may
still be created in this case). (This function would reload the module if it was already imported.)

long PyImport GetMagicNumber()
Return the magic number for Python bytecode files (a.k.a. ‘.pyc’ and ‘.pyo’ files). The magic number
should be present in the first four bytes of the bytecode file, in little-endian byte order.

PyObject* PyImport GetModuleDict()
Return value: Borrowed reference.
Return the dictionary used for the module administration (a.k.a. sys.modules). Note that this is
a per-interpreter variable.

void PyImport Init()
Initialize the import mechanism. For internal use only.

void PyImport Cleanup()
Empty the module table. For internal use only.

void PyImport Fini()
Finalize the import mechanism. For internal use only.

PyObject* PyImport FindExtension(char *, char *)
For internal use only.

18 Chapter 5. Utilities

PyObject* PyImport FixupExtension(char *, char *)
For internal use only.

int PyImport ImportFrozenModule(char *)
Load a frozen module. Return 1 for success, 0 if the module is not found, and -1 with an ex-
ception set if the initialization failed. To access the imported module on a successful load, use
PyImport ImportModule(). (Note the misnomer — this function would reload the module if it
was already imported.)

struct frozen
This is the structure type definition for frozen module descriptors, as generated by the freeze
utility (see ‘Tools/freeze/’ in the Python source distribution). Its definition is:

struct _frozen {

char *name;

unsigned char *code;

int size;

};

struct frozen* PyImport FrozenModules
This pointer is initialized to point to an array of struct frozen records, terminated by one
whose members are all NULL or zero. When a frozen module is imported, it is searched in this
table. Third-party code could play tricks with this to provide a dynamically created collection of
frozen modules.

5.3. Importing Modules 19

20

CHAPTER

SIX

Abstract Objects Layer

The functions in this chapter interact with Python objects regardless of their type, or with wide classes
of object types (e.g. all numerical types, or all sequence types). When used on object types for which
they do not apply, they will raise a Python exception.

6.1 Object Protocol

int PyObject Print(PyObject *o, FILE *fp, int flags)
Print an object o, on file fp. Returns -1 on error. The flags argument is used to enable certain
printing options. The only option currently supported is Py PRINT RAW; if given, the str() of the
object is written instead of the repr().

int PyObject HasAttrString(PyObject *o, char *attr name)
Returns 1 if o has the attribute attr name, and 0 otherwise. This is equivalent to the Python
expression ‘hasattr(o, attr name)’. This function always succeeds.

PyObject* PyObject GetAttrString(PyObject *o, char *attr name)
Return value: New reference.
Retrieve an attribute named attr name from object o. Returns the attribute value on success, or
NULL on failure. This is the equivalent of the Python expression ‘o.attr name’.

int PyObject HasAttr(PyObject *o, PyObject *attr name)
Returns 1 if o has the attribute attr name, and 0 otherwise. This is equivalent to the Python
expression ‘hasattr(o, attr name)’. This function always succeeds.

PyObject* PyObject GetAttr(PyObject *o, PyObject *attr name)
Return value: New reference.
Retrieve an attribute named attr name from object o. Returns the attribute value on success, or
NULL on failure. This is the equivalent of the Python expression ‘o.attr name’.

int PyObject SetAttrString(PyObject *o, char *attr name, PyObject *v)
Set the value of the attribute named attr name, for object o, to the value v . Returns -1 on failure.
This is the equivalent of the Python statement ‘o.attr name = v ’.

int PyObject SetAttr(PyObject *o, PyObject *attr name, PyObject *v)
Set the value of the attribute named attr name, for object o, to the value v . Returns -1 on failure.
This is the equivalent of the Python statement ‘o.attr name = v ’.

int PyObject DelAttrString(PyObject *o, char *attr name)
Delete attribute named attr name, for object o. Returns -1 on failure. This is the equivalent of
the Python statement: ‘del o.attr name’.

int PyObject DelAttr(PyObject *o, PyObject *attr name)
Delete attribute named attr name, for object o. Returns -1 on failure. This is the equivalent of
the Python statement ‘del o.attr name’.

int PyObject Cmp(PyObject *o1, PyObject *o2, int *result)
Compare the values of o1 and o2 using a routine provided by o1 , if one exists, otherwise with a
routine provided by o2 . The result of the comparison is returned in result . Returns -1 on failure.

21

This is the equivalent of the Python statement ‘result = cmp(o1, o2)’.

int PyObject Compare(PyObject *o1, PyObject *o2)
Compare the values of o1 and o2 using a routine provided by o1 , if one exists, otherwise with
a routine provided by o2 . Returns the result of the comparison on success. On error, the value
returned is undefined; use PyErr Occurred() to detect an error. This is equivalent to the Python
expression ‘cmp(o1, o2)’.

PyObject* PyObject Repr(PyObject *o)
Return value: New reference.
Compute a string representation of object o. Returns the string representation on success, NULL on
failure. This is the equivalent of the Python expression ‘repr(o)’. Called by the repr() built-in
function and by reverse quotes.

PyObject* PyObject Str(PyObject *o)
Return value: New reference.
Compute a string representation of object o. Returns the string representation on success, NULL
on failure. This is the equivalent of the Python expression ‘str(o)’. Called by the str() built-in
function and by the print statement.

int PyCallable Check(PyObject *o)
Determine if the object o is callable. Return 1 if the object is callable and 0 otherwise. This
function always succeeds.

PyObject* PyObject CallObject(PyObject *callable object, PyObject *args)
Return value: New reference.
Call a callable Python object callable object , with arguments given by the tuple args. If no
arguments are needed, then args may be NULL. Returns the result of the call on success, or NULL
on failure. This is the equivalent of the Python expression ‘apply(o, args)’.

PyObject* PyObject CallFunction(PyObject *callable object, char *format, ...)
Return value: New reference.
Call a callable Python object callable object , with a variable number of C arguments. The C
arguments are described using a Py BuildValue() style format string. The format may be NULL,
indicating that no arguments are provided. Returns the result of the call on success, or NULL on
failure. This is the equivalent of the Python expression ‘apply(o, args)’.

PyObject* PyObject CallMethod(PyObject *o, char *m, char *format, ...)
Return value: New reference.
Call the method named m of object o with a variable number of C arguments. The C arguments
are described by a Py BuildValue() format string. The format may be NULL, indicating that no
arguments are provided. Returns the result of the call on success, or NULL on failure. This is the
equivalent of the Python expression ‘o.method(args)’. Note that special method names, such as

add (), getitem (), and so on are not supported. The specific abstract-object routines
for these must be used.

int PyObject Hash(PyObject *o)
Compute and return the hash value of an object o. On failure, return -1. This is the equivalent
of the Python expression ‘hash(o)’.

int PyObject IsTrue(PyObject *o)
Returns 1 if the object o is considered to be true, and 0 otherwise. This is equivalent to the Python
expression ‘not not o’. This function always succeeds.

PyObject* PyObject Type(PyObject *o)
Return value: New reference.
On success, returns a type object corresponding to the object type of object o. On failure, returns
NULL. This is equivalent to the Python expression ‘type(o)’.

int PyObject Length(PyObject *o)
Return the length of object o. If the object o provides both sequence and mapping protocols,
the sequence length is returned. On error, -1 is returned. This is the equivalent to the Python
expression ‘len(o)’.

22 Chapter 6. Abstract Objects Layer

PyObject* PyObject GetItem(PyObject *o, PyObject *key)
Return value: New reference.
Return element of o corresponding to the object key or NULL on failure. This is the equivalent of
the Python expression ‘o[key]’.

int PyObject SetItem(PyObject *o, PyObject *key, PyObject *v)
Map the object key to the value v . Returns -1 on failure. This is the equivalent of the Python
statement ‘o[key] = v ’.

int PyObject DelItem(PyObject *o, PyObject *key)
Delete the mapping for key from o. Returns -1 on failure. This is the equivalent of the Python
statement ‘del o[key]’.

6.2 Number Protocol

int PyNumber Check(PyObject *o)
Returns 1 if the object o provides numeric protocols, and false otherwise. This function always
succeeds.

PyObject* PyNumber Add(PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the result of adding o1 and o2 , or NULL on failure. This is the equivalent of the Python
expression ‘o1 + o2 ’.

PyObject* PyNumber Subtract(PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the result of subtracting o2 from o1 , or NULL on failure. This is the equivalent of the
Python expression ‘o1 - o2 ’.

PyObject* PyNumber Multiply(PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the result of multiplying o1 and o2 , or NULL on failure. This is the equivalent of the
Python expression ‘o1 * o2 ’.

PyObject* PyNumber Divide(PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the result of dividing o1 by o2 , or NULL on failure. This is the equivalent of the Python
expression ‘o1 / o2 ’.

PyObject* PyNumber Remainder(PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the remainder of dividing o1 by o2 , or NULL on failure. This is the equivalent of the
Python expression ‘o1 % o2 ’.

PyObject* PyNumber Divmod(PyObject *o1, PyObject *o2)
Return value: New reference.
See the built-in function divmod(). Returns NULL on failure. This is the equivalent of the Python
expression ‘divmod(o1, o2)’.

PyObject* PyNumber Power(PyObject *o1, PyObject *o2, PyObject *o3)
Return value: New reference.
See the built-in function pow(). Returns NULL on failure. This is the equivalent of the Python
expression ‘pow(o1, o2, o3)’, where o3 is optional. If o3 is to be ignored, pass Py None in its
place (passing NULL for o3 would cause an illegal memory access).

PyObject* PyNumber Negative(PyObject *o)
Return value: New reference.
Returns the negation of o on success, or NULL on failure. This is the equivalent of the Python
expression ‘-o’.

PyObject* PyNumber Positive(PyObject *o)
Return value: New reference.
Returns o on success, or NULL on failure. This is the equivalent of the Python expression ‘+o’.

6.2. Number Protocol 23

PyObject* PyNumber Absolute(PyObject *o)
Return value: New reference.
Returns the absolute value of o, or NULL on failure. This is the equivalent of the Python expression
‘abs(o)’.

PyObject* PyNumber Invert(PyObject *o)
Return value: New reference.
Returns the bitwise negation of o on success, or NULL on failure. This is the equivalent of the
Python expression ‘~o’.

PyObject* PyNumber Lshift(PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the result of left shifting o1 by o2 on success, or NULL on failure. This is the equivalent
of the Python expression ‘o1 << o2 ’.

PyObject* PyNumber Rshift(PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the result of right shifting o1 by o2 on success, or NULL on failure. This is the equivalent
of the Python expression ‘o1 >> o2 ’.

PyObject* PyNumber And(PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the result of “anding” o2 and o2 on success and NULL on failure. This is the equivalent of
the Python expression ‘o1 and o2 ’.

PyObject* PyNumber Xor(PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the bitwise exclusive or of o1 by o2 on success, or NULL on failure. This is the equivalent
of the Python expression ‘o1 ^ o2 ’.

PyObject* PyNumber Or(PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the result of o1 and o2 on success, or NULL on failure. This is the equivalent of the Python
expression ‘o1 or o2 ’.

PyObject* PyNumber Coerce(PyObject **p1, PyObject **p2)
This function takes the addresses of two variables of type PyObject*. If the objects pointed to by
*p1 and *p2 have the same type, increment their reference count and return 0 (success). If the
objects can be converted to a common numeric type, replace *p1 and *p2 by their converted value
(with ’new’ reference counts), and return 0. If no conversion is possible, or if some other error oc-
curs, return -1 (failure) and don’t increment the reference counts. The call PyNumber Coerce(&o1,
&o2) is equivalent to the Python statement ‘o1, o2 = coerce(o1, o2)’.

