
PVS 3.0 release notes

Sam Owre <owre@csl.sri.com>, SRI International

Chapter 1: Overview 1

1 Overview

We are still working on updating the documentation, and completion of the ICS (http://ics.csl.sri.com)
decision procedures. Please let us know of any bugs or suggestions you have by sending
them to pvs-bugs@csl.sri.com (mailto:pvs-bugs@csl.sri.com)
You can download it here (download.html).
In addition to the usual bug fixes, there are quite a few changes to this release. Most
of these changes are backward compatible, but the new multiple proofs feature makes it
difficult to run PVS 3.0 in a given context and then revert back to an earlier version. For
this reason we strongly suggest that you copy existing directories (especially the proof files)
before running PVS 3.0 on existing specifications.

2 PVS 3.0 Release Notes

Chapter 2: New Features 3

2 New Features

There are a number of new features in PVS 3.0.

2.1 Allegro 6.2 port

PVS 3.0 has been ported to the case-sensitive version of Allegro version 6.0. This was done
in order to be able to use the XML support provided by Allegro 6.0. We plan to both write
and read XML abstract syntax for PVS, which should make it easier to interact with other
systems.

Note: for the most part, you may continue to define pvs-strategies (and the files they load) as
case insensitive, but in general this cannot always be done correctly, and it means that you
cannot load such files directly at the lisp prompt. If you suspect that your strategies are not
being handled properly, try changing it to all lower case (except in specific cases), and see
if that helps. If not, send the strategies file to pvs-bugs (mailto:pvs-bugs@csl-sri.com)
and we’ll fix it as quickly as we can. Because there is no way to handle it robustly, and
since case-sensitivity can actually be useful, in the future we may no longer support mixed
cases in strategy files.

2.2 Theory Interpretations

Theory interpretations are described fully in Theory Interpretations in PVS (doc/interpretations.html)

NOTES:

• This introduces one backward incompatible change; theory abbreviations such as

foo: THEORY = bar[int, 3]

should be changed to the new form

IMPORTING bar[int, 3] AS foo

Note that ‘AS’ is a new keyword, and may cause parse errors where none existed before.

• The stacks example doesn’t work as given; in particular, the mappings for push, top,
and pop should be changed to

push := LAMBDA (x: t, A: E[cstack, ce]):
equiv_class[cstack,ce](cpush(x)(rep(A))),

top := LAMBDA (A: E[cstack, ce] | cnonempty?(rep(A))): ctop(rep(A)),
pop := LAMBDA (A: E[cstack, ce] | cnonempty?(rep(A))):

equiv_class[cstack,ce](cpop(rep(A)))

Otherwise unprovable TCCs result (e.g., every stack is nonempty).

4 PVS 3.0 Release Notes

2.3 Multiple Proofs

PVS now supports multiple proofs for a given formula. When a proof attempt is completed,
either by quitting or successfully completing the proof, the proof is checked for changes. If
any changes have occured, the user is queried about whether to save the proof, and whether
to overwrite the current proof or to create a new proof. If a new proof is created, the user
is prompted for a proof identifier and description.
In addition to a proof identifier, description, and proof script, the proof objects contain the
status, the date of creation, the date last run, and the run time. Note that this information
is kept in the .prf files, which therefore look different from those of earlier PVS versions.
Every formula that has proofs has a default proof, which is used for most of the existing
commands, such as prove, prove-theory, and status-proofchain. Whenever a proof is saved,
it automatically becomes the default.
Three new Emacs commands allow for browsing and manipulating multiple proofs:
display-proofs-formula, display-proofs-theory, and display-proofs-pvs-file.
These commands all pop up buffers with a table of proofs. The default proof is marked
with a ‘+’. Within such buffers, the following keys have the following effects.

