DRAFT

The OSKit: The Flux Operating System Toolkit
Version 0.97

The Flux Research Group

Department of Computer Science
University of Utah

Salt Lake City, UT, USA 84112

http://www.cs.utah.edu/projects /fluz/oskit/
oskit@Qflux.cs.utah.edu

January 15, 1999

Copyright (© 1996-1999, University of Utah. All rights reserved. The University of Utah grants you the right
to copy and reproduce this document or portions thereof for academic, research, evaluation, and personal
use only, provided that this title page appears prominently. To arrange for alternate terms, contact the
University at csl-dist@cs.utah.edu or +1-801-585-3271.

Contents

I Design and Organization

1 Introduction

1.1 Goals and Scope e
1.2 Road Map L
1.2.1 Interfaces o . . . e
1.2.2 Function Libraries
1.2.3 Component Libraries e
1.3 Overall Design Principleso
1.4 Configuring the OSKit oo
1.5 Building the OSKit o
1.6 Using the OSKit e
1.6.1 Example Kernels
1.6.2 Booting Kernels e
1.6.3 Command line arguments L L

2 Execution Environments

2.1 Imtroduction oL e e
2.2 Pure Model
2.3 Impure Model e
2.4 Blocking Model L
2.5 Interruptible Blocking Modelo
2.5.1 Use in multiprocessor kernelso L
2.5.2 Usein preemptive kernelso
2.5.3 Use in multiple-interrupt-level kernels
2.5.4 Use in interrupt-model kernelso

IT Interfaces

3 Introduction to OSKit Interfaces

3.1 Header File Conventions L
3.1.1 Basic Structure L
3.1.2 Namespace Cleanliness

3.2 Common Header Files
3.2.1 Dboolean.h: boolean type definitions Lo
3.2.2 compiler.h: compiler-specific macro definitions 0L
3.2.3 config.h: OSKit configuration-specific definitions
3.2.4 machine/types.h: basic machine-dependent types
3.2.5 types.h: basic machine-independent typeso

3

21

23
23
24
24
24
25
27
28
29
30
30
31
32

33
33
34
34
35
36
37
37
38
38

41

4 CONTENTS
4 The Component Object Model 49
4.1 Objects and Interfaces e 49
4.1.1 Interface Inheritance and the IUnknown Interface 50
4.1.2 Querying for Interfaces. 50
4.1.3 Reference Counting e 51

4.2 Reference and Memory Management Conventions 52
4.3 Error Handling o . e 52
4.4 Binary Issues L e e e 93
4.4.1 Interface Structure 593
4.4.2 Calling Conventions e 54

4.5 Source ISSUES oL e e e 54
4.6 COM Header Files o 55
4.6.1 com.h: basic COM types and constants 95
4.6.2 error.h: error codes used in the OSKit COM interfaces 56

4.7 oskit_iunknown: base interface for all COM objects 59
4.7.1 query: Query for a different interface to the same object 59
4.7.2 addref: Increment an interface’s reference count L. 99
4.7.3 release: Release a reference to an interface oL 60

4.8 oskit_stream: standard interface for byte stream objects L. 61
4.8.1 read: Read from this stream, starting at the seek pointer 61
4.8.2 write: Write to this stream, starting at the seek pointer 62
4.8.3 seek: Change the seek pointer of this stream 62
4.8.4 setsize: Set the size of thisobjecto oo 63
4.8.5 copyto: Copy data from this object to another stream object 63
4.8.6 commit: Commit all changes to this object 64
4.8.7 revert: Revert to last committed version of this object 64
4.8.8 lockregion: Lock a region of this object 64
4.8.9 unlockregion: Unlock a region of thisobject 65
4.8.10 stat: Get attributes of this object o o oo 65
4.8.11 clomne: Create a new stream object for the same underlying object 66

4.9 Services Registry oL e 67
4.9.1 oskit.register: Register an interface in the services registry 67
4.9.2 oskit_unregister: Unregister a previously registered interface 67
4.9.3 oskit_lookup: Obtain a list of all COM interfaces registered for an IID 68
4.9.4 oskit_lookup first: Obtain the first COM interface registered for an IID 68

4.10 oskit_lock: Thread-safe lock interface 69
4.10.1 lock: Lock alock 69
4.10.2 lock: Unlock alock 69

4.11 oskit_condvar: Condition variable interface 70
4.11.1 wait: Wait on a condition variable o 0oL 70
4.11.2 signal: Signal a condition variable.o o000 70
4.11.3 broadcast: Broadcast a condition variable L 0L 71

4.12 oskit_lock.mgr: Lock manager: Interface for creating locks and condition variables 72
4.12.1 allocate lock: Allocate a thread-safe lock 72
4.12.2 allocate critical lock: Allocate a critical thread-safe lock 72
4.12.3 allocate_condvar: Allocate a condition variable 73

5 Input/Output Interfaces 75
5.1 oskit_absio: Absolute I/O Interface 76
5.1.1 read: Read from this object, starting at specified offset 76
5.1.2 write: Write to this object, starting at specified offset 76
5.1.3 getsize: Get the size of this object oL 7
5.1.4 setsize: Set the size of thisobject L oo 7

5.2 oskit_asyncio: Asynchronous I/O Interface 79

CONTENTS 5

5.3 oskit._blkio: Block I/O Interface 80
5.3.1 getblocksize: Return the minimum block size of this block I/O object 80
5.3.2 read: Read from this object, starting at specified offset 80
5.3.3 write: Write to this object, starting at specified offset 81
5.3.4 getsize: Get the size of this object 81
5.3.5 setsize: Set the size of thisobject oo oL 82

5.4 oskit_bufio: Buffer-based I/O interface o oL 83
5.4.1 map: Map some or all of this buffer into locally accessible memory 83
5.4.2 unmap: Release a previously mapped region of this buffer 84
5.4.3 wire: Wire a region of this buffer into contiguous physical memory 85
5.4.4 unwire: Unwire a previously wired region of this buffer 85
5.4.5 copy: Create a copy of the specified portion of this buffer 86

5.5 oskitmetio: Network packet I/O interface 87
5.5.1 push: Push a packet through to the packet consumer 87

5.6 oskit_posixio: POSIX I/Ointerface L oo 88
5.6.1 stat: Get attributes of this object oL oo oL 88
5.6.2 setstat: Set the attributes of this object 89
5.6.3 pathconf: Get value of a configuration option variable 89

5.7 oskit_ttystream: Interface to Unix TTY-like streams 91
5.7.1 getattr: Get the stream’s current TTY attributes 91
5.7.2 setattr: Set the stream’s TTY attributes 91
5.7.3 sendbreak: Send a break signal Lo Lol 92
5.7.4 drain: Wait until all buffered output has been transmitted 92
5.7.5 flush: Discared buffered input and/or output data 93
5.7.6 flow: Suspend or resume data transmission or reception L. 93

6 OSKit Device Driver (OS Environment) Framework 95

6.1 Introduction e e e e 95
6.1.1 Full versus partial compliance oL 96

6.2 Organization L e e 96

6.3 Driver Sets L e e e 98

6.4 Execution Model 98
6.4.1 Use in out-of-kernel, user-mode device drivers 98

6.5 Performance e e e 100

6.6 Device Driver Initialization e 100

6.7 Device Classification L 101

6.8 Buffer Management 101

6.9 Asynchronous I/O 102

6.10 Other Considerations e 102

6.11 Common Device Driver Interface 103
6.11.1 dev.h: common device driver framework definitions 103

6.12 Driver Memory Allocation L 104
6.12.1 osenv.memflags_t: memory allocation flags 104
6.12.2 osenvmem alloc: allocate memory for use by device drivers 105
6.12.3 osenv.mem free: free memory allocated with osenv.mem_alloc 106
6.12.4 osenv.mem_get_phys: find the physical address of an allocated block 106
6.12.5 osenv.mem _get_virt: find the virtual address of an allocated block 107
6.12.6 osenv.mem phys max: find the largest physical memory address 107
6.12.7 osenv._mem map_phys: map physical memory into kernel virtual memory 108

6.13 DMA . . e 109
6.13.1 osenv_isadma alloc: Reserve a DMA channel 109
6.13.2 osenv_isadma free: Release a DMA channel 109