PyObject* PyNumber Int(PyObject *o)
Return value: New reference.
Returns the o converted to an integer object on success, or NULL on failure. This is the equivalent
of the Python expression ‘int(o)’.

PyObject* PyNumber Long(PyObject *o)
Return value: New reference.
Returns the o converted to a long integer object on success, or NULL on failure. This is the equivalent
of the Python expression ‘long(o)’.

PyObject* PyNumber Float(PyObject *o)
Return value: New reference.
Returns the o converted to a float object on success, or NULL on failure. This is the equivalent of
the Python expression ‘float(o)’.

6.3 Sequence Protocol

int PySequence Check(PyObject *o)
Return 1 if the object provides sequence protocol, and 0 otherwise. This function always succeeds.

24 Chapter 6. Abstract Objects Layer

int PySequence Length(PyObject *o)
Returns the number of objects in sequence o on success, and -1 on failure. For objects that do not
provide sequence protocol, this is equivalent to the Python expression ‘len(o)’.

PyObject* PySequence Concat(PyObject *o1, PyObject *o2)
Return value: New reference.
Return the concatenation of o1 and o2 on success, and NULL on failure. This is the equivalent of
the Python expression ‘o1 + o2 ’.

PyObject* PySequence Repeat(PyObject *o, int count)
Return value: New reference.
Return the result of repeating sequence object o count times, or NULL on failure. This is the
equivalent of the Python expression ‘o * count ’.

PyObject* PySequence GetItem(PyObject *o, int i)
Return value: New reference.
Return the ith element of o, or NULL on failure. This is the equivalent of the Python expression
‘o[i]’.

PyObject* PySequence GetSlice(PyObject *o, int i1, int i2)
Return value: New reference.
Return the slice of sequence object o between i1 and i2 , or NULL on failure. This is the equivalent
of the Python expression ‘o[i1:i2]’.

int PySequence SetItem(PyObject *o, int i, PyObject *v)
Assign object v to the ith element of o. Returns -1 on failure. This is the equivalent of the Python
statement ‘o[i] = v ’.

int PySequence DelItem(PyObject *o, int i)
Delete the ith element of object v . Returns -1 on failure. This is the equivalent of the Python
statement ‘del o[i]’.

int PySequence SetSlice(PyObject *o, int i1, int i2, PyObject *v)
Assign the sequence object v to the slice in sequence object o from i1 to i2 . This is the equivalent
of the Python statement ‘o[i1:i2] = v ’.

int PySequence DelSlice(PyObject *o, int i1, int i2)
Delete the slice in sequence object o from i1 to i2 . Returns -1 on failure. This is the equivalent
of the Python statement ‘del o[i1:i2]’.

PyObject* PySequence Tuple(PyObject *o)
Return value: New reference.
Returns the o as a tuple on success, and NULL on failure. This is equivalent to the Python expression
‘tuple(o)’.

int PySequence Count(PyObject *o, PyObject *value)
Return the number of occurrences of value in o, that is, return the number of keys for which o[key]
== value. On failure, return -1. This is equivalent to the Python expression ‘o.count(value)’.

int PySequence Contains(PyObject *o, PyObject *value)
Determine if o contains value. If an item in o is equal to value, return 1, otherwise return 0. On
error, return -1. This is equivalent to the Python expression ‘value in o’.

int PySequence Index(PyObject *o, PyObject *value)
Return the first index i for which o[i] == value. On error, return -1. This is equivalent to the
Python expression ‘o.index(value)’.

6.4 Mapping Protocol

int PyMapping Check(PyObject *o)
Return 1 if the object provides mapping protocol, and 0 otherwise. This function always succeeds.

int PyMapping Length(PyObject *o)
Returns the number of keys in object o on success, and -1 on failure. For objects that do not

6.4. Mapping Protocol 25

provide mapping protocol, this is equivalent to the Python expression ‘len(o)’.

int PyMapping DelItemString(PyObject *o, char *key)
Remove the mapping for object key from the object o. Return -1 on failure. This is equivalent to
the Python statement ‘del o[key]’.

int PyMapping DelItem(PyObject *o, PyObject *key)
Remove the mapping for object key from the object o. Return -1 on failure. This is equivalent to
the Python statement ‘del o[key]’.

int PyMapping HasKeyString(PyObject *o, char *key)
On success, return 1 if the mapping object has the key key and 0 otherwise. This is equivalent to
the Python expression ‘o.has key(key)’. This function always succeeds.

int PyMapping HasKey(PyObject *o, PyObject *key)
Return 1 if the mapping object has the key key and 0 otherwise. This is equivalent to the Python
expression ‘o.has key(key)’. This function always succeeds.

PyObject* PyMapping Keys(PyObject *o)
Return value: New reference.
On success, return a list of the keys in object o. On failure, return NULL. This is equivalent to the
Python expression ‘o.keys()’.

PyObject* PyMapping Values(PyObject *o)
Return value: New reference.
On success, return a list of the values in object o. On failure, return NULL. This is equivalent to
the Python expression ‘o.values()’.

PyObject* PyMapping Items(PyObject *o)
Return value: New reference.
On success, return a list of the items in object o, where each item is a tuple containing a key-value
pair. On failure, return NULL. This is equivalent to the Python expression ‘o.items()’.

PyObject* PyMapping GetItemString(PyObject *o, char *key)
Return value: New reference.
Return element of o corresponding to the object key or NULL on failure. This is the equivalent of
the Python expression ‘o[key]’.

int PyMapping SetItemString(PyObject *o, char *key, PyObject *v)
Map the object key to the value v in object o. Returns -1 on failure. This is the equivalent of the
Python statement ‘o[key] = v ’.

26 Chapter 6. Abstract Objects Layer

CHAPTER

SEVEN

Concrete Objects Layer

The functions in this chapter are specific to certain Python object types. Passing them an object of the
wrong type is not a good idea; if you receive an object from a Python program and you are not sure
that it has the right type, you must perform a type check first; for example. to check that an object
is a dictionary, use PyDict Check(). The chapter is structured like the “family tree” of Python object
types.

7.1 Fundamental Objects

This section describes Python type objects and the singleton object None.

7.1.1 Type Objects

PyTypeObject
The C structure of the objects used to describe built-in types.

PyObject* PyType Type
This is the type object for type objects; it is the same object as types.TypeType in the Python
layer.

int PyType Check(PyObject *o)
Returns true is the object o is a type object.

int PyType HasFeature(PyObject *o, int feature)
Returns true if the type object o sets the feature feature. Type features are denoted by single
bit flags. The only defined feature flag is Py TPFLAGS HAVE GETCHARBUFFER, described in section
10.5.

7.1.2 The None Object

Note that the PyTypeObject for None is not directly exposed in the Python/C API. Since None is a
singleton, testing for object identity (using ‘==’ in C) is sufficient. There is no PyNone Check() function
for the same reason.

PyObject* Py None
The Python None object, denoting lack of value. This object has no methods.

7.2 Sequence Objects

Generic operations on sequence objects were discussed in the previous chapter; this section deals with
the specific kinds of sequence objects that are intrinsic to the Python language.

27

7.2.1 String Objects

PyStringObject
This subtype of PyObject represents a Python string object.

PyTypeObject PyString Type
This instance of PyTypeObject represents the Python string type; it is the same object as
types.TypeType in the Python layer..

int PyString Check(PyObject *o)
Returns true if the object o is a string object.

PyObject* PyString FromString(const char *v)
Return value: New reference.
Returns a new string object with the value v on success, and NULL on failure.

PyObject* PyString FromStringAndSize(const char *v, int len)
Return value: New reference.
Returns a new string object with the value v and length len on success, and NULL on failure. If v
is NULL, the contents of the string are uninitialized.

int PyString Size(PyObject *string)
Returns the length of the string in string object string .

int PyString GET SIZE(PyObject *string)
Macro form of PyString GetSize() but without error checking.

char* PyString AsString(PyObject *string)
Returns a null-terminated representation of the contents of string . The pointer refers to the internal
buffer of string , not a copy. The data must not be modified in any way. It must not be de-allocated.

char* PyString AS STRING(PyObject *string)
Macro form of PyString AsString() but without error checking.

void PyString Concat(PyObject **string, PyObject *newpart)
Creates a new string object in *string containing the contents of newpart appended to string . The
old value of string have its reference count decremented. If the new string cannot be created,
the old reference to string will still be discarded and the value of *string will be set to NULL; the
appropriate exception will be set.

void PyString ConcatAndDel(PyObject **string, PyObject *newpart)
Creates a new string object in *string containing the contents of newpart appended to string . This
version decrements the reference count of newpart .

int PyString Resize(PyObject **string, int newsize)
A way to resize a string object even though it is “immutable”. Only use this to build up a brand
new string object; don’t use this if the string may already be known in other parts of the code.

PyObject* PyString Format(PyObject *format, PyObject *args)
Return value: New reference.
Returns a new string object from format and args. Analogous to format % args. The args argu-
ment must be a tuple.

void PyString InternInPlace(PyObject **string)
Intern the argument *string in place. The argument must be the address of a pointer variable
pointing to a Python string object. If there is an existing interned string that is the same as *string ,
it sets *string to it (decrementing the reference count of the old string object and incrementing
the reference count of the interned string object), otherwise it leaves *string alone and interns it
(incrementing its reference count). (Clarification: even though there is a lot of talk about reference
counts, think of this function as reference-count-neutral; you own the object after the call if and
only if you owned it before the call.)

PyObject* PyString InternFromString(const char *v)
Return value: New reference.
A combination of PyString FromString() and PyString InternInPlace(), returning either a

28 Chapter 7. Concrete Objects Layer

new string object that has been interned, or a new (“owned”) reference to an earlier interned string
object with the same value.

7.2.2 Buffer Objects

Python objects implemented in C can export a group of functions called the “buffer interface.” These
functions can be used by an object to expose its data in a raw, byte-oriented format. Clients of the
object can use the buffer interface to access the object data directly, without needing to copy it first.

Two examples of objects that support the buffer interface are strings and arrays. The string object
exposes the character contents in the buffer interface’s byte-oriented form. An array can also expose its
contents, but it should be noted that array elements may be multi-byte values.

An example user of the buffer interface is the file object’s write() method. Any object that can export
a series of bytes through the buffer interface can be written to a file. There are a number of format
codes to PyArgs ParseTuple() that operate against an object’s buffer interface, returning data from
the target object.

More information on the buffer interface is provided in the section “Buffer Object Structures” (section
10.5), under the description for PyBufferProcs.

A “buffer object” is defined in the ‘bufferobject.h’ header (included by ‘Python.h’). These objects look very
similar to string objects at the Python programming level: they support slicing, indexing, concatenation,
and some other standard string operations. However, their data can come from one of two sources: from
a block of memory, or from another object which exports the buffer interface.

Buffer objects are useful as a way to expose the data from another object’s buffer interface to the Python
programmer. They can also be used as a zero-copy slicing mechanism. Using their ability to reference a
block of memory, it is possible to expose any data to the Python programmer quite easily. The memory
could be a large, constant array in a C extension, it could be a raw block of memory for manipulation
before passing to an operating system library, or it could be used to pass around structured data in its
native, in-memory format.