Key Effect

c Change description: add or change the description for the proof

d Default proof: set the default to the specified proof

e Edit proof: bring up a Proof buffer for the specified proof; the proof may then
be applied to other formulas

p Prove: rerun the specified proof (makes it the default)

q Quit: exit the Proof buffer

r Rename proof: rename the specified proof

s Show proof: Show the specified proof in a Proof:id buffer

DEL Delete proof: delete the specified proof from the formula

At the end of a proof a number of questions may be asked:
• Would you like the proof to be saved?
• Would you like to overwrite the current proof?
• Please enter an id
• Please enter a description:

This may be annoying to some users, so the command M-x pvs-set-proof-prompt-
behavior was added to control this. The possible values are:

:ask the default; all four questions are asked

:overwrite
similar to earlier PVS versions; asks if the proof should be saved and then
simply overwrites the earlier one.

Chapter 2: New Features 5

:add asks if the proof should be saved, then creates a new proof with a generated id
and empty description.

Note that the id and description may be modified later using the commands described
earlier in this section.

2.4 Better Library Support

PVS now uses the PVS_LIBRARY_PATH environment variable to look for library pathnames,
allowing libraries to be specified as simple (subdirectory) names. This is an extension of the
way, for example, the finite_sets library is found relative to the PVS installation path -
in fact it is implicitly appended to the end the PVS_LIBRARY_PATH.
The .pvscontext file stores, amongst other things, library dependencies. Any library found
as a subdirectory of a path in the PVS_LIBRARY_PATH is stored as simply the subdirectory
name. Thus if the .pvscontext file is included in a tar file, it may be untarred on a
different machine as long as the needed libraries may be found in the PVS_LIBRARY_PATH.
This makes libraries much more portable.
In addition, the load-prelude-library command now automatically loads the pvs-lib.el
file, if it exists, into Emacs and the pvs-lib.lisp file, if it exists, into lisp, allowing the
library to add new features, e.g., key-bindings. Note that the pvs-lib.lisp file is not
needed for new strategies, which should go into the pvs-strategies file as usual. The
difference is that the pvs-strategies file is only loaded when a proof is started, and it
may be desirable to have some lisp code that is loaded when the library is, i.e., to support
some new Emacs key-bindings.
The PVS_LIBRARY_PATH is a colon-separated list of paths, and the lib subdirectory of the
PVS path is added implicitly at the end. Note that the paths given in the PVS_LIBRARY_
PATH are expected to have subdirectories, e.g., if you have put Ben Di Vito’s Manip-package
(http://shemesh.larc.nasa.gov/people/bld/manip.html) in ~/pvs-libs/Manip-1.0,
then your PVS_LIBRARY_PATH should only include ~/pvs-libs, not ~/pvs-libs/Manip-
1.0.
If the pvs-libs.lisp file needs to load other files in other libraries, use libload. For exam-
ple, César Muñoz’s Field Package (http://www.icase.edu./~munoz/Field/field.html)
loads the Manip-package using (libload "Manip-1.0/manip-strategies")

A new command, M-x list-prelude-libraries, has been added that shows the prelude
library and supplemental files that have been loaded in the current context.

2.5 Cotuples

PVS now supports cotuple types (also known as coproduct or sum types) directly. The
syntax is similar to that for tuple types, but with the ‘,’ replaced with a ‘+’. For example,

cT: TYPE = [int + bool + [int -> int]]

Associated with a cotuple type are injections IN_i, predicates IN?_i, and extractions OUT_i
(none of these is case-sensitive). For example, in this case we have

6 PVS 3.0 Release Notes

IN_1: [int -> cT]
IN?_1: [cT -> bool]
OUT_1: [(IN?_1) -> int]

Thus IN_2(true) creates a cT element, and an arbitrary cT element c is processed using
CASES, e.g.,

CASES c OF
IN_1(i): i + 1,
IN_2(b): IF b THEN 1 ELSE 0 ENDIF,
IN_3(f): f(0)

ENDCASES

This is very similar to using the union datatype defined in the prelude, but allows for any
number of arguments, and doesn’t generate a datatype theory.