6.14 I/O Ports 110

6.14.1 osenv_io_avail: Check availability of a rangeof ports 110

CONTENTS

6.14.2 osenv_io_alloc: Allocate a rangeof ports 110
6.14.3 osenv_io_free: Release arange of ports 111
6.15 Hardware Interrupts L L 112
6.15.1 osenv_intr_disable: prevent interrupts in the driver environment 112
6.15.2 osenv_intr_enable: allow interrupts in the driver environment 112
6.15.3 osenv_intr_enabled: determine the current interrupt enable state 113
6.15.4 osenv_irg_alloc: allocate an interrupt request line 113
6.15.5 osenv_irq_free: Unregister the handler for the interrupt 114
6.15.6 osenv_irq_disable: Disable a single interrupt line 114
6.15.7 osenv_irqg_enable: Enable a single interrupt line 114
6.15.8 osenv_irq_pending: Determine if an interrupt is pending for a single line 115
6.16 Sleep/Wakeup L. 116
6.16.1 osenv_sleep_init: prepare to put the current processtosleep 116
6.16.2 osenv_sleep: put the current processtosleep. 116
6.16.3 osenv_wakeup: wake up a sleeping processo 117
6.17 Driver-Kernel Interface: Timing o 118
6.17.1 osenv_timer_init: Initialize the timer support code 118
6.17.2 osenv_timer_register: Request a timer handler be called at the specified frequency . 118
6.17.3 osenv_timer_unregister: Request a timer handler not be called 119
6.17.4 osenv_timer_spin: Wait for a specified amount of time without blocking. 119
6.18 MiSC o o 120
6.18.1 osenv_vlog: OS environment’s output routine 120
6.18.2 osenv_log: OS environment’s output routine, 120
6.18.3 osenv_vpanic: Abort driver set operationo 120
6.18.4 osenv_panic: Abort driver set operation oL 121
6.19 Device Registration e 122
6.20 Block Storage Device Interfaces 123
6.21 Serial Device Interfaces L 124
6.22 Driver-Kernel Interface: ISA device registration 125
6.22.1 osenv_isabus_addchild: add a device node to an ISA bus 125
6.22.2 osenv_isabus remchild: remove a device node from an ISA bus 125
OSKit File System Framework 127
7.1 Introduction o L e e e e e 127
7.2 oskit_principal: Principal Interface 128
7.2.1 getid: Get the identity attributes of this principal oL 128
7.3 oskit_filesystem: File System Interface 129
7.3.1 statfs: Get attributes of this filesystem oo oo oL 129
7.3.2 sync: Synchronize in-core filesystem data with permanent storage 130
7.3.3 getroot: Return a reference to the root directory of this filesystem 130
7.3.4 remount: Update the mount flags of this filesystem 130
7.3.5 unmount: Forcibly unmount this filesystem 0. 131
7.3.6 lookupi: Lookup a file by inode number L oo 131
74 oskit file: File Interface o 133
7.4.1 sync: Write this file’s data and metadata to permanent storage 133
7.4.2 datasync: Write this file’s data to permanent storage 133
7.4.3 access: Check accessibility of this file oL 134
7.4.4 readlink: Read the contents of this symbolic link 134
7.4.5 open: Create an open instance of thisfile 135
74.6 getfs: Get the filesystem in which this file resides 136
7.5 oskit.dir: Directory Interface 137
7.5.1 lookup: Look up a file in this directory 137
7.5.2 create: Create a regular file in this directory 138

7.5.3 1link: Link a file into this directoryo L oo 138

CONTENTS

7.54
7.5.5
7.5.6
7.5.7
7.5.8
7.5.9
7.5.10
7.5.11

unlink: Unlink a file from this directory L.,
rename: Rename a file from this directoryo
mkdir: Create a subdirectory in this directory
rmdir: Remove a subdirectory from this directory
getdirentries: Read one or more entries from this directory
mknod: Create a special file node in this directory
symlink: Create a symbolic link in this directory
reparent: Create a virtual directory from this directory

7.6 oskit_openfile: Open File Interface

7.6.1

getfile: Get the underlying file object to which this open file refers

7.7 Dependencies on the Client Operating System

7.7.1
7.7.2
7.7.3
7.74
7.7.5
7.7.6
707
7.7.8
7.7.9
7.7.10
7.7.11

oskit_get_call_context: Get the caller’s context
fs_delay: Wait for a period of time toelapse,
fs_vprintf: Generate formatted output to stdout
fs_vsprintf: Generate formatted output toa string L.
fspanic: Cleanup and exit
fs_gettime: Get the current time oL
fs_tsleep: Wait for a wakeup on a channel or for a timeout
fs_wakeup: Wakeup any threads waiting on this channel
fsmalloc: Allocate memory from the heap
fs_realloc: Resize a chunk of allocated memory
fs_free: Free a chunk of allocated memory

8 OSKit Networking Framework
8.1 Introduction e
8.2 oskit_socket: Socket Interface

8.2.1
8.2.2
8.2.3
8.24
8.2.5
8.2.6
8.2.7
8.2.8
8.2.9
8.2.10
8.2.11

oskit_socket_factory_t: socket factories L Lo
accept: accept a connectionon asocket L oL oL
bind: bind aname toasocket Lo Lo
connect: initiate a connection on asocket oL oo oL
shutdown: shut down part of a full-duplex connection
listen: listen for connectionson asocket oL L.
getsockname: get socket name L L oL oo
getpeername: get name of connected peer
getsockopt, setsockopt: get and set options on sockets
recvfrom, recvmsg: receive a message from a socket L.
sendto, sendmsg: send a message from a socket 0oL

IITI Function Libraries

9 Minimal C Library: liboskit._c.a
9.1 Introduction L
9.2 posiX Interface L e e e e
9.3 Unsupported Features e e e e
94 Header Files

94.1
9.4.2
9.4.3
9.4.4
9.4.5
9.4.6
9.4.7
9.4.8

a.out.h: semi-standard a.out file format definitionso
alloca.h: explicit stack-based memory allocation
assert.h: program diagnostics facility oo oo L
ctype.h: character handling functions oo L.
errno.h: error nUMbETSo
fentl.h: POSIX low-level file control
float.h: constants describing floating-point typeso
limits.h: architecture-specific limits oL

139
139
140
140
141
142
142
143
144
144
145
145
146
146
146
147
147
148
148
149
149
150

151
151
152
152
153
154
154
155
155
156
156
157
159
160

9.5

9.6
9.7

9.8

9.9

CONTENTS

9.4.9 malloc.h: memory allocator definitions L L. 170
9.4.10 math.h: floating-point math functions and constants 171
9.4.11 netdb.h: definitions for network database operations. 171
9.4.12 setjmp.h: nonlocal jumpso 171
9.4.13 signal.h: signal handling L 171
9.4.14 stdarg.h: variable arguments.o oL 171
9.4.15 stddef.h: common definitions oL 172
9.4.16 stdio.h: standard input/outputo 172
9.4.17 stdlib.h: standard library functions oL 173
9.4.18 string.h: string handling functions Lo oL 173
9.4.19 strings.h: string handling functions (deprecated) 174
9.4.20 sys/gmon.h: GNU profiling support definitions 174
9.4.21 sys/ioctl.h: I/O control definitions L. 174
9.4.22 sys/mman.h: memory management and mapping definitions 175
9.4.23 sys/reboot.h: reboot definitions (deprecated) 175
9.4.24 sys/signal.h: signal handling (deprecated) 175
9.4.25 sys/stat.h: file operationso 175
9.4.26 sys/termios.h: terminal handling functions and definitions (deprecated) 175
9.4.27 sys/time.h: timing functionso oo 176
9.4.28 sys/wait.h: a POSIX wait specification, 176
9.4.29 sys/types.h: general POSIX types 176
9.4.30 termios.h: terminal handling functions and definitions 176
9.4.31 unistd.h: POSIX standard symbolic constants 176
9.4.32 utime.h: filetimes L 177
9.4.33 sys/utsname.h: system identification Lo 177
Memory Allocation L e e e e e e 178
9.5.1 malloc lmm: LMM pool used by the default memory allocation functions 178
9.5.2 malloc: allocate uninitialized memory L oL 178
9.5.3 mustmalloc: allocate uninitialized memory and panic on failure 179
9.5.4 memalign: allocate aligned uninitialized memory 179
9.5.5 calloc: allocate cleared memoryo 180
9.5.6 mustcalloc: allocate cleared memory and panic on failure 180
9.5.7 realloc: change the size of an existing memory block 180
9.5.8 free: release an allocated memory block o 0L 181
9.5.9 smalloc: allocated uninitialized memory with explicit size 181
9.5.10 smemalign: allocate aligned memory with explicit size 182
9.5.11 sfree: release a memory block with explicit size 182
9.5.12 mallocf: allocate uninitialized memory with explicit LMM flags 182
9.5.13 memalignf: allocate aligned uninitialized memory with explict LMM flags 183
9.5.14 smallocf: allocated uninitialized memory with explicit size and LMM flags 183
9.5.15 smemalignf: allocate aligned memory with explicit size and LMM flags 184
9.5.16 morecore: add memory to malloc memory pool 184
9.5.17 mem_lock: Lock access to malloc memory pool 185
9.5.18 mem_unlock: Unlock access to malloc memory pool 185
Standard I/O Functions e 186
Initialization L e e 187
9.7.1 oskit_init_libc: Initialize the OSKit C library 187
Termination Functions o Lo L 188
9.8.1 exit: terminate normallyo 188
9.8.2 abort: terminate abnormally oo oL oo 188
9.8.3 panic: terminate abnormally with an error message 188
Miscellaneous Functions o e 189
9.9.1 ntohl: convert 32-bit long word from network byte order 189