PyBufferObject
This subtype of PyObject represents a buffer object.

PyTypeObject PyBuffer Type
The instance of PyTypeObject which represents the Python buffer type; it is the same object as
types.BufferType in the Python layer..

int Py END OF BUFFER
This constant may be passed as the size parameter to PyBuffer FromObject() or
PyBuffer FromReadWriteObject(). It indicates that the new PyBufferObject should refer to
base object from the specified offset to the end of its exported buffer. Using this enables the caller
to avoid querying the base object for its length.

int PyBuffer Check(PyObject *p)
Return true if the argument has type PyBuffer Type.

PyObject* PyBuffer FromObject(PyObject *base, int offset, int size)
Return value: New reference.
Return a new read-only buffer object. This raises TypeError if base doesn’t support the read-only
buffer protocol or doesn’t provide exactly one buffer segment, or it raises ValueError if offset is
less than zero. The buffer will hold a reference to the base object, and the buffer’s contents will
refer to the base object’s buffer interface, starting as position offset and extending for size bytes. If
size is Py END OF BUFFER, then the new buffer’s contents extend to the length of the base object’s
exported buffer data.

PyObject* PyBuffer FromReadWriteObject(PyObject *base, int offset, int size)
Return value: New reference.
Return a new writable buffer object. Parameters and exceptions are similar to those for
PyBuffer FromObject(). If the base object does not export the writeable buffer protocol, then
TypeError is raised.

7.2. Sequence Objects 29

PyObject* PyBuffer FromMemory(void *ptr, int size)
Return value: New reference.
Return a new read-only buffer object that reads from a specified location in memory, with a
specified size. The caller is responsible for ensuring that the memory buffer, passed in as ptr , is
not deallocated while the returned buffer object exists. Raises ValueError if size is less than zero.
Note that Py END OF BUFFER may not be passed for the size parameter; ValueError will be raised
in that case.

PyObject* PyBuffer FromReadWriteMemory(void *ptr, int size)
Return value: New reference.
Similar to PyBuffer FromMemory(), but the returned buffer is writable.

PyObject* PyBuffer New(int size)
Return value: New reference.
Returns a new writable buffer object that maintains its own memory buffer of size bytes.
ValueError is returned if size is not zero or positive.

7.2.3 Tuple Objects

PyTupleObject
This subtype of PyObject represents a Python tuple object.

PyTypeObject PyTuple Type
This instance of PyTypeObject represents the Python tuple type; it is the same object as
types.TupleType in the Python layer..

int PyTuple Check(PyObject *p)
Return true if the argument is a tuple object.

PyObject* PyTuple New(int len)
Return value: New reference.
Return a new tuple object of size len, or NULL on failure.

int PyTuple Size(PyTupleObject *p)
Takes a pointer to a tuple object, and returns the size of that tuple.

PyObject* PyTuple GetItem(PyTupleObject *p, int pos)
Return value: Borrowed reference.
Returns the object at position pos in the tuple pointed to by p. If pos is out of bounds, returns
NULL and sets an IndexError exception.

PyObject* PyTuple GET ITEM(PyTupleObject *p, int pos)
Return value: Borrowed reference.
Does the same, but does no checking of its arguments.

PyObject* PyTuple GetSlice(PyTupleObject *p, int low, int high)
Return value: New reference.
Takes a slice of the tuple pointed to by p from low to high and returns it as a new tuple.

int PyTuple SetItem(PyObject *p, int pos, PyObject *o)
Inserts a reference to object o at position pos of the tuple pointed to by p. It returns 0 on success.
Note: This function “steals” a reference to o.

void PyTuple SET ITEM(PyObject *p, int pos, PyObject *o)
Does the same, but does no error checking, and should only be used to fill in brand new tuples.
Note: This function “steals” a reference to o.

int PyTuple Resize(PyTupleObject *p, int newsize, int last is sticky)
Can be used to resize a tuple. newsize will be the new length of the tuple. Because tuples are
supposed to be immutable, this should only be used if there is only one reference to the object. Do
not use this if the tuple may already be known to some other part of the code. last is sticky is a
flag — if true, the tuple will grow or shrink at the front, otherwise it will grow or shrink at the end.
Think of this as destroying the old tuple and creating a new one, only more efficiently. Returns 0
on success and -1 on failure (in which case a MemoryError or SystemError will be raised).

30 Chapter 7. Concrete Objects Layer

7.2.4 List Objects

PyListObject
This subtype of PyObject represents a Python list object.

PyTypeObject PyList Type
This instance of PyTypeObject represents the Python list type. This is the same object as
types.ListType.

int PyList Check(PyObject *p)
Returns true if its argument is a PyListObject.

PyObject* PyList New(int len)
Return value: New reference.
Returns a new list of length len on success, or NULL on failure.

int PyList Size(PyObject *list)
Returns the length of the list object in list ; this is equivalent to ‘len(list)’ on a list object.

int PyList GET SIZE(PyObject *list)
Macro form of PyList GetSize() without error checking.

PyObject* PyList GetItem(PyObject *list, int index)
Return value: Borrowed reference.
Returns the object at position pos in the list pointed to by p. If pos is out of bounds, returns NULL
and sets an IndexError exception.

PyObject* PyList GET ITEM(PyObject *list, int i)
Return value: Borrowed reference.
Macro form of PyList GetItem() without error checking.

int PyList SetItem(PyObject *list, int index, PyObject *item)
Sets the item at index index in list to item. Note: This function “steals” a reference to item.

PyObject* PyList SET ITEM(PyObject *list, int i, PyObject *o)
Return value: Borrowed reference.
Macro form of PyList SetItem() without error checking. Note: This function “steals” a reference
to item.

int PyList Insert(PyObject *list, int index, PyObject *item)
Inserts the item item into list list in front of index index . Returns 0 if successful; returns -1 and
raises an exception if unsuccessful. Analogous to list.insert(index, item).

int PyList Append(PyObject *list, PyObject *item)
Appends the object item at the end of list list . Returns 0 if successful; returns -1 and sets an
exception if unsuccessful. Analogous to list.append(item).

PyObject* PyList GetSlice(PyObject *list, int low, int high)
Return value: New reference.
Returns a list of the objects in list containing the objects between low and high. Returns NULL
and sets an exception if unsuccessful. Analogous to list[low:high].

int PyList SetSlice(PyObject *list, int low, int high, PyObject *itemlist)
Sets the slice of list between low and high to the contents of itemlist . Analogous to list[low:high]
= itemlist . Returns 0 on success, -1 on failure.

int PyList Sort(PyObject *list)
Sorts the items of list in place. Returns 0 on success, -1 on failure. This is equivalent to
‘list.sort()’.

int PyList Reverse(PyObject *list)
Reverses the items of list in place. Returns 0 on success, -1 on failure. This is the equivalent of
‘list.reverse()’.

PyObject* PyList AsTuple(PyObject *list)
Return value: New reference.

7.2. Sequence Objects 31

Returns a new tuple object containing the contents of list ; equivalent to ‘tuple(list)’.

7.3 Mapping Objects

7.3.1 Dictionary Objects

PyDictObject
This subtype of PyObject represents a Python dictionary object.

PyTypeObject PyDict Type
This instance of PyTypeObject represents the Python dictionary type. This is exposed to Python
programs as types.DictType and types.DictionaryType.

int PyDict Check(PyObject *p)
Returns true if its argument is a PyDictObject.

PyObject* PyDict New()
Return value: New reference.
Returns a new empty dictionary, or NULL on failure.

void PyDict Clear(PyObject *p)
Empties an existing dictionary of all key/value pairs.

int PyDict SetItem(PyObject *p, PyObject *key, PyObject *val)
Inserts value into the dictionary with a key of key . key must be hashable; if it isn’t, TypeError
will be raised.

int PyDict SetItemString(PyObject *p, char *key, PyObject *val)
Inserts value into the dictionary using key as a key. key should be a char*. The key object is
created using PyString FromString(key).

int PyDict DelItem(PyObject *p, PyObject *key)
Removes the entry in dictionary p with key key . key must be hashable; if it isn’t, TypeError is
raised.

int PyDict DelItemString(PyObject *p, char *key)
Removes the entry in dictionary p which has a key specified by the string key .

PyObject* PyDict GetItem(PyObject *p, PyObject *key)
Return value: Borrowed reference.
Returns the object from dictionary p which has a key key . Returns NULL if the key key is not
present, but without setting an exception.

PyObject* PyDict GetItemString(PyObject *p, char *key)
Return value: Borrowed reference.
This is the same as PyDict GetItem(), but key is specified as a char*, rather than a PyObject*.

PyObject* PyDict Items(PyObject *p)
Return value: New reference.
Returns a PyListObject containing all the items from the dictionary, as in the dictinoary method
items() (see the Python Library Reference).

PyObject* PyDict Keys(PyObject *p)
Return value: New reference.
Returns a PyListObject containing all the keys from the dictionary, as in the dictionary method
keys() (see the Python Library Reference).

PyObject* PyDict Values(PyObject *p)
Return value: New reference.
Returns a PyListObject containing all the values from the dictionary p, as in the dictionary
method values() (see the Python Library Reference).

int PyDict Size(PyObject *p)
Returns the number of items in the dictionary. This is equivalent to ‘len(p)’ on a dictionary.

32 Chapter 7. Concrete Objects Layer

int PyDict Next(PyDictObject *p, int ppos, PyObject **pkey, PyObject **pvalue)

7.4 Numeric Objects

7.4.1 Plain Integer Objects

PyIntObject
This subtype of PyObject represents a Python integer object.

PyTypeObject PyInt Type
This instance of PyTypeObject represents the Python plain integer type. This is the same object
as types.IntType.

int PyInt Check(PyObject* o)
Returns true if o is of type PyInt Type.

PyObject* PyInt FromLong(long ival)
Return value: New reference.
Creates a new integer object with a value of ival .

The current implementation keeps an array of integer objects for all integers between -1 and 100,
when you create an int in that range you actually just get back a reference to the existing object.
So it should be possible to change the value of 1. I suspect the behaviour of Python in this case is
undefined. :-)

long PyInt AsLong(PyObject *io)
Will first attempt to cast the object to a PyIntObject, if it is not already one, and then return its
value.

long PyInt AS LONG(PyObject *io)
Returns the value of the object io. No error checking is performed.

long PyInt GetMax()
Returns the system’s idea of the largest integer it can handle (LONG MAX, as defined in the system
header files).

7.4.2 Long Integer Objects

PyLongObject
This subtype of PyObject represents a Python long integer object.

PyTypeObject PyLong Type
This instance of PyTypeObject represents the Python long integer type. This is the same object
as types.LongType.

int PyLong Check(PyObject *p)
Returns true if its argument is a PyLongObject.

PyObject* PyLong FromLong(long v)
Return value: New reference.
Returns a new PyLongObject object from v , or NULL on failure.

PyObject* PyLong FromUnsignedLong(unsigned long v)
Return value: New reference.
Returns a new PyLongObject object from a C unsigned long, or NULL on failure.

PyObject* PyLong FromDouble(double v)
Return value: New reference.
Returns a new PyLongObject object from the integer part of v , or NULL on failure.

long PyLong AsLong(PyObject *pylong)
Returns a C long representation of the contents of pylong . If pylong is greater than LONG MAX, an
OverflowError is raised.OverflowError

7.4. Numeric Objects 33

unsigned long PyLong AsUnsignedLong(PyObject *pylong)
Returns a C unsigned long representation of the contents of pylong . If pylong is greater than
ULONG MAX, an OverflowError is raised.OverflowError

double PyLong AsDouble(PyObject *pylong)
Returns a C double representation of the contents of pylong .