Typechecking expressions such as IN_1(3) requires that the context be known. This is
similar to the problem of a standalone PROJ_1, and both are now supported:

F: [cT -> bool]
FF: FORMULA F(IN_1(3))
G: [[int -> [int, bool, [int -> int]]] -> bool]
GG: FORMULA G(PROJ_1)

This means it is easy to write terms that are ambiguous:
HH: FORMULA IN_1(3) = IN_1(4)
HH: FORMULA PROJ_1 = PROJ_1

This can be disambiguated by providing the type explicitly:
HH: FORMULA IN_1[cT](3) = IN_1(4)
HH: FORMULA PROJ_1 = PROJ_1[[int, int]]

This uses the same syntax as for actual parameters, but doesn’t mean the same thing, as
the projections, injections, etc., are builtin, and not provided by any theories. Note that
coercions don’t work in this case, as PROJ_1::[[int, int] -> int] is the same as

(LAMBDA (x: [[int, int] -> int]): x)(PROJ_1)

and not
LAMBDA (x: [int, int]): PROJ_1(x)

The prover has been updated to handle extensionality and reduction rules as expected.

2.6 Coinduction

Coinductive definitions are now supported. They are like inductive definitions, but intro-
duced with the keyword ‘COINDUCTIVE’, and generate the greatest fixed point.

2.7 Datatype Updates

Update expressions now work on datatypes, in much the same way they work on records. For
example, if lst: list[nat], then lst WITH [‘car := 0] returns the list with first element

Chapter 2: New Features 7

0, and the rest the same as the cdr of lst. In this case there is also a TCC of the form
cons?(lst), as it makes no sense to set the car of null.
Complex datatypes with overloaded accessors and dependencies are also handled. For ex-
ample,

dt: DATATYPE
BEGIN
c0: c0?
c1(a: (even?), b: int): c1?
c2(a: nat, c: int): c2?
END dt

datatype_update: THEORY
BEGIN
IMPORTING dt
x: dt
y: int
f: dt = x WITH [a := y]
END datatype_update

This generates the TCC
f_TCC1: OBLIGATION
(c1?(x) AND IF c1?(x) THEN even?(y) ELSE y >= 0 ENDIF) OR
(c2?(x) AND IF c1?(x) THEN even?(y) ELSE y >= 0 ENDIF);

2.8 Datatype Additions

There are two additions to the theory generated from a datatype: a new ord function, and
an every relation. Both of these can be seen by examining the generated theories.
The new ord function is given as a constant followed by an ordinal axiom. The reason
for this is that the disjointness axiom is not generated, and providing interpretations for
datatype theories without it is not sound. However, for large numbers of constructors, the
disjointness axiom gets unwieldy, and can significantly slow down typechecking. The ord
axiom simply maps each constructor to a natural number, thus using the builtin disjointness
of the natural numbers. For lists, the new ord function and axiom are

list_ord: [list -> upto(1)]

list_ord_defaxiom: AXIOM
list_ord(null) = 0 AND
(FORALL (car: T, cdr: list): list_ord(cons(car, cdr)) = 1);

This means that to fully interpret the list datatype, list_ord must be given a mapping
and shown to satisfy the axiom.
If a top level datatype generates a map theory, the theory also contains an every relation.
For lists, for example, it is defined as

every(R: [[T, T1] -> boolean])(x: list[T], y: list[T1]): boolean =
null?(x) AND null?(y) OR
cons?(x) AND

8 PVS 3.0 Release Notes

cons?(y) AND R(car(x), car(y)) AND every(R)(cdr(x), cdr(y));

Thus, every(<)(x, y: list[nat]) returns true if the lists x and y are of the same length,
and each element of x is less than the corresponding element of y.

2.9 Conversion Extensions

Conversions are now applied to the components of tuple, record, and function types. For
example, if c1 is a conversion from nat to bool, and c2 from nat to list[bool], the tuple
(1, 2, 3) will be converted to (c1(1), 2, c2(3)) if the expected type is [bool, nat,
list[bool]]. Records are treated the same way, but functions are contravariant in the
domain; if f is a function of type [bool -> list[bool]], and the expected type is [nat ->
bool], then the conversion applied is LAMBDA (x: nat): c2(f(c1(x))).