9.9.2 ntohs: convert 16-bit short word from network byteorder 189

CONTENTS

9.9.3 hexdump: print a buffer as a hexdumpo 0oL

10 Kernel Support Library: liboskit kern.a

10.1

10.2

10.3

10.4

10.5

10.6

10.7

Introduction L
10.1.1 Machine-dependence of code and interfaces
10.1.2 Generic versus Base Environment code oo oo
10.1.3 Road Map o . . . e
Machine-independent Facilitieso
10.2.1 page.h: Page size definitions o Lo
10.2.2 spinlock.h: Spinlocks L
10.2.3 queue.h: Generic queuesl e
10.2.4 debug.h: debugging support facilities oL
10.2.5 base_critical: simple critical section support
Generic Low-level Definitions L o
10.3.1 asm.h: assembly language support macroso
10.3.2 eflags.h: Processor flags register definitions
10.3.3 proc_reg.h: Processor register definitions and accessor functions
10.3.4 debug_reg.h: Debug register definitions and accessor functions
10.3.5 fp_reg.h: Floating point register definitions and accessor functions
10.3.6 far_ptr.h: Far (segment:offset) pointers. L L.
10.3.7 pio.h: Programmed I/O functions
10.3.8 seg.h: Segment descriptor data structure definitions and constants
10.3.9 gate_init.h: Gate descriptor initialization support
10.3.10trap.h: Processor trap vectors Lo oL
10.3.11paging.h: Page translation data structures and constants
10.3.12tss.h: Processor task save state structure definition
Generic Low-level Definitions L o oo
10.4.1 irqg-list.h: Standard hardware interrupt assignments
10.4.2 pic.h: Programmable Interrupt Controller definitions
10.4.3 keyboard.h: PC keyboard definitions 0oL
10.4.4 rtc.h: NVRAM Register locations
Processor Identification and Management
10.5.1 cpu_info: CPU identification data structure
10.5.2 cpuid: identify the current CPUo
10.5.3 cpu_info_format: output a cpu.info structure in ASCII form
10.5.4 cpu_info.min: return the minimum feature set of two CPU information structures . .
10.5.5 cpu_info_dump: pretty-print a CPU information structure to the console
10.5.6 il16_enter_pmode: enter protected mode oL oL
10.5.7 i16_leave_pmode: leave protected modeo L.
10.5.8 paging enable: enable page translation o 0oL
10.5.9 paging disable: disable page translation 0.
10.5.10gate_init: install gate descriptorso
Base Environment L
10.6.1 Memory Model e e
10.6.2 base_vm.h: definitions for the base virtual memory environment
10.6.3 base_cpu_setup: initialize and activate the base CPU environment
10.6.4 base_cpu-init: initialize the base environment data structures
10.6.5 base_cpu_load: activate the base processor execution environment
10.6.6 base_cpuid: global variable describing the processor
10.6.7 base_stack.h: default kernel stack L oo Lo oL
Base Environment: Segmentation Supporto L.
10.7.1 base_gdt: default global descriptor table for the base environment
10.7.2 base_gdt_init: initialize the base GDT to default values
10.7.3 base_gdt_load: load the base GDT into the CPU

10

CONTENTS

10.7.4 base_idt: default interrupt descriptor table oo oL 220
10.7.5 base_idt_load: load the base IDT into the current processor 220
10.7.6 base_tss: default task state segment oL 221
10.7.7 base_tss_init: initialize the base task state segment 221
10.7.8 base_tss_load: load the base TSS into the current processor 222

10.8 Base Environment: Trap Handling L. 223
10.8.1 trap_state: saved state format used by the default trap handler 223
10.8.2 base_trap-init: initialize the processor trap vectors in the base IDT 224
10.8.3 base_trap_inittab: initialization table for the default trap entrypoints 224
10.8.4 base_trap_handlers: Array of handler routines for hardware traps 225
10.8.5 base_trap.-default_handler: default trap handler for unexpected traps 226
10.8.6 trap_dump: dump a saved trap state structure L. 226
10.8.7 trap_dump_panic: dump a saved trap state structure 227

10.9 Base Environment: Page Translation 228
10.9.1 base_paging init: create minimal kernel page tables and enable paging 228
10.9.2 base_pdir_pa: initial kernel page directory oL 228
10.9.3 pdir_find pde: find an entry in a page directory given a linear address 229
10.9.4 ptab_find pte: find an entry in a page table given a linear address. 229
10.9.5 pdir_find pte: look up a page table entry from a page directory 230
10.9.6 pdir_get_pte: retrieve the contents of a page table entry 231
10.9.7 ptab_alloc: allocate a page table page and clear it tozero 231
10.9.8 ptab_free: free a page table allocated using ptab_alloc 232
10.9.9 pdir_map_page: map a 4KB page into a linear address space 232
10.9.10 pdir_unmap_page: unmap a single 4KB page mapping 233
10.9.11 pdir map_range: map a contiguous range of physical addresses 234
10.9.12pdir prot_range: change the permissions on a mapped memory range 235
10.9.13pdir_unmap range: remove a mapped range of linear addresses 235
10.9.14pdir_clean range: free unused page table pages in a page directory 236
10.9.15pdir_dump: dump the contents of a page directory and all its page tables 236
10.9.16 ptab_dump: dump the contents of a page table 237
10.10 Base Environment: Protected-mode entry and exit L. 238
10.11 Base Environment: Physical Memory Management 239
10.11.1phys_1mm.h: Physical memory management for PCs 239
10.11.2 phys_mem max: Highest physical memory address 239
10.11.3phys_1mm_init: Initialize kernel physical memory LMM 240
10.11.4phys_1mm_add: Add memory to the kernel physical memory LMM 240
10.12 Base Environment: Interrupt Support L. 241
10.12.1base_irq.h: Hardware interrupt definitions for standard PCs 241
10.12.2base_irq_handlers: Array of handler routines for hardware interrupts 241
10.12.3base_irq_init: Initialize hardware interrupts 242
10.12.4base_irq_inittab: initialization table for default interrupt entrypoints 242
10.12.5base_irq-default_handler: default IRQ handler for unexpected interrupts 243
10.12.6base_irq.nest: interrupt nesting counter and software interrupt flag 243
10.12.7base_irq_softint_request: request a software interrupt 243
10.12.8 base_irq-softint_handler: handler for software interrupts 244
10.13 Base Environment: Console Support oo . 245
10.13.1base_console.h: definitions for base console support 245
10.13.2base_console_init: Initialize the base console 245
10.13.3base_cooked _termios: Default termios setting for cooked-mode console 247
10.13.4base_raw_termios: Default termios setting for raw-mode console 247
10.13.5direct_cons_getchar: wait for and read a character from the keyboard 247
10.13.6direct_cons_putchar: write a character to the video console 248
10.13.7direct_cons_trygetchar: read an available character from the keyboard 248

10.13.8 com_cons_init: initialize a serial port 249

CONTENTS 11

10.13.9 com_cons_getchar: wait for and read a character from a serial port 249
10.13.1@om_cons_putchar: write a character to aserial port 250
10.13.1tom_cons_flush: delay until all output is flushed on a serial line 250
10.13.120om_cons_enable receive_interrupt: enable receive interrupts on a serial port . . . 251
10.14 MultiBoot Startup L 252
10.14.1Startup code organizationl 252
10.14.2Startup SEQUENCE v vt vt e e e e e e e e e e e e e e 252
10.14.3Memory model e 253
10.14.4 Command-line arguments e 253
10.14.5 Linking MultiBoot kernels L L 253
10.14.6multiboot.h: Definitions of MultiBoot structures and constants 254
10.14.7boot_info: MultiBoot information structure 254
10.14.8multiboot main: general MultiBoot initialization 255
10.14.9base multiboot_init_mem: physical memory initialization 256
10.14.1®ase multiboot_init_cmdline: command-line preprocessing 256
10.14.1base multiboot _find: find a MultiBoot boot module by name 257
10.14.1Multiboot Specification Lo 258
10.15 Raw BIOS Startup e 268
10.16 DOS Startup o 269
10.17Remote Kernel Debugging with GDB oo 270
10.17.1 Organization of remote GDB support code 270
10.17.2 Using the remote debugging code o oo oL 270
10.17.3 Debugging address spaces other than the kernel’s 271
10.17.4gdb_state: processor register state frame used by GDBo 271
10.17.5gdb_trap: default trap handler for remote GDB debugging 271
10.17.6 gdb_copyin: safely read data from the subject’s address space 272
10.17.7 gdb_copyout: safely write data into the subject’s address space 273
10.17.8 gdb_trap_recover: recovery pointer for safe memory transfer routines 274
10.17.9gdb_signal: vector to GDB trap/signal handler routine 274
10.17.1@db_set_trace_flag: enable or disable single-stepping in a state frame 274
10.17.1db_breakpoint: macro to generate a manual instruction breakpoint 275
10.18Serial-line Remote Debugging with GDB 276
10.18.1 Redirecting console output to the remote debugger 276
10.18.2gdb_serial_signal: primary event handler in the GDB stub 276
10.18.3gdb_serial_exit: notify the remote debugger that the subject isdead 277
10.18.4gdb_serial_getchar: input a character from the remote debugger’s console 278
10.18.5gdb_serial_putchar: output a character to the remote debugger’s console 278
10.18.6 gdb_serial_puts: output a line to the remote debugger’s console 279
10.18.7gdb_serial recv: vector to GDB serial line receive function 280
10.18.8 gdb_serial_send: vector to GDB serial line send function 280
10.18.9gdb_pc_com_init: set up serial-line debugging over a COM port 280
10.19ANnOotations L. L L 282
10.19.1anno . h: generic macros to place annotations in kernel code. 282
10.19.2 anno_dump: dump all annotation tables 282
10.19.3anno_find exact: find annotation table exactly entry matching a value. 283
10.19.4anno_find lower: find greatest annotation table entry below a value. 283
10.19.5anno_init: initialize annotation tables and sort the entries. 284
10.19.6 anno_intr: interrupt annotations oL Lo Lo 284
10.19.7 anno_trap: trap annotations L 284
10.20Boot Module Filesystem L 286
10.20.1 0oskit _bmod_init: initialize BMOD filesystem 286
10.20.2 0skit_bmod_lock: lock BMOD filesystem 286
10.20.3 oskit_bmod unlock: unlock BMOD filesystem 286