PyObject* PyLong FromString(char *str, char **pend, int base)
Return value: New reference.
Return a new PyLongObject based on the string value in str , which is interpreted according to
the radix in base. If pend is non-NULL, *pend will point to the first character in str which follows
the representation of the number. If base is 0, the radix will be determined base on the leading
characters of str : if str starts with ’0x’ or ’0X’, radix 16 will be used; if str starts with ’0’,
radix 8 will be used; otherwise radix 10 will be used. If base is not 0, it must be between 2 and
36, inclusive. Leading spaces are ignored. If there are no digits, ValueError will be raised.

7.4.3 Floating Point Objects

PyFloatObject
This subtype of PyObject represents a Python floating point object.

PyTypeObject PyFloat Type
This instance of PyTypeObject represents the Python floating point type. This is the same object
as types.FloatType.

int PyFloat Check(PyObject *p)
Returns true if its argument is a PyFloatObject.

PyObject* PyFloat FromDouble(double v)
Return value: New reference.
Creates a PyFloatObject object from v , or NULL on failure.

double PyFloat AsDouble(PyObject *pyfloat)
Returns a C double representation of the contents of pyfloat .

double PyFloat AS DOUBLE(PyObject *pyfloat)
Returns a C double representation of the contents of pyfloat , but without error checking.

7.4.4 Complex Number Objects

Python’s complex number objects are implemented as two distinct types when viewed from the C API:
one is the Python object exposed to Python programs, and the other is a C structure which represents
the actual complex number value. The API provides functions for working with both.

Complex Numbers as C Structures

Note that the functions which accept these structures as parameters and return them as results do so by
value rather than dereferencing them through pointers. This is consistent throughout the API.

Py complex
The C structure which corresponds to the value portion of a Python complex number object. Most
of the functions for dealing with complex number objects use structures of this type as input or
output values, as appropriate. It is defined as:

typedef struct {

double real;

double imag;

} Py_complex;

34 Chapter 7. Concrete Objects Layer

Py complex Py c sum(Py complex left, Py complex right)
Return the sum of two complex numbers, using the C Py complex representation.

Py complex Py c diff(Py complex left, Py complex right)
Return the difference between two complex numbers, using the C Py complex representation.

Py complex Py c neg(Py complex complex)
Return the negation of the complex number complex , using the C Py complex representation.

Py complex Py c prod(Py complex left, Py complex right)
Return the product of two complex numbers, using the C Py complex representation.

Py complex Py c quot(Py complex dividend, Py complex divisor)
Return the quotient of two complex numbers, using the C Py complex representation.

Py complex Py c pow(Py complex num, Py complex exp)
Return the exponentiation of num by exp, using the C Py complex representation.

Complex Numbers as Python Objects

PyComplexObject
This subtype of PyObject represents a Python complex number object.

PyTypeObject PyComplex Type
This instance of PyTypeObject represents the Python complex number type.

int PyComplex Check(PyObject *p)
Returns true if its argument is a PyComplexObject.

PyObject* PyComplex FromCComplex(Py complex v)
Return value: New reference.
Create a new Python complex number object from a C Py complex value.

PyObject* PyComplex FromDoubles(double real, double imag)
Return value: New reference.
Returns a new PyComplexObject object from real and imag .

double PyComplex RealAsDouble(PyObject *op)
Returns the real part of op as a C double.

double PyComplex ImagAsDouble(PyObject *op)
Returns the imaginary part of op as a C double.

Py complex PyComplex AsCComplex(PyObject *op)
Returns the Py complex value of the complex number op.

7.5 Other Objects

7.5.1 File Objects

Python’s built-in file objects are implemented entirely on the FILE* support from the C standard library.
This is an implementation detail and may change in future releases of Python.

PyFileObject
This subtype of PyObject represents a Python file object.

PyTypeObject PyFile Type
This instance of PyTypeObject represents the Python file type. This is exposed to Python programs
as types.FileType.

int PyFile Check(PyObject *p)
Returns true if its argument is a PyFileObject.

7.5. Other Objects 35

PyObject* PyFile FromString(char *filename, char *mode)
Return value: New reference.
On success, returns a new file object that is opened on the file given by filename, with a file mode
given by mode, where mode has the same semantics as the standard C routine fopen(). On failure,
returns NULL.

PyObject* PyFile FromFile(FILE *fp, char *name, char *mode, int (*close)(FILE*))
Return value: New reference.
Creates a new PyFileObject from the already-open standard C file pointer, fp. The function close
will be called when the file should be closed. Returns NULL on failure.

FILE* PyFile AsFile(PyFileObject *p)
Returns the file object associated with p as a FILE*.

PyObject* PyFile GetLine(PyObject *p, int n)
Return value: New reference.
Equivalent to p.readline([n]), this function reads one line from the object p. p may be a file
object or any object with a readline() method. If n is 0, exactly one line is read, regardless of the
length of the line. If n is greater than 0, no more than n bytes will be read from the file; a partial
line can be returned. In both cases, an empty string is returned if the end of the file is reached
immediately. If n is less than 0, however, one line is read regardless of length, but EOFError is
raised if the end of the file is reached immediately.

PyObject* PyFile Name(PyObject *p)
Return value: Borrowed reference.
Returns the name of the file specified by p as a string object.

void PyFile SetBufSize(PyFileObject *p, int n)
Available on systems with setvbuf() only. This should only be called immediately after file object
creation.

int PyFile SoftSpace(PyObject *p, int newflag)
This function exists for internal use by the interpreter. Sets the softspace attribute of p to
newflag and returns the previous value. p does not have to be a file object for this function to work
properly; any object is supported (thought its only interesting if the softspace attribute can be
set). This function clears any errors, and will return 0 as the previous value if the attribute either
does not exist or if there were errors in retrieving it. There is no way to detect errors from this
function, but doing so should not be needed.

int PyFile WriteObject(PyObject *obj, PyFileObject *p, int flags)
Writes object obj to file object p. The only supported flag for flags is Py PRINT RAW; if given, the
str() of the object is written instead of the repr(). Returns 0 on success or -1 on failure; the
appropriate exception will be set.

int PyFile WriteString(char *s, PyFileObject *p, int flags)
Writes string s to file object p. Returns 0 on success or -1 on failure; the appropriate exception
will be set.

7.5.2 Module Objects

There are only a few functions special to module objects.

PyTypeObject PyModule Type
This instance of PyTypeObject represents the Python module type. This is exposed to Python
programs as types.ModuleType.

int PyModule Check(PyObject *p)
Returns true if its argument is a module object.

PyObject* PyModule New(char *name)
Return value: New reference.
Return a new module object with the name attribute set to name. Only the module’s

doc and name attributes are filled in; the caller is responsible for providing a file

36 Chapter 7. Concrete Objects Layer

attribute.

PyObject* PyModule GetDict(PyObject *module)
Return value: Borrowed reference.
Return the dictionary object that implements module’s namespace; this object is the same as the

dict attribute of the module object. This function never fails.

char* PyModule GetName(PyObject *module)
Return module’s name value. If the module does not provide one, or if it is not a string,
SystemError is raised and NULL is returned.

char* PyModule GetFilename(PyObject *module)
Return the name of the file from which module was loaded using module’s file attribute. If
this is not defined, or if it is not a string, raise SystemError and return NULL.

7.5.3 CObjects

Refer to Extending and Embedding the Python Interpreter, section 1.12 (“Providing a C API for an
Extension Module”), for more information on using these objects.

PyCObject
This subtype of PyObject represents an opaque value, useful for C extension modules who need
to pass an opaque value (as a void* pointer) through Python code to other C code. It is often
used to make a C function pointer defined in one module available to other modules, so the regular
import mechanism can be used to access C APIs defined in dynamically loaded modules.

int PyCObject Check(PyObject *p)
Returns true if its argument is a PyCObject.

PyObject* PyCObject FromVoidPtr(void* cobj, void (*destr)(void *))
Return value: New reference.
Creates a PyCObject from the void * cobj . The destr function will be called when the object is
reclaimed, unless it is NULL.

PyObject* PyCObject FromVoidPtrAndDesc(void* cobj, void* desc, void (*destr)(void *, void *))
Return value: New reference.
Creates a PyCObject from the void *cobj . The destr function will be called when the object is
reclaimed. The desc argument can be used to pass extra callback data for the destructor function.

void* PyCObject AsVoidPtr(PyObject* self)
Returns the object void * that the PyCObject self was created with.

void* PyCObject GetDesc(PyObject* self)
Returns the description void * that the PyCObject self was created with.

7.5. Other Objects 37

38

CHAPTER

EIGHT

Initialization, Finalization, and Threads

void Py Initialize()
Initialize the Python interpreter. In an application embedding Python, this should be called
before using any other Python/C API functions; with the exception of Py SetProgramName(),
PyEval InitThreads(), PyEval ReleaseLock(), and PyEval AcquireLock(). This initializes
the table of loaded modules (sys.modules), and creates the fundamental modules builtin ,

main and sys. It also initializes the module search path (sys.path). It does not set sys.argv;
use PySys SetArgv() for that. This is a no-op when called for a second time (without calling
Py Finalize() first). There is no return value; it is a fatal error if the initialization fails.

int Py IsInitialized()
Return true (nonzero) when the Python interpreter has been initialized, false (zero) if not. After
Py Finalize() is called, this returns false until Py Initialize() is called again.

void Py Finalize()
Undo all initializations made by Py Initialize() and subsequent use of Python/C API func-
tions, and destroy all sub-interpreters (see Py NewInterpreter() below) that were created and
not yet destroyed since the last call to Py Initialize(). Ideally, this frees all memory allo-
cated by the Python interpreter. This is a no-op when called for a second time (without calling
Py Initialize() again first). There is no return value; errors during finalization are ignored.

This function is provided for a number of reasons. An embedding application might want to restart
Python without having to restart the application itself. An application that has loaded the Python
interpreter from a dynamically loadable library (or DLL) might want to free all memory allocated
by Python before unloading the DLL. During a hunt for memory leaks in an application a developer
might want to free all memory allocated by Python before exiting from the application.

Bugs and caveats: The destruction of modules and objects in modules is done in random order;
this may cause destructors (del () methods) to fail when they depend on other objects
(even functions) or modules. Dynamically loaded extension modules loaded by Python are not
unloaded. Small amounts of memory allocated by the Python interpreter may not be freed (if you
find a leak, please report it). Memory tied up in circular references between objects is not freed.
Some memory allocated by extension modules may not be freed. Some extension may not work
properly if their initialization routine is called more than once; this can happen if an applcation
calls Py Initialize() and Py Finalize() more than once.

PyThreadState* Py NewInterpreter()
Create a new sub-interpreter. This is an (almost) totally separate environment for the execution of
Python code. In particular, the new interpreter has separate, independent versions of all imported
modules, including the fundamental modules builtin , main and sys. The table of
loaded modules (sys.modules) and the module search path (sys.path) are also separate. The new
environment has no sys.argv variable. It has new standard I/O stream file objects sys.stdin,
sys.stdout and sys.stderr (however these refer to the same underlying FILE structures in the
C library).