Conversions now apply pointwise where possible. In the past, if x and y were state variables,
and K_conversions enabled, then x < y would be converted to LAMBDA (s: state): x(s)
< y(s), but x = y would be converted to LAMBDA (s: state): x = y, since the equality
typechecks without applying the conversion pointwise. Of course, this is rarely what is
intended; it says that the two state variables are the same, i.e., aliases. The conversion
mechanism has been modified to deal with this properly.

2.10 Conversion Messages

Messages related to conversions have been separated out, so that if any are generated a
message is produced such as

po_lems typechecked in 9.56s: 10 TCCs, 0 proved, 3 subsumed,
7 unproved; 4 conversions; 2 warnings; 3 msgs

In addition, the commands M-x show-theory-conversions and M-x show-pvs-file-
conversions have been added to view the conversions.

2.11 More TCC Information

Trivial TCCs of the form x /= 0 IMPLIES x /= 0 and 45 < 256 used to quietly be suppressed.
Now they are added to the messages associated with a theory, along with subsumed TCCs.
In addition, both trivial and subsumed TCCs are now displayed in commented form in the
show-tccs buffer.

2.12 Show Declaration TCCs

The command M-x show-declaration-tccs has been added. It shows the TCCs associated
with the declaration at the cursor, including the trivial and subsumed TCCs as described
above.

Chapter 2: New Features 9

2.13 Numbers as Constants

Numbers may now be declared as constants, e.g.,
42: [int -> int] = LAMBDA (x: int): 42

This is most useful in defining algebraic structures (groups, rings, etc.), where overloading
0 and 1 is common mathematical practice. It’s usually a bad idea to declare a constant to
be of a number type, e.g.,

42: int = 57

Even if the typechecker doesn’t get confused, most users would.

2.14 Theory Search

When the parser encounters an importing for a theory foo that has not yet been type-
checked, it looks first in the .pvscontext file, then looks for foo.pvs. In previous versions,
if the theory wasn’t found at this point an error would result. The problem is that file
names often don’t match the theory names, either because a given file may have multiple
theories, or a naming convention (e.g., the file is lower case, but theories are capitalized)

Now the system will parse every .pvs file in the current context, and if there is only one file
with that theory id in it, it will be used. If multiple files are found, a message is produced
indicating which files contain a theory of that name, so that one of those may be selected
and typechecked.

NOTES:

• Once a file has been typechecked, the .pvscontext is updated accordingly, and this
check is no longer needed.

• .pvs files that contain parse errors will be ignored.

2.15 Improved Decision Procedures

The existing (named Shostak, for the original author) decision procedures have been made
more complete. Note that this sometimes breaks existing proofs, though they are generally
easy to repair, especially if the proof is rerun in parallel with the older PVS version. If you
have difficulties repairing your proofs, please let us know.

2.16 ICS Integration

PVS 3.0 now has an alpha test integration of the ICS decision procedure (http://ics.csl.sri.com").
Use M-x set-decision-procedure ics to try it out. Note that this is subject to change,
so don’t count on proofs created using ICS to work in future releases. Please let us know
of any bugs encountered.

10 PVS 3.0 Release Notes

2.17 LET Reduce

The BETA and SIMPLIFY rules, and the ASSERT, BASH, REDUCE, SMASH, GRIND, GROUND, USE,
and LAZY-GRIND strategies now all take an optional LET-REDUCE? flag. It defaults to t, and
if set to nil keeps LET expressions from being reduced.