10.20.40oskit _bmod file_set_contents: replace contents of a BMOD file 286

12 CONTENTS

10.21Signals L e e e 288
10.21.1oskit_sendsig init: initialize kernel signal delivery 288

10.21.2 0skit_sendsig: deliver asignal Lo o oo 288

10.21.3 sendsig trap -handler: convert trap into a signal 289

11 Symmetric Multiprocessing: liboskit_smp.a 291
11.1 Introduction o e 291
11.2 Supported Systems L e 291
11.2.1 Intel X86 ¢ o o o e 291

11.2.2 External dependencies 292

11.3 APIreference o L 292
11.3.1 smp_init: Initializes the SMP startupcode 292

11.3.2 smp_find_cur_cpu: Return the processor ID of the current processor.. 293

11.3.3 smp_find_cpu: Return the next processor ID 293

11.3.4 smp_start_cpu: Starts a processor running a specified function 294

11.3.5 smp_get_num_cpus: Returns the total number of processors 294

11.3.6 smp_map_range: Request the OS map physical memory 294

11.3.7 smp_init_paging: Tell the SMP code that paging is being enabled 295

11.3.8 smp_message_pass: Send an inter-processor interrupt to another CPU 295

11.3.9 smpmessage pass_enable: o e 295

11.3.10 smp_apic_ack: acknowledge an inter-processor interrupt 296

12 Kernel Device Driver Support: liboskit dev.a 297
12.1 Introductiono 297
12.2 Device Registration Lo 297
123 Naming e e 297
12.4 Memory Allocation L e e 298
12.5 Buffer Management oL 298
12.6 Processor Bus Resource Management Lo L. 298
IV Component Libraries 299
13 POSIX Interface Library: liboskit_posix.a 301
13.1 Introduction L e 301
13.2 Modified Functions e 301
13.2.1 getdtablesize: get descriptor tablesize L oo 301

13.2.2 mmap, munmap, mprotect: map files into memory oo L. 301

13.2.3 getpid: get processid L 302

13.2.4 gettimeofday: get current time o 302

13.3 Imitialization Functions o . L 303
13.3.1 fs_init: Provide a root directory defining the file system namespace 303

13.3.2 fs_release: Release root and current directory references 303

13.3.3 set_system_clock: initialize clock support 303

13.4 Extended API functions e 305
13.4.1 fs_mount, fs_ unmount: Compose file system name spaces 305

13.4.2 _exit: terminate normally L 305

14 FreeBSD C Library: liboskit _freebsd c.a 307
14.1 Introductiono 307
14.2 posixX Interface L L 307
14.3 Malloc Support e 307
14.4 Signal Support e 307
14.5 Missing Functionality o 308

14.6 errno.h . . . L 308

CONTENTS 13

14.7 Library Initialization o 309
14.7.1 oskit_init_libc: Initialize the FreeBSD C library 309

15 FreeBSD Math Library: liboskit _freebsdm.a 311
15.1 Introductiono e e e 311
15.1.1 Architecture Dependencies 311
15.1.2 External Dependencies e e 311
15.1.3 Caveats o 311

15.2 Functions e e e 312
16 List-based Memory Manager: liboskit_lmm.a 313
16.1 Introductiono e e 313
16.2 Memory regionso oo 314
16.2.1 Region flags L 314
16.2.2 Allocation priority e 315

16.3 Example use 315
16.4 Restrictions and guarantees L e 316
16.5 Sanity checking L 316
16.6 APTreference L 317
16.6.1 1mm init: initialize an LMM pool o 317
16.6.2 1mm_add_region: register a memory region in an LMM pool 317
16.6.3 1mm add free: add a block of free memory to an LMM pool 318
16.6.4 1lmm remove free: remove a block of memory from an LMM pool 319
16.6.5 1mm_alloc: allocate memory 319
16.6.6 lmm alloc_aligned: allocate memory with a specific alignment 320
16.6.7 1lmm_alloc_gen: allocate memory with general constraints 321
16.6.8 1mm_alloc_page: allocate a page of memory 321
16.6.9 1mm free: free previously-allocated memory 322
16.6.101mm_free_page: free a page allocated with Imm_alloc.page 322
16.6.111mm_avail: find the amount of free memory in an LMM pool 323
16.6.121mm find free: scan a memory pool for free blocks. 323
16.6.131mm_dump: display the free memory list in an LMM pool 324

17 Address Map Manager: liboskit_amm.a 325
17.1 Introduction o e e 325
17.2 Addresses and attributes L. L e 325
17.3 Address maps and entries 326
17.4 Simple interface L L e 326
17.5 Generic interface L 327
17.6 Generic interface exampleo Lo 328
17.7 External dependencieso e e e 331
17.8 API reference L L 331
17.8.1 amm alloc_func: Allocate an AMM map entry (user-provided callout) 331
17.8.2 amm_allocate: Allocate an address range in an AMM (simple interface) 332
17.8.3 amm deallocate: Deallocate an address range in an AMM (simple interface) 333
17.8.4 amm destroy: Destroy an AMM 333
17.8.5 amm dump: display the AMM-private data for every entry in an AMM 333
17.8.6 amm entry_field: Accessor macros for AMM-private data members 334
17.8.7 amm find addr: Locate the map entry containing a specific address 334
17.8.8 amm find_gen: Locate a map entry matching specified criteria 335
17.8.9 amm free_func: Free an AMM map entry (user-provided callout) 336
17.8.10amm_init: initialize an address map (simple interface) 336
17.8.11amm_init_gen: initialize an addressmap 337

17.8.12amm_iterate: Call a user-defined function for every entry in an AMM (simple interface)338

14 CONTENTS

17.8.13 amm_iterate_func: Function to call with every AMM entry (user-provided callout) . . 339

17.8.14amm_iterate_gen: Call a user-defined function for select entries in an AMM 339
17.8.15amm_join func: Join two adjacent map entries (user-provided callout) 340
17.8.16 amm modify: Modify the attributes of an addressrange 341
17.8.17amm _protect: Modify the attribute flags of an address range in an AMM (simple
interface) 341
17.8.18 amm reserve: Mark as unavailable an address range in an AMM (simple interface) . . 342
17.8.19amm_select: Returns an entry describing an address range exactly 343
17.8.20 amm_split_func: Split a map entry into two entries (user-provided callout) 343
18 Simple Virtual Memory: liboskit_svm.a 345
18.1 Introductiono 345
18.2 APIreference o o e e e 345
18.2.1 svm_init: initialize SVM system Lo oo 345
18.2.2 svm_alloc: allocate a region of virtual memory 346
18.2.3 svm_dealloc: deallocate a region of virtual memory 346
18.2.4 svm_protect: control the protection of a region of virtual memory 347
19 POSIX Threads: liboskit_threads.a 349
19.1 Introduction L e 349
19.2 Examples and Caveats 349
19.3 POSIX Threads Reference e 349
19.3.1 pthread.h: Thread constants and data structures 350
19.3.2 pthread_init: Initialize the threads system 350
19.3.3 pthread_attr_init: Initialize a thread attributes object 351
19.3.4 pthread attr_setdetachstate: Set the detach state in a thread attributes object . . 351
19.3.5 pthread_attr_setprio: Set the priority in a thread attributes object 352
19.3.6 pthread_attr_setstackaddr: Set the stack address in a thread attributes object . . . 352
19.3.7 pthread_attr_setguardsize: Set the stack guard size in a thread attributes object . 353
19.3.8 pthread attr_setstacksize: Set the stack size in a thread attributes object 353
19.3.9 pthread.attr_setschedpolicy: Set the scheduling policy in a thread attributes object 354
19.3.10 pthread mutexattr_init: Initialize a mutex attributes object 354
19.3.11pthread mutexattr_setprotocol: Set the protocol attribute of a mutex attributes
object e 355
19.3.12pthread mutexattr_settype: Set the type attribute of a mutex attributes object . . 355
19.3.13pthread_condattr_init: Initialize a condition attributes object 356
19.3.14pthread_cancel: Cancel a running thread 356
19.3.15pthread_cleanup_push: Push a cancellation cleanup handler routine onto the calling
thread’s cancellation cleanup stack 357
19.3.16 pthread_setcancelstate: Set the cancelation state 357
19.3.17pthread_setcanceltype: Set the cancelation type 357
19.3.18 pthread_testcancel: Check for a cancelation point 358
19.3.19pthread _cond broadcast: Wakeup all threads waiting on a condition variable 358
19.3.20 pthread_cond_destroy: Destroy a condition variable. 358
19.3.21 pthread_cond_init: Initialize a condition variable 359
19.3.22 pthread_cond_signal: Wakeup one thread waiting on a condition variable 359
19.3.23 pthread_cond_wait: Wait on a condition variable 360
19.3.24pthread_cond_timedwait: Wait on a condition variable with timeout 360
19.3.25pthread_create: Create a new thread and start it running 361
19.3.26 pthread_detach: Detach a thread from its parent 361
19.3.27pthread_exit: Terminate a thread with status 362
19.3.28 pthread_join: Join with a target thread 362
19.3.29pthread key_create: Create a thread-specific datakey 363