The return value points to the first thread state created in the new sub-interpreter. This thread
state is made the current thread state. Note that no actual thread is created; see the discussion
of thread states below. If creation of the new interpreter is unsuccessful, NULL is returned; no
exception is set since the exception state is stored in the current thread state and there may not be

39

a current thread state. (Like all other Python/C API functions, the global interpreter lock must
be held before calling this function and is still held when it returns; however, unlike most other
Python/C API functions, there needn’t be a current thread state on entry.)

Extension modules are shared between (sub-)interpreters as follows: the first time a particular
extension is imported, it is initialized normally, and a (shallow) copy of its module’s dictionary is
squirreled away. When the same extension is imported by another (sub-)interpreter, a new module
is initialized and filled with the contents of this copy; the extension’s init function is not called.
Note that this is different from what happens when an extension is imported after the interpreter
has been completely re-initialized by calling Py Finalize() and Py Initialize(); in that case,
the extension’s initmodule function is called again.

Bugs and caveats: Because sub-interpreters (and the main interpreter) are part of the same
process, the insulation between them isn’t perfect — for example, using low-level file operations
like os.close() they can (accidentally or maliciously) affect each other’s open files. Because of
the way extensions are shared between (sub-)interpreters, some extensions may not work properly;
this is especially likely when the extension makes use of (static) global variables, or when the
extension manipulates its module’s dictionary after its initialization. It is possible to insert objects
created in one sub-interpreter into a namespace of another sub-interpreter; this should be done
with great care to avoid sharing user-defined functions, methods, instances or classes between
sub-interpreters, since import operations executed by such objects may affect the wrong (sub-
)interpreter’s dictionary of loaded modules. (XXX This is a hard-to-fix bug that will be addressed
in a future release.)

void Py EndInterpreter(PyThreadState *tstate)
Destroy the (sub-)interpreter represented by the given thread state. The given thread state must
be the current thread state. See the discussion of thread states below. When the call returns,
the current thread state is NULL. All thread states associated with this interpreted are destroyed.
(The global interpreter lock must be held before calling this function and is still held when it
returns.) Py Finalize() will destroy all sub-interpreters that haven’t been explicitly destroyed
at that point.

void Py SetProgramName(char *name)
This function should be called before Py Initialize() is called for the first time, if it is called
at all. It tells the interpreter the value of the argv[0] argument to the main() function of the
program. This is used by Py GetPath() and some other functions below to find the Python run-
time libraries relative to the interpreter executable. The default value is "python". The argument
should point to a zero-terminated character string in static storage whose contents will not change
for the duration of the program’s execution. No code in the Python interpreter will change the
contents of this storage.

char* Py GetProgramName()
Return the program name set with Py SetProgramName(), or the default. The returned string
points into static storage; the caller should not modify its value.

char* Py GetPrefix()
Return the prefix for installed platform-independent files. This is derived through a number of com-
plicated rules from the program name set with Py SetProgramName() and some environment vari-
ables; for example, if the program name is "/usr/local/bin/python", the prefix is "/usr/local".
The returned string points into static storage; the caller should not modify its value. This corre-
sponds to the prefix variable in the top-level ‘Makefile’ and the --prefix argument to the configure
script at build time. The value is available to Python code as sys.prefix. It is only useful on
Unix. See also the next function.

char* Py GetExecPrefix()
Return the exec-prefix for installed platform-dependent files. This is derived through a number
of complicated rules from the program name set with Py SetProgramName() and some envi-
ronment variables; for example, if the program name is "/usr/local/bin/python", the exec-
prefix is "/usr/local". The returned string points into static storage; the caller should not
modify its value. This corresponds to the exec prefix variable in the top-level ‘Makefile’ and the
--exec prefix argument to the configure script at build time. The value is available to Python
code as sys.exec prefix. It is only useful on Unix.

40 Chapter 8. Initialization, Finalization, and Threads

Background: The exec-prefix differs from the prefix when platform dependent files (such as exe-
cutables and shared libraries) are installed in a different directory tree. In a typical installation,
platform dependent files may be installed in the "/usr/local/plat" subtree while platform inde-
pendent may be installed in "/usr/local".

Generally speaking, a platform is a combination of hardware and software families, e.g. Sparc
machines running the Solaris 2.x operating system are considered the same platform, but Intel
machines running Solaris 2.x are another platform, and Intel machines running Linux are yet
another platform. Different major revisions of the same operating system generally also form
different platforms. Non-Unix operating systems are a different story; the installation strategies on
those systems are so different that the prefix and exec-prefix are meaningless, and set to the empty
string. Note that compiled Python bytecode files are platform independent (but not independent
from the Python version by which they were compiled!).

System administrators will know how to configure the mount or automount programs to share
"/usr/local" between platforms while having "/usr/local/plat" be a different filesystem for
each platform.

char* Py GetProgramFullPath()
Return the full program name of the Python executable; this is computed as a side-effect of
deriving the default module search path from the program name (set by Py SetProgramName()
above). The returned string points into static storage; the caller should not modify its value. The
value is available to Python code as sys.executable.

char* Py GetPath()
Return the default module search path; this is computed from the program name (set by
Py SetProgramName() above) and some environment variables. The returned string consists of a
series of directory names separated by a platform dependent delimiter character. The delimiter
character is ‘:’ on Unix, ‘;’ on DOS/Windows, and ‘\n’ (the ascii newline character) on Macin-
tosh. The returned string points into static storage; the caller should not modify its value. The
value is available to Python code as the list sys.path, which may be modified to change the future
search path for loaded modules.

const char* Py GetVersion()
Return the version of this Python interpreter. This is a string that looks something like

"1.5 (#67, Dec 31 1997, 22:34:28) [GCC 2.7.2.2]"

The first word (up to the first space character) is the current Python version; the first three
characters are the major and minor version separated by a period. The returned string points into
static storage; the caller should not modify its value. The value is available to Python code as the
list sys.version.

const char* Py GetPlatform()
Return the platform identifier for the current platform. On Unix, this is formed from the “official”
name of the operating system, converted to lower case, followed by the major revision number;
e.g., for Solaris 2.x, which is also known as SunOS 5.x, the value is "sunos5". On Macintosh, it is
"mac". On Windows, it is "win". The returned string points into static storage; the caller should
not modify its value. The value is available to Python code as sys.platform.

const char* Py GetCopyright()
Return the official copyright string for the current Python version, for example

"Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam"

The returned string points into static storage; the caller should not modify its value. The value is
available to Python code as the list sys.copyright.

const char* Py GetCompiler()
Return an indication of the compiler used to build the current Python version, in square brackets,
for example:

"[GCC 2.7.2.2]"

41

The returned string points into static storage; the caller should not modify its value. The value is
available to Python code as part of the variable sys.version.

const char* Py GetBuildInfo()
Return information about the sequence number and build date and time of the current Python
interpreter instance, for example

"#67, Aug 1 1997, 22:34:28"

The returned string points into static storage; the caller should not modify its value. The value is
available to Python code as part of the variable sys.version.

int PySys SetArgv(int argc, char **argv)
Set sys.argv based on argc and argv . These parameters are similar to those passed to the pro-
gram’s main() function with the difference that the first entry should refer to the script file to be
executed rather than the executable hosting the Python interpreter. If there isn’t a script that will
be run, the first entry in argv can be an empty string. If this function fails to initialize sys.argv,
a fatal condition is signalled using Py FatalError().

8.1 Thread State and the Global Interpreter Lock

The Python interpreter is not fully thread safe. In order to support multi-threaded Python programs,
there’s a global lock that must be held by the current thread before it can safely access Python objects.
Without the lock, even the simplest operations could cause problems in a multi-threaded program: for
example, when two threads simultaneously increment the reference count of the same object, the reference
count could end up being incremented only once instead of twice.

Therefore, the rule exists that only the thread that has acquired the global interpreter lock may operate
on Python objects or call Python/C API functions. In order to support multi-threaded Python programs,
the interpreter regularly releases and reacquires the lock — by default, every ten bytecode instructions
(this can be changed with sys.setcheckinterval()). The lock is also released and reacquired around
potentially blocking I/O operations like reading or writing a file, so that other threads can run while the
thread that requests the I/O is waiting for the I/O operation to complete.

The Python interpreter needs to keep some bookkeeping information separate per thread — for this it
uses a data structure called PyThreadState. This is new in Python 1.5; in earlier versions, such state
was stored in global variables, and switching threads could cause problems. In particular, exception
handling is now thread safe, when the application uses sys.exc info() to access the exception last
raised in the current thread.

There’s one global variable left, however: the pointer to the current PyThreadState structure. While
most thread packages have a way to store “per-thread global data,” Python’s internal platform in-
dependent thread abstraction doesn’t support this yet. Therefore, the current thread state must be
manipulated explicitly.

This is easy enough in most cases. Most code manipulating the global interpreter lock has the following
simple structure:

Save the thread state in a local variable.

Release the interpreter lock.

...Do some blocking I/O operation...

Reacquire the interpreter lock.

Restore the thread state from the local variable.

This is so common that a pair of macros exists to simplify it:

42 Chapter 8. Initialization, Finalization, and Threads

Py_BEGIN_ALLOW_THREADS

...Do some blocking I/O operation...

Py_END_ALLOW_THREADS

The Py BEGIN ALLOW THREADS macro opens a new block and declares a hidden local variable; the
Py END ALLOW THREADS macro closes the block. Another advantage of using these two macros is that
when Python is compiled without thread support, they are defined empty, thus saving the thread state
and lock manipulations.

When thread support is enabled, the block above expands to the following code:

PyThreadState *_save;

_save = PyEval_SaveThread();

...Do some blocking I/O operation...

PyEval_RestoreThread(_save);

Using even lower level primitives, we can get roughly the same effect as follows:

PyThreadState *_save;

_save = PyThreadState_Swap(NULL);

PyEval_ReleaseLock();

...Do some blocking I/O operation...

PyEval_AcquireLock();

PyThreadState_Swap(_save);

There are some subtle differences; in particular, PyEval RestoreThread() saves and restores the value
of the global variable errno, since the lock manipulation does not guarantee that errno is left alone.
Also, when thread support is disabled, PyEval SaveThread() and PyEval RestoreThread() don’t
manipulate the lock; in this case, PyEval ReleaseLock() and PyEval AcquireLock() are not available.
This is done so that dynamically loaded extensions compiled with thread support enabled can be loaded
by an interpreter that was compiled with disabled thread support.

The global interpreter lock is used to protect the pointer to the current thread state. When releasing
the lock and saving the thread state, the current thread state pointer must be retrieved before the lock
is released (since another thread could immediately acquire the lock and store its own thread state in
the global variable). Reversely, when acquiring the lock and restoring the thread state, the lock must be
acquired before storing the thread state pointer.

Why am I going on with so much detail about this? Because when threads are created from C, they
don’t have the global interpreter lock, nor is there a thread state data structure for them. Such threads
must bootstrap themselves into existence, by first creating a thread state data structure, then acquiring
the lock, and finally storing their thread state pointer, before they can start using the Python/C API.
When they are done, they should reset the thread state pointer, release the lock, and finally free their
thread state data structure.

When creating a thread data structure, you need to provide an interpreter state data structure. The
interpreter state data structure hold global data that is shared by all threads in an interpreter, for
example the module administration (sys.modules). Depending on your needs, you can either create a
new interpreter state data structure, or share the interpreter state data structure used by the Python
main thread (to access the latter, you must obtain the thread state and access its interp member; this
must be done by a thread that is created by Python or by the main thread after Python is initialized).