2.18 Prelude Changes

2.18.1 New Theories

restrict_props, extend_props
Provides lemmas that restrict and extend are identities when the subtype
equals the supertype.

indexed_sets
Provides indexed union and intersection operations and lemmas.

number_fields
The real theory was split into two, with number_fields providing the field
axioms and the subtype reals providing the ordering axioms. This allows for
theories such as complex numbers to be inserted in between, thus allowing reals
to be a subtype of complex numbers without having to encode them.

nat_fun_props
Defines special properties of injective/surjective functions over nats, provided
by Bruno Dutertre.

finite_sets
combination of finite_sets_def (which was in the 2.4 prelude), card_def,
and finite_sets (from the finite sets library)

bitvectors:
To provide support for the bitvector theory built in to ICS, the following theories
were moved from the bitvectors library to the prelude: bit, bv, exp2, bv_cnv,
bv_concat_def, bv_bitwise, bv_nat, empty_bv, and bv_caret.

finite_sets_of_sets
Proves that the powerset of a finite set is finite, and provides the corresponding
judgement.

equivalence classes
The following theories were derived from those provided by Bart Jacobs:
EquivalenceClosure, QuotientDefinition, KernelDefinition, QuotientKernelProperties,
QuotientSubDefinition, QuotientExtensionProperties, QuotientDistributive,
and QuotientIteration.

Partial Functions
Bart Jacobs also provided definitions for partial functions: PartialFunctionDefinitions
and PartialFunctionComposition.

Chapter 2: New Features 11

2.18.2 New Declarations

The following declarations have been added to the prelude: relations.equivalence type,
sets.setofsets, sets.powerset, sets.Union, sets.Intersection, sets_lemmas.subset_
powerset, sets_lemmas.empty_powerset, sets_lemmas.nonempty_powerset, real_props.div_
cancel4, and rational_props.rational_pred_ax2.

2.18.3 Modified Declarations

The following declarations have been modified. finite_sets.is_finite_surj was turned
into an IFF and extended from posnat to nat.
The fixpoint declarations of the mucalculus theory have been restricted to monotonic
predicates. This affects the declarations fixpoint?, lfp, mu, lfp?, gfp, nu, and gfp?.

2.19 Conversion Expressions

Conversions may now be any function valued expression, for example,
CONVERSION+ EquivClass(ce), lift(ce), rep(ce)

This introduces a possible incompatibility if the following declaration is for an infix operator.
In that case the conversion must be followed with a semi-colon ’;’.

2.20 Judgement TCC proofs

Judgement TCCs may now be proved directly, without having to show the TCCs using M-x
show-tccs or M-x prettyprint-expanded. Simple place the cursor on the judgement, and
run one of the proof commands. Note that there may be several TCCs associated with the
judgement, but only one of them is the judgement TCC. To prove the others you still need
to show the TCCs first.

2.21 PVS Startup Change

On startup, PVS no longer asks whether to create a context file if none exists, and if you
simply change to another directory no .pvscontext file is created. This fixes a subtle bug
in which typing input before the question is asked caused PVS to get into a bad state.

2.22 Dump File Change

The M-x dump-pvs-files command now includes PVS version information, Allegro build
information, and prelude library dependencies. Note that since the proof files have changed,
the dumps may look quite different. See the Multiple Proofs section for details.

12 PVS 3.0 Release Notes

2.23 Bitvector Library

Bart Jacobs kindly provided some additional theories for the bitvector library. These
were used as an aid to Java code verification, but are generally useful. The new files are
BitvectorUtil, BitvectorMultiplication, BitvectorMultiplicationWidenNarrow,
DivisionUtil, BitvectorOneComplementDivision, BitvectorTwoComplementDivision,
and BitvectorTwoComplementDivisionWidenNarrow, and are included in the libraries tar
file.

Chapter 3: Bug Fixes 13

3 Bug Fixes

Although there are still a number of bugs still outstanding, a large number of bugs have been
fixed in this release. All those in the pvs-bugs list (http://pvs.csl.sri.com/cgi-bin/pvs/pvs-bug-list/?bugs=open&bugs=analyzed)
that are marked as analyzed have been fixed, at least for the specific specs that caused the
bugs.

14 PVS 3.0 Release Notes

Chapter 4: Incompatibilities 15

4 Incompatibilities

Most of these are covered elsewhere, they are collected here for easy reference.

4.1 Improved Decision Procedures

The decision procedures are more complete. Though this is usually a good thing, some
existing proofs may fail. For example, a given auto-rewrite may have worked in the past,
but now the key term has been simplified and the rewrite no longer matches.