19.3.30 pthread key_delete: Delete a thread-specific datakey 363

CONTENTS 15

19.3.31pthread _setspecific: Set a thread-specific data value 364
19.3.32pthread_getspecific: Set a thread-specific data value 364
19.3.33pthread mutex_init: Initialize a mutex object 365
19.3.34pthread mutex_destroy: Destroy a mutex object 365
19.3.35pthread mutex_lock: Lock a unlocked mutex object 365
19.3.36 pthread mutex_trylock: Attempt to lock a unlocked mutex object 366
19.3.37pthread mutex_unlock: Unlock a mutex object 366
19.3.38 pthread resume: Resume a suspended thread 367
19.3.39pthread_self: Return the thread identifier of the current thread 367
19.3.40pthread_setprio: Change the priority of a thread 367
19.3.41pthread_setschedparam: Set the scheduling parameters for a thread 368
19.3.42pthread_sleep: Sleep for an interval of time 368
19.3.43pthread_suspend: Suspend a thread 369
19.3.44sched_yield: Yield the processor. L. oo 369
19.3.450senv_process_lock: Lock the processlock, 370
19.3.46 osenv_process_unlock: Unlock the processlock 370

19.4 Thread-safe Adaptors L 370
19.4.1 oskit_wrap_socket: Wrap an oskit_socket in a thread-safe adaptor 371
19.4.2 oskit_wrap_stream: Wrap an oskit_streamin a thread-safe adaptor 372
19.4.3 oskit_wrap-asyncio: Wrap an oskit_asyncio in a thread-safe adaptor 372
19.4.4 oskit_wrap_sockio: Wrap an oskit_sockio in a thread-safe adaptor 373
19.4.5 oskit_wrap_posixio: Wrap an oskit_posixio in a thread-safe adaptor 373
19.4.6 oskit wrap_file: Wrap an oskit file in a thread-safe adaptor 374
19.4.7 oskit_wrap_dir: Wrap an oskit_dir in a thread-safe adaptor 374
19.4.8 oskit_wrap_filesystem: Wrap an oskit_filesystemin a thread-safe adaptor 375
19.4.9 oskit_wrap-openfile: Wrap an oskit_openfile in a thread-safe adaptor 375
19.4.10 oskit_wrap_-blkio: Wrap an oskit_blkio in a thread-safe adaptor 376
19.4.11 oskit _wrap_absio: Wrap an oskit_absio in a thread-safe adaptor 376

19.5 InterThread Communication 376
19.5.1 oskit_ipc_send: Send a message to another thread 377
19.5.2 oskit_ipc_recv: Receive a message from a specific thread 377
19.5.3 oskit_ipc_wait: Receive a message from any thread 378
19.5.4 oskit_ipc_call: make a synchronous IPC call to another thread 378
19.5.5 oskit_ipc._reply: reply to a synchronous IPC invocation 379

20 Memory Debugging Utilities: liboskit.memdebug.a 381
20.1 Introduction L e e e 381
20.1.1 Memdebug Library Configuration oL 382
20.1.2 Memdebug Library Internals L 382
20.1.3 External Dependencies 382
20.2 Debugging versions of standard routineso L oL 383
20.3 Additional Debugging Utilities 384
20.3.1 memdebugmark: Mark all currently allocated blocks. 384
20.3.2 memdebug_check: Look for blocks allocated since mark that haven’t been freed. 384
20.3.3 memdebug ptrchk: Check validity of a pointer’s fence-posts 385
20.3.4 memdebug_sweep: Check validity of all allocated block’s fence-posts 385
20.3.5 memdebug printf: A printf-style routine guaranteed not to allocate memory 385
20.3.6 memdebug bogosity: Prints a memdebug bogosity message 386

20.3.7 memdebug_store_backtrace: Stores call-stack trace in provided buffer 386

16

CONTENTS

21 Profiling Support: liboskit gprof.a
21.1 Introduction L e e
21.2 CaveatS e e e
21.3 APIreference L
21.3.1 profil: Enable, disable, or change statistical sampling
21.3.2 moncontrol: enable or disable profiling
21.3.3 momnstartup: Start profiling for the first time oL
21.4 Using gprof e e

21.5 Files

21.6 Changing parameters and other FAQs

21.6.1
21.6.2
21.6.3
21.6.4
21.6.5
21.6.6

The sampling rate L L
How can I temporarily disable gprof’s output while still linking it in?
Why isn’t there a command line option for it?
Why don’t my assembly routines register properly with mcount?
Why is the call graph wrong when a routine was called from an assembly function? . .
What will gprof break? oo

22 Disk Partition Interpreter: liboskit diskpart.a
22.1 Introduction oL e e e e e e e e
22.2 Supported Partitioning Schemes Lo
22.3 Example Use o e e e e e

22.3.1
22.3.2

Reading the partition table oo
Using Partition Information oo

22.4 Restrictions e

2241
2242
22.4.3

Endian
Nesting e
Lookup o e e e e e e

22.5 API reference L L

22.5.1
22.5.2
22.5.3
22.5.4
22.5.5
22.5.6
22.5.7
22.5.8
22.5.9

diskpart_get_partition: initialize an array of partition entries
diskpart_read func: read a disk sector (user-provided callout)
diskpart._blkio_get_partition: initialize an array of partition entries
diskpart fill_entry: initialize a single partitionentry
diskpart_dump: print a partition entry tostdout o oL
diskpart_lookup_bsd_compat: search for a partition entry
diskpart lookup bsd_string: search for a partition entry
diskpart blkio lookup bsd_string: search for a partition entry
diskpart.get_type: Search for type type partitions

23 File System Reader: liboskit_fsread.a
23.1 Introduction L e e e e e e e
23.2 External dependencies L
23.3 Limitations L e e e e e e
23.4 API reference e e e e e

2341
23.4.2

fsread_open: Open a file on various filesystems
fsread FSTYPE open: Open a file on the FSTYPE filesystem

24 Executable Program Interpreter: liboskit_exec.a
24.1 Header Files o L e

24.11
24.1.2
24.1.3
24.2 Types
24.2.1
24.2.2

exec.h: definitions for executable interpreter functions
a.out.h: semi-standard a.out file format definitions
elf.h: standard 32-bit ELF file format definitions
exec_read_func_t: executable file reader callback
exec_read_exec_func_t: executable file reader callback

387
387
387
387
387
388
388
389
389
389
389
389
390
390
390
390

391
391
391
391
391
393
393
393
393
393
393
393
394
395
395
396
396
397
397
398

399
399
399
399
399
400
400

CONTENTS

24.3

24.2.3 exec_sectype_t: section type flagsword oL
24.2.4 exec_info_t: executable information structure
Function Reference e e e
24.3.1 exec_load: detect the type of an executable file and load it
24.3.2 exec_load_elf: load a 32-bit ELF executablefile
24.3.3 exec_load_aout: load an a.out-format executable file

25 Linux File Systems: liboskit linux fs.a

25.0.4 fs_linux_init: Initialize the Linux fs library
25.0.5 fs_linux.mount: Mount a filesystem via the Linux fs library

26 NetBSD File Systems: liboskit netbsd_fs.a

26.0.6 fs netbsd init: Initialize the NetBSD fs library
26.0.7 fs_netbsd mount: Mount a filesystem via the Netbsd fs library

27 FreeBSD Networking: liboskit_freebsdnet.a

27.1
27.2

27.3

Introduction L
Header Files o e
27.2.1 freebsd.h: definitions for the FreeBSD-derived networking code
Interfaces o . . e
27.3.1 oskit_freebsd.net_init: initialize the networkingcode
27.3.2 oskit_freebsd net_open_ether_if: find and open an ethernet interface
27.3.3 oskit_freebsd net_open first_ether_if: find and open first ethernet interface . .
27.3.4 oskit_freebsd net_close ether_if: close an ethernet interface
27.3.5 oskit_freebsd net_ifconfig: configure an interface.
27.3.6 oskit_freebsd net_add default_route: set a default route.