PyInterpreterState
This data structure represents the state shared by a number of cooperating threads. Threads
belonging to the same interpreter share their module administration and a few other internal

8.1. Thread State and the Global Interpreter Lock 43

items. There are no public members in this structure.

Threads belonging to different interpreters initially share nothing, except process state like available
memory, open file descriptors and such. The global interpreter lock is also shared by all threads,
regardless of to which interpreter they belong.

PyThreadState
This data structure represents the state of a single thread. The only public data member is
PyInterpreterState *interp, which points to this thread’s interpreter state.

void PyEval InitThreads()
Initialize and acquire the global interpreter lock. It should be called in the main thread before cre-
ating a second thread or engaging in any other thread operations such as PyEval ReleaseLock()
or PyEval ReleaseThread(tstate). It is not needed before calling PyEval SaveThread() or
PyEval RestoreThread().

This is a no-op when called for a second time. It is safe to call this function before calling
Py Initialize().

When only the main thread exists, no lock operations are needed. This is a common situation (most
Python programs do not use threads), and the lock operations slow the interpreter down a bit.
Therefore, the lock is not created initially. This situation is equivalent to having acquired the lock:
when there is only a single thread, all object accesses are safe. Therefore, when this function initial-
izes the lock, it also acquires it. Before the Python thread module creates a new thread, knowing
that either it has the lock or the lock hasn’t been created yet, it calls PyEval InitThreads().
When this call returns, it is guaranteed that the lock has been created and that it has acquired it.

It is not safe to call this function when it is unknown which thread (if any) currently has the global
interpreter lock.

This function is not available when thread support is disabled at compile time.

void PyEval AcquireLock()
Acquire the global interpreter lock. The lock must have been created earlier. If this thread already
has the lock, a deadlock ensues. This function is not available when thread support is disabled at
compile time.

void PyEval ReleaseLock()
Release the global interpreter lock. The lock must have been created earlier. This function is not
available when thread support is disabled at compile time.

void PyEval AcquireThread(PyThreadState *tstate)
Acquire the global interpreter lock and then set the current thread state to tstate, which should
not be NULL. The lock must have been created earlier. If this thread already has the lock, deadlock
ensues. This function is not available when thread support is disabled at compile time.

void PyEval ReleaseThread(PyThreadState *tstate)
Reset the current thread state to NULL and release the global interpreter lock. The lock must have
been created earlier and must be held by the current thread. The tstate argument, which must not
be NULL, is only used to check that it represents the current thread state — if it isn’t, a fatal error
is reported. This function is not available when thread support is disabled at compile time.

PyThreadState* PyEval SaveThread()
Release the interpreter lock (if it has been created and thread support is enabled) and reset the
thread state to NULL, returning the previous thread state (which is not NULL). If the lock has been
created, the current thread must have acquired it. (This function is available even when thread
support is disabled at compile time.)

void PyEval RestoreThread(PyThreadState *tstate)
Acquire the interpreter lock (if it has been created and thread support is enabled) and set the
thread state to tstate, which must not be NULL. If the lock has been created, the current thread
must not have acquired it, otherwise deadlock ensues. (This function is available even when thread
support is disabled at compile time.)

The following macros are normally used without a trailing semicolon; look for example usage in the
Python source distribution.

44 Chapter 8. Initialization, Finalization, and Threads

Py BEGIN ALLOW THREADS
This macro expands to ‘{PyThreadState * save; save = PyEval SaveThread();’. Note that
it contains an opening brace; it must be matched with a following Py END ALLOW THREADS macro.
See above for further discussion of this macro. It is a no-op when thread support is disabled at
compile time.

Py END ALLOW THREADS
This macro expands to ‘PyEval RestoreThread(save); }’. Note that it contains a closing
brace; it must be matched with an earlier Py BEGIN ALLOW THREADS macro. See above for further
discussion of this macro. It is a no-op when thread support is disabled at compile time.

Py BEGIN BLOCK THREADS
This macro expands to ‘PyEval RestoreThread(save);’ i.e. it is equivalent to
Py END ALLOW THREADS without the closing brace. It is a no-op when thread support is disabled
at compile time.

Py BEGIN UNBLOCK THREADS
This macro expands to ‘ save = PyEval SaveThread();’ i.e. it is equivalent to
Py BEGIN ALLOW THREADS without the opening brace and variable declaration. It is a no-op
when thread support is disabled at compile time.

All of the following functions are only available when thread support is enabled at compile time, and
must be called only when the interpreter lock has been created.

PyInterpreterState* PyInterpreterState New()
Create a new interpreter state object. The interpreter lock need not be held, but may be held if it
is necessary to serialize calls to this function.

void PyInterpreterState Clear(PyInterpreterState *interp)
Reset all information in an interpreter state object. The interpreter lock must be held.

void PyInterpreterState Delete(PyInterpreterState *interp)
Destroy an interpreter state object. The interpreter lock need not be held. The interpreter state
must have been reset with a previous call to PyInterpreterState Clear().

PyThreadState* PyThreadState New(PyInterpreterState *interp)
Create a new thread state object belonging to the given interpreter object. The interpreter lock
need not be held, but may be held if it is necessary to serialize calls to this function.

void PyThreadState Clear(PyThreadState *tstate)
Reset all information in a thread state object. The interpreter lock must be held.

void PyThreadState Delete(PyThreadState *tstate)
Destroy a thread state object. The interpreter lock need not be held. The thread state must have
been reset with a previous call to PyThreadState Clear().

PyThreadState* PyThreadState Get()
Return the current thread state. The interpreter lock must be held. When the current thread state
is NULL, this issues a fatal error (so that the caller needn’t check for NULL).

PyThreadState* PyThreadState Swap(PyThreadState *tstate)
Swap the current thread state with the thread state given by the argument tstate, which may be
NULL. The interpreter lock must be held.

8.1. Thread State and the Global Interpreter Lock 45

46

CHAPTER

NINE

Memory Management

9.1 Overview

Memory management in Python involves a private heap containing all Python objects and data struc-
tures. The management of this private heap is ensured internally by the Python memory manager. The
Python memory manager has different components which deal with various dynamic storage management
aspects, like sharing, segmentation, preallocation or caching.

At the lowest level, a raw memory allocator ensures that there is enough room in the private heap
for storing all Python-related data by interacting with the memory manager of the operating system.
On top of the raw memory allocator, several object-specific allocators operate on the same heap and
implement distinct memory management policies adapted to the peculiarities of every object type. For
example, integer objects are managed differently within the heap than strings, tuples or dictionaries
because integers imply different storage requirements and speed/space tradeoffs. The Python memory
manager thus delegates some of the work to the object-specific allocators, but ensures that the latter
operate within the bounds of the private heap.

It is important to understand that the management of the Python heap is performed by the interpreter
itself and that the user has no control on it, even if she regularly manipulates object pointers to memory
blocks inside that heap. The allocation of heap space for Python objects and other internal buffers is
performed on demand by the Python memory manager through the Python/C API functions listed in
this document.

To avoid memory corruption, extension writers should never try to operate on Python objects with the
functions exported by the C library: malloc(), calloc(), realloc() and free(). This will result in
mixed calls between the C allocator and the Python memory manager with fatal consequences, because
they implement different algorithms and operate on different heaps. However, one may safely allocate
and release memory blocks with the C library allocator for individual purposes, as shown in the following
example:

PyObject *res;

char *buf = (char *) malloc(BUFSIZ); /* for I/O */

if (buf == NULL)

return PyErr_NoMemory();

...Do some I/O operation involving buf...

res = PyString_FromString(buf);

free(buf); /* malloc’ed */

return res;

In this example, the memory request for the I/O buffer is handled by the C library allocator. The Python
memory manager is involved only in the allocation of the string object returned as a result.

In most situations, however, it is recommended to allocate memory from the Python heap specifically
because the latter is under control of the Python memory manager. For example, this is required when
the interpreter is extended with new object types written in C. Another reason for using the Python

47

heap is the desire to inform the Python memory manager about the memory needs of the extension
module. Even when the requested memory is used exclusively for internal, highly-specific purposes,
delegating all memory requests to the Python memory manager causes the interpreter to have a more
accurate image of its memory footprint as a whole. Consequently, under certain circumstances, the
Python memory manager may or may not trigger appropriate actions, like garbage collection, memory
compaction or other preventive procedures. Note that by using the C library allocator as shown in
the previous example, the allocated memory for the I/O buffer escapes completely the Python memory
manager.

9.2 Memory Interface

The following function sets, modeled after the ANSI C standard, are available for allocating and releasing
memory from the Python heap:

ANY*
The type used to represent arbitrary blocks of memory. Values of this type should be cast to the
specific type that is needed.

ANY* PyMem Malloc(size t n)
Allocates n bytes and returns a pointer of type ANY* to the allocated memory, or NULL if the request
fails. Requesting zero bytes returns a non-NULL pointer.

ANY* PyMem Realloc(ANY *p, size t n)
Resizes the memory block pointed to by p to n bytes. The contents will be unchanged to the
minimum of the old and the new sizes. If p is NULL, the call is equivalent to PyMem Malloc(n);
if n is equal to zero, the memory block is resized but is not freed, and the returned pointer is
non-NULL. Unless p is NULL, it must have been returned by a previous call to PyMem Malloc() or
PyMem Realloc().

void PyMem Free(ANY *p)
Frees the memory block pointed to by p, which must have been returned by a previous call to
PyMem Malloc() or PyMem Realloc(). Otherwise, or if PyMem Free(p) has been called before,
undefined behaviour occurs. If p is NULL, no operation is performed.

ANY* Py Malloc(size t n)
Same as PyMem Malloc(), but calls PyErr NoMemory() on failure.

ANY* Py Realloc(ANY *p, size t n)
Same as PyMem Realloc(), but calls PyErr NoMemory() on failure.

void Py Free(ANY *p)
Same as PyMem Free().

The following type-oriented macros are provided for convenience. Note that TYPE refers to any C type.

TYPE* PyMem NEW(TYPE, size t n)
Same as PyMem Malloc(), but allocates (n * sizeof(TYPE)) bytes of memory. Returns a
pointer cast to TYPE*.

TYPE* PyMem RESIZE(ANY *p, TYPE, size t n)
Same as PyMem Realloc(), but the memory block is resized to (n * sizeof(TYPE)) bytes.
Returns a pointer cast to TYPE*.

void PyMem DEL(ANY *p)
Same as PyMem Free().

9.3 Examples

Here is the example from section 9.1, rewritten so that the I/O buffer is allocated from the Python heap
by using the first function set:

48 Chapter 9. Memory Management

PyObject *res;

char *buf = (char *) PyMem_Malloc(BUFSIZ); /* for I/O */

if (buf == NULL)

return PyErr_NoMemory();

/* ...Do some I/O operation involving buf... */

res = PyString_FromString(buf);

PyMem_Free(buf); /* allocated with PyMem_Malloc */

return res;

With the second function set, the need to call PyErr NoMemory() is obviated:

PyObject *res;

char *buf = (char *) Py_Malloc(BUFSIZ); /* for I/O */

if (buf == NULL)

return NULL;

/* ...Do some I/O operation involving buf... */

res = PyString_FromString(buf);

Py_Free(buf); /* allocated with Py_Malloc */

return res;

The same code using the macro set:

PyObject *res;

char *buf = PyMem_NEW(char, BUFSIZ); /* for I/O */

if (buf == NULL)

return PyErr_NoMemory();

/* ...Do some I/O operation involving buf... */

res = PyString_FromString(buf);

PyMem_DEL(buf); /* allocated with PyMem_NEW */

return res;

Note that in the three examples above, the buffer is always manipulated via functions/macros belonging
to the same set. Indeed, it is required to use the same memory API family for a given memory block,
so that the risk of mixing different allocators is reduced to a minimum. The following code sequence
contains two errors, one of which is labeled as fatal because it mixes two different allocators operating
on different heaps.

char *buf1 = PyMem_NEW(char, BUFSIZ);

char *buf2 = (char *) malloc(BUFSIZ);

char *buf3 = (char *) PyMem_Malloc(BUFSIZ);

...