4.2 Prelude Changes

These are given in See Section 2.18 [Prelude Changes], page 10. Theory identifiers used in
the prelude may not be used for library or user theories, some existing theories may need
to be adjusted.

The theories finite_sets, finite_sets_def, and card_def were once a part of the
finite_sets library, but have been merged into a single finite_sets theory and moved
to the prelude. This means that the library references such as

IMPORTING finite_sets@finite_sets
IMPORTING fsets@card_def

must be changed. In the first case just drop the prefix, drop the prefix and change card_def
to finite_sets in the second.

The reals theory was split in two, separating out the field axioms into the number_fields
theory. There is the possibility that proofs could fail because of adjustments related to this,
though this did not show up in our validations.

4.3 Theory Abbreviations

Theory abbreviations such as

foo: THEORY = bar[int, 3]

should be changed to the new form

IMPORTING bar[int, 3] AS foo

Note that ‘AS’ is a new keyword, and may cause parse errors where none existed before.

4.4 Conversion Expressions

Since conversions may now be arbitrary function-valued expressions, if the declaration fol-
lowing is an infix operator it leads to ambiguity. In that case the conversion must be followed
with a semi-colon ’;’.

16 PVS 3.0 Release Notes

4.5 Occurrence numbers in expand proof command

Defined infix operators were difficult to expand in the past, as the left to right count was
not generally correct; the arguments were looked at before the operator, which meant that
the parser tree had to be envisioned in order to get the occurrence number correct. This
bug has been fixed, but it does mean that proofs may need to be adjusted. This is another
case where it helps to run an earlier PVS version in parallel to find out which occurrence is
actually intended.

i

Short Contents

1 Overview . 1

2 New Features . 3

3 Bug Fixes . 13

4 Incompatibilities . 15

ii PVS 3.0 Release Notes

iii

Table of Contents

1 Overview . 1

2 New Features . 3
2.1 Allegro 6.2 port . 3
2.2 Theory Interpretations . 3
2.3 Multiple Proofs . 4
2.4 Better Library Support . 5
2.5 Cotuples . 5
2.6 Coinduction . 6
2.7 Datatype Updates . 6
2.8 Datatype Additions . 7
2.9 Conversion Extensions . 8
2.10 Conversion Messages . 8
2.11 More TCC Information . 8
2.12 Show Declaration TCCs . 8
2.13 Numbers as Constants . 9
2.14 Theory Search . 9
2.15 Improved Decision Procedures . 9
2.16 ICS Integration . 9
2.17 LET Reduce . 10
2.18 Prelude Changes . 10

2.18.1 New Theories . 10
2.18.2 New Declarations . 11
2.18.3 Modified Declarations . 11

2.19 Conversion Expressions . 11
2.20 Judgement TCC proofs . 11
2.21 PVS Startup Change . 11
2.22 Dump File Change . 11
2.23 Bitvector Library . 12

3 Bug Fixes . 13

4 Incompatibilities . 15
4.1 Improved Decision Procedures . 15
4.2 Prelude Changes . 15
4.3 Theory Abbreviations . 15
4.4 Conversion Expressions . 15
4.5 Occurrence numbers in expand proof command 16

iv PVS 3.0 Release Notes

	Overview
	New Features
	Allegro 6.2 port
	Theory Interpretations
	Multiple Proofs
	Better Library Support
	Cotuples
	Coinduction
	Datatype Updates
	Datatype Additions
	Conversion Extensions
	Conversion Messages
	More TCC Information
	Show Declaration TCCs
	Numbers as Constants
	Theory Search
	Improved Decision Procedures
	ICS Integration
	LET Reduce
	Prelude Changes
	New Theories
	New Declarations
	Modified Declarations

	Conversion Expressions
	Judgement TCC proofs
	PVS Startup Change
	Dump File Change
	Bitvector Library

	Bug Fixes
	Incompatibilities
	Improved Decision Procedures
	Prelude Changes
	Theory Abbreviations
	Conversion Expressions
	Occurrence numbers in expand proof command