28 BOOTP Support: liboskit _bootp.a

28.1
28.2
28.3

Introduction L
External Dependencies L
APT reference L e
28.3.1 bootpmet_info: BOOTP protocol information structures
28.3.2 bootp_gen: Generate a BOOTP protocol request
28.3.3 bootp: Generate a BOOTP protocol request (simple interface)
28.3.4 bootp_free: Free the result of a BOOTP request
28.3.5 bootp_dump: Dump the result of a BOOTP via printf

29 HPFQ: Hierarchical Network Link Sharing: liboskit hpfq.a

29.1
29.2
29.3
294
29.5

29.6

29.7

Introduction L
Configuration
Usage e e e
APT reference o e
External Requirements and Constructors. o
29.5.1 oskit_pfqg.-root: the root node scheduler,
29.5.2 oskit_pfqg.-reset_path: pointer to the reset_path function
29.5.3 pfq-sff_create_root: create a root node implementing SFF
29.5.4 pfq-ssf_create_root: create a root node implementing SSF
29.5.5 pfq-sff_create: create an intermediate node implementing SFF
29.5.6 pfq-ssf_create: create an intermediate node implementing SSF
29.5.7 pfqg-leaf create: createaleafnode L oL
pfq-sched: Interface to PFQ Schedulers o oL
29.6.1 pfqg-sched_add child: add a child to a root or intermediate node
29.6.2 pfqg-sched _remove_child: remove a child from a root or intermediate node
29.6.3 pfqg-sched_set_share: allocate a percentage of the parent’s bandwidth
pfq-leaf: Interface to PFQ Leaf Nodes

17

406
406
408
408
408
409

411
411
411

413
413
413

415
415
416
416
417
417
417

. 418

418
419
419

421
421
421
421
422
423
423
424
424

18 CONTENTS
29.7.1 pfqg.-leaf_add child: add a child to a root or intermediate node 432
29.7.2 pfqg-leaf_remove_child: remove a child from a root or intermediate node 432
29.7.3 pfqg_leaf_set_share: allocate a percentage of the parent’s bandwidth 432
29.7.4 pfq_leaf _get netio: get the oskit netio corresonding to thisleaf 432

30 Linux Driver Set: liboskit_linux dev.a 435

30.1 Initialization and Registration oL oo 436
30.1.1 oskit_linux_init_devs: Initialize and register all known drivers 436
30.1.2 oskit_linux_init_net: Initialize and register known network drivers 436
30.1.3 oskit_linux_init_ethernet: Initialize and register known Ethernet network drivers . 436
30.1.4 oskit linux_init_scsi: Initialize and register known SCSI disk drivers 437
30.1.5 oskit_linux_init_ide: Initialize and register known IDE disk drivers 437
30.1.6 oskit_linux_init_scsi_name: Initialize and register a specific SCSI disk driver . . . 437
30.1.7 oskit_linux_init_ethernet_name: Initialize and register a specific Ethernet network

driver e e e 437

30.2 Obtaining object references 438
30.2.1 oskit_linux.block_open: Open a disk given its Linux name 438
30.2.2 oskit_linux.block open_kdev: Open a disk given its Linux kdev 438
30.2.3 oskit_linux.netdev_find: Open a netcard given its Linux name 438
30.2.4 oskit_linux.net_open: Open a netcard given its Linux name 438

30.3 Introduction e e e 439

30.4 Partially-compliant Drivers L e 439

30.5 Internals e 439
30.5.1 Namespace Management Rules 439
30.5.2 Variables L. e 439
30.5.3 Functions 441
30.5.4 Directory Structureo e e 443

30.6 Block device drivers e 443

30.7 Network drivers o L e 443

30.8 SCSLArivers o v o e e e e 444

31 FreeBSD Driver Set: liboskit_freebsd dev.a 447

31.1 Introduction L. e 447

31.2 Supported Devices oL e e e e e 447

313 Header Files o o e e 448
31.3.1 freebsd.h: common device driver framework definitions 448

314 Interfaces L 449
31.4.1 oskit_freebsd init: Initialize and FreeBSD device driver support package 449
31.4.2 oskit_freebsd_init_devs: Initialize and register all FreeBSD device drivers 449
31.4.3 oskit_freebsd_init_isa: Initialize and register all FreeBSD ISA bus device drivers . 449
31.4.4 oskit_freebsd_init_driver: Initialize and register a single FreeBSD device driver . . 450

31.5 “Back door” Interfaces L. 451
31.5.1 oskit_freebsd_chardev_open: Open a character device using a FreeBSD major/minor

device value L 451
31.5.2 oskit_freebsd xlate_errno: Translate a FreeBSD error number 451

32 WIMPi Window Manager: liboskit wimpi.a 453

32.1 Introduction e e e 453

32.2 Sohow doTusethis? 453

32.3 Dependencies e e 453

32.4 APIreference L 453
32.4.1 wimpi_initialize: Initialize the wimpicode 453
32.4.2 wimpimain_loop: Start main wimpieventloop L. 454

32.4.3 wimpi_create_toplevel: Create a top level wimpi window 454

CONTENTS 19

32.4.4 wimpi destroy_toplevel: Destroy a top level wimpi window 454
32.4.5 wimpi kbd_input: Send keyboard input to wimpio Lo 454
32.4.6 wimpimouse_input: Send mouse input to wimpi 454
32.4.7 wimpi_set_event_handler: Register a callback function for event handling 454
32.4.8 wimpi_set_input_routine: Register a callback function for input to wimpi 454
32.4.9 wimpi_send_expose_event: Send and expose event to a window 455
32.4.10wimpi_send mouse_event: Send a mouse event to a window 455
32.4.11wimpi_send move_resize_event: Send a move/resize event to a window 455
32.4.12wimpi_send_destroy_event: Send a destroy event to a window 455
32.4.13wimpi_create window: Create a sub window 455
32.4.14wimpi_destroy_window: Destroy a sub window 455
32.4.15wimpi map_window: Map a sub window L L L 455
32.4.16wimpi_unmap_window: Unmap a sub window 456
32.4.17wimpi raise_window: Raise a sub window 456
32.4.18wimpi_lower_window: Lower a sub window 456
32.4.19wimpi_set_window_background: Set a window’s background color 456
32.4.20wimpi_set_foreground: Set a window’s foreground color 456
32.4.21wimpi_clear_area: Clear a sectionof awindow 456
32.4.22wimpi move_resize window: Move/resize a window 457
32.4.23wimpi_fill rectangle: Draw a filled rectangular area in a window 457
32.4.24wimpi draw_string: Draw a string in a window 457
32.4.25wimpi draw_line: Draw alineina window 457
32.4.26wimpi draw_arc: Draw an arc in a window 457
32.4.27wimpi draw_ellipse: Draw an ellipse in a window 457
32.4.28 wimpi draw _rectangle: Draw a rectangle in a window 457
32.4.29wimpi_put_image: Blit an image into a window Lo 458
32.4.30wimpi_copy_area: Copy a rectangular region in a window 458
32.4.31wimpi_set_window_title: Set the title of a window 458
32.4.32wimpi make_child window: Make a child window 458

33 Video Support: liboskit_video.a 459
33.1 Introduction L 459
33.2 X11 S3 Video Library e e e e 459
33.2.1 Sohow do T usethis? 459
33.2.2 Dependencies e 459
33.2.3 APIreference e 459
33.2.4 s3_init _framebuffer: Initializes the s3 videocode 460
33.2.5 s3_cmapwrite: Write a colormapentry L oL 460
33.2.6 s3_cmap.read: Read a colormapentry 460
33.2.7 s3_cmap_fg_index: Return the colormap index for the foreground color 460

33.3 Svgalib Video Library e 460
33.3.1 Sohow doTusethis? 460
33.3.2 Dependencies e 460

V Utilities 461
34 Network Booting 463
34.1 Introduction e e e 463
34.2 Implementation Issues and Requirements 463
34.3 Using NetBoot 463
34.3.1 Booting Another OS L 464
34.3.2 Getting Help o o e 464

34.3.3 Quitting L L e 464

20

VI The Legal Stuff

35 Copyrights and Licenses

35.1 Copyrights & Licenses
35.2 Contributors
35.3 Acknowledgements
liboskit. diskpart.a
liboskitexec.a. o e

Index

35.3.1
35.3.2
35.3.3
35.3.4
35.3.5
35.3.6
35.3.7
35.3.8

liboskit_freebsd_{dev,net,m}.a

liboskitkern.a.
liboskit libc.a.
liboskitwimp.a.
Various OSKit header files.
liboskitmnetbsd fs.a

CONTENTS

Part 1

Design and Organization

21

Chapter 1

Introduction

Caveat: This document is really two different documents in one. Much of the expository text (rationale,
extended descriptions) belongs in an overview, background, or introductory document. The more concise
“man pages” belong in an API reference manual. And, of course, a tutorial is needed. Lacking a tutorial,
we suspect the best thing for new users to do is to scan this introductory chapter and then look over and play
with some of the small example programs, outlined below in section 1.6.1. Feedback appreciated, and bear
with us.

1.1 Goals and Scope

The OSKit is a framework and set of modularized components and library code, together with extensive
documentation, for the construction of operating system kernels, servers, and other OS-level functionality.
Its purpose is to provide, as a set of easily reusable modules, much of the infrastructure “grunge” that
usually takes up a large percentage of development time in any operating system or OS-related project,
and allow developers to concentrate their efforts on the unique and interesting aspects of the new OS in
question. The goal is for someone to be able to take the OSKit and immediately have a base on which they
can start concentrating on “real” OS issues such as scheduling, VM, IPC, file systems, security, or whatever.
Alternately they can concentrate on the real language issues raised by using advanced languages inside
operating systems, such as Java, Lisp, Scheme, or ML—instead of spending six months first writing boot
loader code, startup code, device drivers, kernel printf and malloc code, a kernel debugger, etc. With the
recent addition of extensive multithreading and sophisticated scheduling support, the OSKit also provides a
modular platform for embedded applications.