PyMem_DEL(buf3); /* Wrong -- should be PyMem_Free() */

free(buf2); /* Right -- allocated via malloc() */

free(buf1); /* Fatal -- should be PyMem_DEL() */

In addition to the functions aimed at handling raw memory blocks from the Python heap, objects in
Python are allocated and released with PyObject New() and PyObject NewVar(), or with their
corresponding macros PyObject NEW() and PyObject NEW VAR().

9.3. Examples 49

50

CHAPTER

TEN

Defining New Object Types

PyObject* PyObject New(PyTypeObject *type)
Return value: New reference.

PyObject* PyObject NewVar(PyTypeObject *type, int size)
Return value: New reference.

TYPE PyObject NEW(TYPE, PyTypeObject *type)

TYPE PyObject NEW VAR(TYPE, PyTypeObject *type, int size)

Py InitModule (!!!)

PyArg ParseTupleAndKeywords, PyArg ParseTuple, PyArg Parse

Py BuildValue

DL IMPORT

Py* Check

Py NoneStruct

10.1 Common Object Structures

PyObject, PyVarObject

PyObject HEAD, PyObject HEAD INIT, PyObject VAR HEAD

Typedefs: unaryfunc, binaryfunc, ternaryfunc, inquiry, coercion, intargfunc, intintargfunc, intobjarg-
proc, intintobjargproc, objobjargproc, destructor, printfunc, getattrfunc, getattrofunc, setattrfunc, se-
tattrofunc, cmpfunc, reprfunc, hashfunc

10.2 Mapping Object Structures

PyMappingMethods
Structure used to hold pointers to the functions used to implement the mapping protocol for an
extension type.

10.3 Number Object Structures

PyNumberMethods
Structure used to hold pointers to the functions an extension type uses to implement the number
protocol.

51

10.4 Sequence Object Structures

PySequenceMethods
Structure used to hold pointers to the functions which an object uses to implement the sequence
protocol.

10.5 Buffer Object Structures

The buffer interface exports a model where an object can expose its internal data as a set of chunks of
data, where each chunk is specified as a pointer/length pair. These chunks are called segments and are
presumed to be non-contiguous in memory.

If an object does not export the buffer interface, then its tp as buffer member in the PyTypeObject
structure should be NULL. Otherwise, the tp as buffer will point to a PyBufferProcs structure.

Note: It is very important that your PyTypeObject structure uses Py TPFLAGS DEFAULT for the value of
the tp flags member rather than 0. This tells the Python runtime that your PyBufferProcs structure
contains the bf getcharbuffer slot. Older versions of Python did not have this member, so a new
Python interpreter using an old extension needs to be able to test for its presence before using it.

PyBufferProcs
Structure used to hold the function pointers which define an implementation of the buffer protocol.

The first slot is bf getreadbuffer, of type getreadbufferproc. If this slot is NULL, then the
object does not support reading from the internal data. This is non-sensical, so implementors
should fill this in, but callers should test that the slot contains a non-NULL value.

The next slot is bf getwritebuffer having type getwritebufferproc. This slot may be NULL if
the object does not allow writing into its returned buffers.

The third slot is bf getsegcount, with type getsegcountproc. This slot must not be NULL
and is used to inform the caller how many segments the object contains. Simple objects such as
PyString Type and PyBuffer Type objects contain a single segment.

The last slot is bf getcharbuffer, of type getcharbufferproc. This slot will only be present
if the Py TPFLAGS HAVE GETCHARBUFFER flag is present in the tp flags field of the object’s
PyTypeObject. Before using this slot, the caller should test whether it is present by using the
PyType HasFeature() function. If present, it may be NULL, indicating that the object’s contents
cannot be used as 8-bit characters. The slot function may also raise an error if the object’s
contents cannot be interpreted as 8-bit characters. For example, if the object is an array which
is configured to hold floating point values, an exception may be raised if a caller attempts to use
bf getcharbuffer to fetch a sequence of 8-bit characters. This notion of exporting the internal
buffers as “text” is used to distinguish between objects that are binary in nature, and those which
have character-based content.

Note: The current policy seems to state that these characters may be multi-byte characters. This
implies that a buffer size of N does not mean there are N characters present.

Py TPFLAGS HAVE GETCHARBUFFER
Flag bit set in the type structure to indicate that the bf getcharbuffer slot is known. This being
set does not indicate that the object supports the buffer interface or that the bf getcharbuffer
slot is non-NULL.

int (*getreadbufferproc) (PyObject *self, int segment, void **ptrptr)
Return a pointer to a readable segment of the buffer. This function is allowed to raise an exception,
in which case it must return -1. The segment which is passed must be zero or positive, and strictly
less than the number of segments returned by the bf getsegcount slot function. On success,
returns 0 and sets *ptrptr to a pointer to the buffer memory.

int (*getwritebufferproc) (PyObject *self, int segment, void **ptrptr)
Return a pointer to a writable memory buffer in *ptrptr ; the memory buffer must correspond
to buffer segment segment . Must return -1 and set an exception on error. TypeError should

52 Chapter 10. Defining New Object Types

be raised if the object only supports read-only buffers, and SystemError should be raised when
segment specifies a segment that doesn’t exist.

int (*getsegcountproc) (PyObject *self, int *lenp)
Return the number of memory segments which comprise the buffer. If lenp is not NULL, the
implementation must report the sum of the sizes (in bytes) of all segments in *lenp. The function
cannot fail.

int (*getcharbufferproc) (PyObject *self, int segment, const char **ptrptr)

10.5. Buffer Object Structures 53

54

INDEX

Symbols
PyImport FindExtension(), 18
PyImport Fini(), 18
PyImport FixupExtension(), 19
PyImport Init(), 18
PyObject NEW(), 51
PyObject NEW VAR(), 51
PyObject New(), 51
PyObject New(), 49
PyObject NewVar(), 51
PyObject NewVar(), 49
PyString Resize(), 28
PyTuple Resize(), 30
Py c diff(), 35
Py c neg(), 35
Py c pow(), 35
Py c prod(), 35
Py c quot(), 35
Py c sum(), 35
all , 18
builtin (built-in module), 7, 39
dict , 37
doc , 37
file , 37
import (), 18
main (built-in module), 7, 39
name , 37

frozen, 19

A
abort(), 17
abs(), 24
ANY*, 48
apply(), 22
argv, 42

B
buffer

object, 29
buffer interface, 29
BufferType, 29

C
calloc(), 47
cleanup functions, 17

close(), 40
cmp(), 22
CObject

object, 37
coerce(), 24
compile(), 18
complex number

object, 34
copyright, 41

D
dictionary

object, 32
DictionaryType, 32
DictType, 32
divmod(), 23

E
environment variables

$PATH, 8
$PYTHONHOME, 8
$PYTHONPATH, 8
$exec prefix, 1, 2
$prefix, 1, 2

EOFError, 36
errno, 43
exc info(), 6, 42
exc traceback, 5, 13
exc type, 5, 13
exc value, 5, 13
Exception, 15, 16
$exec prefix, 1, 2
executable, 41
exit(), 17

F
file

object, 35
FileType, 35
float(), 24
floating point

object, 34
FloatType, 34
fopen(), 36
free(), 47
freeze utility, 19

55

G
getcharbufferproc, 53
getreadbufferproc, 52
getsegcountproc, 53
getwritebufferproc, 52
global interpreter lock, 42

H
hash(), 22

I
ihooks (standard module), 18
incr item(), 6, 7
int(), 24
integer

object, 33
interpreter lock, 42
IntType, 33

K
KeyboardInterrupt, 14, 15

L
len(), 22, 25, 26, 31, 32
list

object, 31
ListType, 31
lock, interpreter, 42
long integer

object, 33
long(), 24
LONG MAX, 33
LongType, 33

M
main(), 40, 42
malloc(), 47
mapping

object, 32
module

object, 36
search path, 7, 39, 41

modules, 18, 39
ModuleType, 36

N
None

object, 27
numeric

object, 33

O
object

buffer, 29
CObject, 37
complex number, 34
dictionary, 32

file, 35
floating point, 34
integer, 33
list, 31
long integer, 33
mapping, 32
module, 36
None, 27
numeric, 33
sequence, 27
string, 28
tuple, 30
type, 2, 27

P
package variable

all , 18
$PATH, 8
path

module search, 7, 39, 41
path, 7, 39, 41
platform, 41
pow(), 23
$prefix, 1, 2
Py AtExit(), 17
Py BEGIN ALLOW THREADS, 43, 45
Py BEGIN BLOCK THREADS, 45
Py BEGIN UNBLOCK THREADS, 45
Py CompileString(), 9
Py CompileString(), 10
Py complex, 34
Py DECREF(), 11
Py DECREF(), 2
Py END ALLOW THREADS, 43, 45
Py END OF BUFFER, 29
Py EndInterpreter(), 40
Py eval input, 10
Py Exit(), 17
Py FatalError(), 17
Py FatalError(), 42
Py FdIsInteractive(), 17
Py file input, 10
Py Finalize(), 39
Py Finalize(), 17, 39, 40
Py Free(), 48
Py GetBuildInfo(), 42
Py GetCompiler(), 41
Py GetCopyright(), 41
Py GetExecPrefix(), 40
Py GetExecPrefix(), 8
Py GetPath(), 41
Py GetPath(), 8, 40
Py GetPlatform(), 41
Py GetPrefix(), 40
Py GetPrefix(), 8
Py GetProgramFullPath(), 41
Py GetProgramFullPath(), 8
Py GetProgramName(), 40

56 Index

Py GetVersion(), 41
Py INCREF(), 11
Py INCREF(), 2
Py Initialize(), 39
Py Initialize(), 7, 40, 44
Py IsInitialized(), 39
Py IsInitialized(), 8
Py Malloc(), 48
Py NewInterpreter(), 39
Py None, 27
Py PRINT RAW, 36
Py Realloc(), 48
Py SetProgramName(), 40
Py SetProgramName(), 8, 39–41
Py single input, 10
Py TPFLAGS HAVE GETCHARBUFFER, 52
Py XDECREF(), 11
Py XDECREF(), 7
Py XINCREF(), 11
PyBuffer Check(), 29
PyBuffer FromMemory(), 30
PyBuffer FromObject(), 29
PyBuffer FromReadWriteMemory(), 30
PyBuffer FromReadWriteObject(), 29
PyBuffer New(), 30
PyBuffer Type, 29
PyBufferObject, 29
PyBufferProcs, 29, 52
PyCallable Check(), 22
PyCObject, 37
PyCObject AsVoidPtr(), 37
PyCObject Check(), 37
PyCObject FromVoidPtr(), 37
PyCObject FromVoidPtrAndDesc(), 37
PyCObject GetDesc(), 37
PyComplex AsCComplex(), 35
PyComplex Check(), 35
PyComplex FromCComplex(), 35
PyComplex FromDoubles(), 35
PyComplex ImagAsDouble(), 35
PyComplex RealAsDouble(), 35
PyComplex Type, 35
PyComplexObject, 35
PyDict Check(), 32
PyDict Clear(), 32
PyDict DelItem(), 32
PyDict DelItemString(), 32
PyDict GetItem(), 32
PyDict GetItemString(), 32
PyDict Items(), 32
PyDict Keys(), 32
PyDict New(), 32
PyDict Next(), 33
PyDict SetItem(), 32
PyDict SetItemString(), 32
PyDict Size(), 32
PyDict Type, 32
PyDict Values(), 32

PyDictObject, 32
PyErr BadArgument(), 14
PyErr BadInternalCall(), 14
PyErr CheckSignals(), 14
PyErr Clear(), 13
PyErr Clear(), 5, 7
PyErr ExceptionMatches(), 13
PyErr ExceptionMatches(), 7
PyErr Fetch(), 13
PyErr GivenExceptionMatches(), 13
PyErr NewException(), 15
PyErr NoMemory(), 14
PyErr NormalizeException(), 13
PyErr Occurred(), 13
PyErr Occurred(), 5
PyErr Print(), 13
PyErr Restore(), 14
PyErr SetFromErrno(), 14
PyErr SetInterrupt(), 14
PyErr SetNone(), 14
PyErr SetObject(), 14
PyErr SetString(), 14
PyErr SetString(), 5
PyEval AcquireLock(), 44
PyEval AcquireLock(), 39, 43
PyEval AcquireThread(), 44
PyEval InitThreads(), 44
PyEval InitThreads(), 39
PyEval ReleaseLock(), 44
PyEval ReleaseLock(), 39, 43, 44
PyEval ReleaseThread(), 44
PyEval ReleaseThread(), 44
PyEval RestoreThread(), 44
PyEval RestoreThread(), 43, 44
PyEval SaveThread(), 44
PyEval SaveThread(), 43, 44
PyFile AsFile(), 36
PyFile Check(), 35
PyFile FromFile(), 36
PyFile FromString(), 36
PyFile GetLine(), 36
PyFile Name(), 36
PyFile SetBufSize(), 36
PyFile SoftSpace(), 36
PyFile Type, 35
PyFile WriteObject(), 36
PyFile WriteString(), 36
PyFileObject, 35
PyFloat AS DOUBLE(), 34
PyFloat AsDouble(), 34
PyFloat Check(), 34
PyFloat FromDouble(), 34
PyFloat Type, 34
PyFloatObject, 34
PyImport AddModule(), 18
PyImport Cleanup(), 18
PyImport ExecCodeModule(), 18
PyImport FrozenModules, 19

Index 57

PyImport GetMagicNumber(), 18
PyImport GetModuleDict(), 18
PyImport Import(), 18
PyImport ImportFrozenModule(), 19
PyImport ImportModule(), 17
PyImport ImportModuleEx(), 18
PyImport ReloadModule(), 18
PyInt AS LONG(), 33
PyInt AsLong(), 33
PyInt Check(), 33
PyInt FromLong(), 33
PyInt GetMax(), 33
PyInt Type, 33
PyInterpreterState, 43
PyInterpreterState Clear(), 45
PyInterpreterState Delete(), 45
PyInterpreterState New(), 45
PyIntObject, 33
PyList Append(), 31
PyList AsTuple(), 31
PyList Check(), 31
PyList GET ITEM(), 31
PyList GET SIZE(), 31
PyList GetItem(), 31
PyList GetItem(), 4
PyList GetSlice(), 31
PyList Insert(), 31
PyList New(), 31
PyList Reverse(), 31
PyList SET ITEM(), 31
PyList SetItem(), 31
PyList SetItem(), 3
PyList SetSlice(), 31
PyList Size(), 31
PyList Sort(), 31
PyList Type, 31
PyListObject, 31
PyLong AsDouble(), 34
PyLong AsLong(), 33
PyLong AsUnsignedLong(), 34
PyLong Check(), 33
PyLong FromDouble(), 33
PyLong FromLong(), 33
PyLong FromString(), 34
PyLong FromUnsignedLong(), 33
PyLong Type, 33
PyLongObject, 33
PyMapping Check(), 25
PyMapping DelItem(), 26
PyMapping DelItemString(), 26
PyMapping GetItemString(), 26
PyMapping HasKey(), 26
PyMapping HasKeyString(), 26
PyMapping Items(), 26
PyMapping Keys(), 26
PyMapping Length(), 25
PyMapping SetItemString(), 26
PyMapping Values(), 26

PyMappingMethods, 51
PyMem DEL(), 48
PyMem Free(), 48
PyMem Malloc(), 48
PyMem NEW(), 48
PyMem Realloc(), 48
PyMem RESIZE(), 48
PyModule Check(), 36
PyModule GetDict(), 37
PyModule GetFilename(), 37
PyModule GetName(), 37
PyModule New(), 36
PyModule Type, 36
PyNumber Absolute(), 24
PyNumber Add(), 23
PyNumber And(), 24
PyNumber Check(), 23
PyNumber Coerce(), 24
PyNumber Divide(), 23
PyNumber Divmod(), 23
PyNumber Float(), 24
PyNumber Int(), 24
PyNumber Invert(), 24
PyNumber Long(), 24
PyNumber Lshift(), 24
PyNumber Multiply(), 23
PyNumber Negative(), 23
PyNumber Or(), 24
PyNumber Positive(), 23
PyNumber Power(), 23
PyNumber Remainder(), 23
PyNumber Rshift(), 24
PyNumber Subtract(), 23
PyNumber Xor(), 24
PyNumberMethods, 51
PyObject CallFunction(), 22
PyObject CallMethod(), 22
PyObject CallObject(), 22
PyObject Cmp(), 21
PyObject Compare(), 22
PyObject DelAttr(), 21
PyObject DelAttrString(), 21
PyObject DelItem(), 23
PyObject GetAttr(), 21
PyObject GetAttrString(), 21
PyObject GetItem(), 23
PyObject HasAttr(), 21
PyObject HasAttrString(), 21
PyObject Hash(), 22
PyObject IsTrue(), 22
PyObject Length(), 22
PyObject NEW(), 49
PyObject NEW VAR(), 49
PyObject Print(), 21
PyObject Repr(), 22
PyObject SetAttr(), 21
PyObject SetAttrString(), 21
PyObject SetItem(), 23

58 Index

PyObject Str(), 22
PyObject Type(), 22
PyOS GetLastModificationTime(), 17
PyParser SimpleParseFile(), 9
PyParser SimpleParseString(), 9
PyRun AnyFile(), 9
PyRun File(), 9
PyRun InteractiveLoop(), 9
PyRun InteractiveOne(), 9
PyRun SimpleFile(), 9
PyRun SimpleString(), 9
PyRun String(), 9
PySequence Check(), 24
PySequence Concat(), 25
PySequence Contains(), 25
PySequence Count(), 25
PySequence DelItem(), 25
PySequence DelSlice(), 25
PySequence GetItem(), 25
PySequence GetItem(), 4
PySequence GetSlice(), 25
PySequence Index(), 25
PySequence Length(), 25
PySequence Repeat(), 25
PySequence SetItem(), 25
PySequence SetSlice(), 25
PySequence Tuple(), 25
PySequenceMethods, 52
PyString AS STRING(), 28
PyString AsString(), 28
PyString Check(), 28
PyString Concat(), 28
PyString ConcatAndDel(), 28
PyString Format(), 28
PyString FromString(), 28
PyString FromString(), 32
PyString FromStringAndSize(), 28
PyString GET SIZE(), 28
PyString InternFromString(), 28
PyString InternInPlace(), 28
PyString Size(), 28
PyString Type, 28
PyStringObject, 28
PySys SetArgv(), 42
PySys SetArgv(), 7, 39
$PYTHONHOME, 8
$PYTHONPATH, 8
PyThreadState, 42, 44
PyThreadState Clear(), 45
PyThreadState Delete(), 45
PyThreadState Get(), 45
PyThreadState New(), 45
PyThreadState Swap(), 45
PyTuple Check(), 30
PyTuple GET ITEM(), 30
PyTuple GetItem(), 30
PyTuple GetSlice(), 30
PyTuple New(), 30

PyTuple SET ITEM(), 30
PyTuple SetItem(), 30
PyTuple SetItem(), 3
PyTuple Size(), 30
PyTuple Type, 30
PyTupleObject, 30
PyType Check(), 27
PyType HasFeature(), 27
PyType HasFeature(), 52
PyType Type, 27
PyTypeObject, 27

R
realloc(), 47
reload(), 18
repr(), 22
rexec (standard module), 18

S
search

path, module, 7, 39, 41
sequence

object, 27
set all(), 4
setcheckinterval(), 42
setvbuf(), 36
SIGINT, 14
signal (built-in module), 14
softspace, 36
stderr, 39
stdin, 39
stdout, 39
str(), 22
strerror(), 14
string

object, 28
StringType, 28
sum list(), 4
sum sequence(), 5, 6
sys (built-in module), 7, 39
SystemError, 37

T
thread (built-in module), 44
tuple

object, 30
tuple(), 25, 32
TupleType, 30
type

object, 2, 27
type(), 22
TypeType, 27

U
ULONG MAX, 34

V
version, 41, 42

Index 59

	1 Introduction
	1.1 Include Files
	1.2 Objects, Types and Reference Counts
	1.2.1 Reference Counts
	Reference Count Details

	1.2.2 Types

	1.3 Exceptions
	1.4 Embedding Python

	2 The Very High Level Layer
	3 Reference Counting
	4 Exception Handling
	4.1 Standard Exceptions
	4.2 Deprecation of String Exceptions

	5 Utilities
	5.1 OS Utilities
	5.2 Process Control
	5.3 Importing Modules

	6 Abstract Objects Layer
	6.1 Object Protocol
	6.2 Number Protocol
	6.3 Sequence Protocol
	6.4 Mapping Protocol

	7 Concrete Objects Layer
	7.1 Fundamental Objects
	7.1.1 Type Objects
	7.1.2 The None Object

	7.2 Sequence Objects
	7.2.1 String Objects
	7.2.2 Buffer Objects
	7.2.3 Tuple Objects
	7.2.4 List Objects

	7.3 Mapping Objects
	7.3.1 Dictionary Objects

	7.4 Numeric Objects
	7.4.1 Plain Integer Objects
	7.4.2 Long Integer Objects
	7.4.3 Floating Point Objects
	7.4.4 Complex Number Objects
	Complex Numbers as C Structures
	Complex Numbers as Python Objects

	7.5 Other Objects
	7.5.1 File Objects
	7.5.2 Module Objects
	7.5.3 CObjects

	8 Initialization, Finalization, and Threads
	8.1 Thread State and the Global Interpreter Lock

	9 Memory Management
	9.1 Overview
	9.2 Memory Interface
	9.3 Examples

	10 Defining New Object Types
	10.1 Common Object Structures
	10.2 Mapping Object Structures
	10.3 Number Object Structures
	10.4 Sequence Object Structures
	10.5 Buffer Object Structures

	Index