Although it can provide a complete OS environment for many domains, the primary intention of this
toolkit is not to “write the OS for you”; we certainly want to leave the OS writing to the OS writer. The
dividing line between the “OS” and the “OS toolkit,” as we see it, is basically the line between what OS
writers want to write and what they would otherwise have to write but don’t really want to. Naturally this
will vary between different OS groups and developers. If you really want to write your own x86 protected-
mode startup code, or have found a clever way to do it “better,” you’re perfectly free to do so and simply
not use the corresponding code in our toolkit. However, our goal is that the toolkit be modular enough that
you can still easily use other parts of it to fill in other functional areas you don’t want to have to deal with
yourself (or areas that you just don’t have time to do “yet”).

As such, the toolkit is designed to be usable either as a whole or in arbitrary subsets, as requirements
dictate. It can be used either as a set of support libraries to be linked into an operating system kernel and/or
its support programs, or it can be used merely as a collection of “spare parts”: example source code to be
ripped apart and cannibalized for whatever purpose. (Naturally, we prefer that the toolkit be used in library
fashion, since this keeps a cleaner interface between the toolkit and the OS and makes them both easier to
maintain; however, we recognize that in some situations this will not be practical for technical or political
reasons.)

The toolkit is also intended to be useful for things that aren’t kernels but are OS-related, such as boot
loaders or OS-level servers running on top of a microkernel.

23

24 CHAPTER 1. INTRODUCTION

1.2 Road Map

The facilities provided by the OSKit are currently organized into three main categories, corresponding to
the three main sections of this manual: interfaces, function libraries, and component libraries. Note that the
distinction between the two types of libraries has lessened since the majority of this document was written,
and in some cases is rather arbitrary. There is also a small Utilities section (V) describing useful OSKit
programs; this currently describes only the “NetBoot” utility.

1.2.1 Interfaces

The OSKit’s interfaces are a set of clean, object-oriented interfaces specified in the framework of the Compo-
nent Object Model (COM), described in Chapter 4. These interfaces are made available through thoroughly
commented public C header files, with corresponding documentation in Part IT of this manual. For example,
the OSKit provides a “block I/O” interface for communication between file systems and disk device drivers,
a “network I/0O” interface for communication between network device drivers and protocol stacks, and a
file system interface similar to the “VFS” interface in BSD. These interfaces are used and shared by the
various OSKit components in order to provide consistency and allow them to be used together easily. The
OS developer may additionally use or build on these interfaces in defining the fundamental structure of the
client OS, but is not required to do so; alternatively, the developer may simply use them when writing the
“glue” code necessary to incorporate a particular OSKit component into a new or existing OS environment.

1.2.2 Function Libraries

The OSKit’s function libraries provide basic low-level services in a traditional C-language function-oriented
style. For example, the OSKit provides libraries exporting kernel bootstrap support, standard C library
functions, and executable program loading. These libraries are designed to be usable and controllable in
a very fine-grained manner, generally on a function-by-function basis, allowing the client OS to easily use
particular library functions while leaving out or individually overriding other functions. The dependencies
between library functions are minimized, as are dependencies of library functions on other libraries; where
these dependencies inevitably exist, they are well-defined and explicitly exposed to the OS developer. In
general, the implementation details of these libraries are intentionally exposed rather than hidden. The
function libraries make only minimal use of the OSKit’s object-oriented COM interfaces, instead generally
defining their own function-oriented interfaces in ordinary C header files. This design strategy provides
maximum power and flexibility to the OS developer at the cost of increasing the dependence of the client
OS on the implementation details of the libraries; we have found this to be a good design tradeoff for the
low-level OSKit facilities which usually must be customized extensively in order to fit into any particular OS
environment.

Following is a summary of the function libraries currently provided by the OSKit along with the chapter
numbers in which each is described:

9 liboskit_c: A simple, minimal C library which minimizes dependencies with the environment and
between modules, to provide common C library services in a restricted OS environment. For example,
this library provides many standard string, memory, and other utility functions, as well as a formatted
I/0 facility (e.g., printf) designed for easy use in restricted environments such as kernels.

10 1iboskit kern: Kernel support code for setting up a basic OS kernel environment, including providing
default handlers for traps and interrupts and such. This library includes many general utilities useful
in kernel code, such as functions to access special processor registers, set up and manipulate page
tables, and switch between processor modes (e.g., between real and protected mode on the x86). Also
includes facilities for convenient source-level remote debugging of OS kernels under development.

11 liboskit_smp: More kernel support code, this library deals with setting up a multiprocessor system
to the point where it can be used by the operating system. Also (to be) included are message-passing
routines and synchronization primitives, which are necessary to flush remote TLBs.

1.2. ROAD MAP 25

4 liboskit_com: Utility functions for handling COM interfaces, and a suite of generic wrapper compo-
nents. These wrappers map one OSKit COM interface to another, or implement simple functionality
such as synchronization by creating proxy COM objects that wrap the COM objects provided by more
primitive components.

6 liboskit_dev: This library provides default implementations of the “glue” functions required by device
drivers and other “large” encapsulated components (networking, filesystems) imported from other
operating systems, running in the OSKit Device Driver (née “fdev”) framework. (The framework’s
current name reveals its heritage; today, a more accurate name would be the “OS Environment”
framework.) The default implementations of these functions are designed for simple kernels using
liboskit_kern; for more elaborate kernel (or user-mode) environments, the client OS will have to
override some or all of the functions in this library.

The following four libraries are provided mainly for convenience; they are not as general or as well
documented as the other libraries but are still useful. See the source directories and READMEs for details.

liboskit_startup: Contains functions to start up and initialize various OSKit components, making
it easier to write OSKit programs.

liboskit_unsupp: Contains various unsupported hacks and utilities.

liboskit unix: Provides the necessary support to debug and run certain OSKit components on
FreeBSD in user-mode. One can tweak this to run on Linux.

liboskit_fudp: Provides a “Fake UDP” implementation: a restricted send-only no-fragmenting ver-
sion of UDP. This can be useful with the hpfq library (in Chapter 29).

1.2.3 Component Libraries

Finally, the OSKit’s component libraries provide generally higher-level functionality in a more standard,
coarse-grained, object-oriented “black box” design philosophy. Although the OSKit’s “components” are also
packaged into ordinary link libraries by default, their structure represents more of a component-oriented
design than a traditional C function-oriented design. In contrast with the OSKit’s function libraries, the
component libraries typically export relatively few public entrypoints in comparison to the amount of func-
tionality provided. For example, in the Linux and BSD device driver component libraries (see Chapters 30
and 31), each entire device driver is represented by a single function entrypoint which is used to initialize
and register the driver as a whole. The client OS generally interacts with these components through the
OSKit’s object-oriented COM interfaces, allowing many components and instances of components to coexist
and interact as defined by the OS developer. This design strategy has proven to be most appropriate when
incorporating large chunks of existing code from existing systems such as BSD and Linux, where it is more
important to hide the details of the original environment than to provide the most flexibility.

Following is a summary of the component libraries currently provided by the OSKit along with the
chapter numbers in which each is described:

e POSIX emulation and libraries

14 liboskit_freebsd_c: Complete pPOSiX-like C library derived from FreeBSD, providing both
single- and multithreaded configurations. This library is an alternative to the minimal C library
liboskit_c (above), intended for programs that use substantial POsiX-like functionality or need
thread-safety. The FreeBSD “system call” layer is replaced with glue code that uses the OSKit
COM interfaces, while the higher-level code is mostly unchanged from that found in FreeBSD.

15 liboskit _freebsd.m: Complete standard math library (taken from FreeBSD’s 1ibm). The func-
tions in this library will commonly be needed by programs that use floating point.

¢ Memory management

26

16

17

18

CHAPTER 1. INTRODUCTION

liboskit 1mm: A flexible memory management library that can be used to manage either physical
or virtual memory. This library supports many special features needed by OS-level code, such as
multiple memory types, allocation priorities, and arbitrary alignment and placement constraints
for allocated blocks.

liboskit_amm: The Address Map Manager library manages collections of resources where each
element of a collection has a name (address) and some set of attributes. Examples of resources
that might be managed by address maps include swap space and process virtual address space.

liboskit_svm: The Simple Virtual Memory library uses the AMM library to define a simple
virtual-memory interface for a single address space that can provide memory protection and
paging to a block device such as a disk partition. (unsupported/redzone.c provides a stack
redzone for single-threaded kernels, without all of SVM.)

e Threads, synchronization, and scheduling

19

liboskit_threads: This library provides support for multithreaded kernels, including POSIX
threads, synchronization, scheduling, and stack guards. Scheduling policies are the standard POSIX
Round-Robin and FIFO. Experimental support for CPU inheritance scheduling, a hierarchical
framework for arbitrary scheduling policies, is also provided, although not integrated or robust.
Provided policies include rate-monotonic, stride (WFQ), and lottery scheduling.

e Development aids

20

21

liboskit memdebug: This library provides debugging versions of malloc et al that check for a
variety of bugs related to memory-allocation (overruns, use of freed blocks, etc).

liboskit_gprof: Run-time support code for an OSKit kernel to collect profiling data about itself
and report it at the end of a run. Profiling data can be collected for kernel code compiled with
the “-pg” option (as for use with Unix gprof), and profiled “_p” versions of all OSKit libraries
are provided to profile OSKit code used by the application kernel.

e Simple disk/file reading and loading

22

23

24

liboskit diskpart: A generic library that recognizes various common disk partitioning schemes
and produces a complete “map” of the organization of any disk. This library provides a simple way
for the OS to find relevant or “interesting” disk partitions, as well as to easily provide high-level
access to arbitrary disk partitions through various naming schemes; BSD- and Linux-compatible
naming mechanisms are provided as defaults.

liboskit_fsread: A simple read-only file system interpretation library supporting various com-
mon types of file systems including BSD FFS, Linux ext2fs, and MINIX file systems. This library
is typically used in conjunction with the partition library to provide a convenient way for the OS
to read programs and data off of hard disks or floppies. Again, this functionality is often needed
at boot time even in operating systems that otherwise would not require it. This code is also
extremely useful in constructing boot loaders.

liboskit_exec: A generic executable interpreter and loader that supports popular executable
formats such as a.out and ELF, either during bootstrap or during general operation. (Even
microkernel systems, which normally don’t load executables, generally must have a way to load
the first user-level program; the OSKit’s small, simple executable interpreter is ideally suited to
this purpose.)

¢ Filesystem implementations

25

26

liboskit linux fs: Encapsulated Linux 2.0.29 filesystem code. Includes the Linux VFS layer
supporting ext2fs, the primary Linux filesystem, as well as numerous other PC filesystems sup-
ported under Linux.

liboskit netbsd fs: Encapsulated NetBSD 1.2 filesystem code. Includes the BSD VFS layer
supporting the local FFS filesystem.

1.3. OVERALL DESIGN PRINCIPLES 27

e Networking implementations

27 liboskit freebsd net: Encapsulated FreeBSD 2.1.7.1 networking code. Includes socket layer
and protocol support wrapped to use the OSKit’s framework.

28 liboskit_bootp: This library provides a simple interface for performing the BOOTP protocol
(RFC 1048/1533) on Ethernet devices to retrieve a canonical set of parameters from a server,
based on the client’s Ethernet hardware address.

29 liboskit hpfq: This library provides hierarchical proportional-share control of outgoing network
link bandwidth, described in the Bennet/Zhang SIGCOMM’96 paper.

e Device driver implementations

30 liboskit_linux_dev: Encapsulated Linux 2.0.29 device driver set. Currently includes over 50
block (SCSI, IDE) and network drivers wrapped to use the OSKit’s device driver framework. See
the source file 1inux/dev/README for a list of devices and their status.

31 liboskit _freebsd_dev: Encapsulated FreeBSD 2.1.7.1 device driver set. Currently includes eight
TTY (virtual console and serial line, including mouse) drivers wrapped to use the OSKit’s device
driver framework.

¢ Video and window manager implementations

32 liboskit wimpi: Simple hierarchical windowing system based on MGR, with only simple drawing
and window management operations.

33 liboskit_*video*: Basic video support, with two implementations: one encapsulating all of
SVGALIB 1.3.0, and one based on XFree86 3.3.1, but with only the S3 driver currently supported.
We also provide support for X11 clients.

1.3 Overall Design Principles

This section describes some of the general principles and policies we followed in designing the components
of the OSKit. This section is most relevant for people developing or modifying the toolkit itself; however,
this information may also help users of the toolkit to understand it better and to be able to use it more
effectively.

e Cleanly separate and clearly flag architecture- and platform-specific facilities. Although the OSKit
currently only runs on the x86 architecture, we plan to port it to other architectures such as the Stron-
gARM in the future. (We will also help with ports by others, e.g., to the DEC Alpha.) Architecture-
specific and platform-specific features and interfaces are tagged in this document with boxed icons, e.g.,
indicating the Intel x86 processor architecture, and representing x86-based PC platforms.

e Attempt to make the OSKit’s interfaces portable even in situations where their implementation can’t
be. Although by its nature a large percentage of the implementation of the OSKit is inherently machine-
dependent, the interfaces to many of its facilities are very generic and should be usable on most any
architecture or platform. For example, the OSKit’s device driver interfaces are almost completely
portable, even though the device drivers themselves generally aren’t.

e Document inter-module dependencies within each library. For function libraries, this means document-
ing the dependencies between individual functions; for component libraries, this means documenting
the dependencies between the different components collected in each library. This policy contrasts to
most other third-party libraries, which are usually documented “black box” fashion: you are given de-
scriptions of the “public” interfaces, and that’s it. Although with such libraries you could in principle
use part of the library independently from the rest or override individual library components with your
own implementations, there is no documentation describing how to do so. Even if such documentation
existed, these libraries often aren’t well enough modularized internally, so replacing one library com-
ponent would require understanding and dealing with a complicated web of relationships with other
components.

28 CHAPTER 1. INTRODUCTION

The downside of this policy is that exposing the internal composition of the libraries this way leaves less
room for the implementation to change later without affecting the client-visible interfaces. However,
we felt that for the purposes of the OSKit, allowing the client more flexibility in using the library is
more important than hiding implementation details.

o Where there is already a standard meaning associated with a symbol, use it. For example, our toolkit
assumes that putchar () means the same thing as it does under normal POSIX, and is used the same
way, even if it works very differently in a kernel environment. Similarly, the toolkit’s startup code starts
the kernel by calling the standard main() function with the standard argc and argv parameters, even
if the kernel was booted straight off the hardware.

e It is generally safe to call initialization routines more than once with no harmful side-effects, except
when the documentation says otherwise. Although this is often unnecessary in particular situations, it
increases the overall robustness of the components and decreases hair-pulling since clients can always
follow the simple rule, “if in doubt, initialize it.”

1.4 Configuring the OSKit

The OSKit follows the GNU conventions for configuration, building, and installation; see the INSTALL file in
the top-level source directory for general instructions on using GNU configure scripts. In short, you need
to run the configure script that is in the top-level source directory of the OSKit; this script will attempt
to guess your system type and locate various required tools such as the C compiler. You can configure the
OSKit to build itself in its own source directory, simply by moving to that directory and typing ./configure,
or you can build the OSKit into a separate object directory by changing to that directory and running the
configure script from there. For example, using a separate object directory allows you to put the object
files on a local disk if the sources come across NFS, or on a partition that isn’t backed up. Additionally, you
can have multiple configurations of the OSKit at once (with different options or whatever), each in its own
object tree but sharing the same sources.

To cross-compile the OSKit for another architecture, you will need to specify the host machine type (the
machine that the OSKit will run on) and the build machine type (the machine on which you are building
the toolkit), using the --build=machine and --host=machine options. Since the OSKit is a standalone
package and does not use any include files or libraries other than its own, the operating system component
of the host machine type is not directly relevant to the configuration of the OSKit. However, the host
machine designator as a whole is used by the configure script as a name prefix to find appropriate cross-
compilation tools. For example, if you specify ‘~~host=1486-1inux’, the configure script will search for
build tools called 1486-1inux-gcc, i486-1linux-ar, i486-1inux-1d, etc. Among other things, which tools
are selected determines the object format of the created images (e.g., ix86-linux-* tools create ELF format,
while ix86-mach-* tools create a.out format).

The OSKit’s configure script accepts various standard options; for a full listing of the supported options,
run configure --help. In addition, the configure script also supports the following options specific to
the OSKit:

--enable-debug: Turn on debugging support in the compiler, and include debugging and sanity checking
code within the OSKit. This option increases code size and reduces performance slightly, but also
increases the likelihood of errors being detected quickly.

--enable-profiling: Generates profiling versions of all of the OSKit libraries; in keeping with the standard
convention, the profiling versions of the libraries are suffixed with _p.

--disable-asserts: Compiles out assert() calls, for those who live on the edge.
--enable-hpfq: Build the HPFQ library and the special liboskit_linux_dev that’s required.

--enable-unixexamples: Generates support code and example programs to debug and run some OSKit
components in user-mode on top of Unix. FreeBSD is the only version of Unix on which this works
unchanged. Tweaking it for other versions of Unix should not be hard and we’ve done so and run at
least part of it on Linux.

1.5. BUILDING THE OSKIT 29

--enable-doc: The build process will attempt to format the OSKit documentation. In addition to taking
a long time (the complete documentation is over 475 pages), it requires BEX and dvips. Pre-formatted
.ps and .html files are provided in the source tree.

--enable-linux-bogomips=VALUE: This option is only relevant to the Linux device driver and filesystem
libraries. Prevents the Linux “BogoMips” calibration and instead hardcodes it to the value given. If
the =VALUE is omitted, the default value of 300 is taken. Warning: specifying this option may cause
the Linuzx device drivers and filesystems to behave incorrectly. Use at your own risk.

Before you do the actual OSKit build, there are some steps you can choose to take to make the build go
faster, by not compiling parts you do not need.

e Edit <oskit/dev/linux_ethernet.h> to contain only lines for drivers you will need. In addition to
making your builds go faster, with some hardware this may even be neccessary since some of the
probing by incompatible drivers can hang your machine.

e Edit <oskit/dev/linux_scsi.h> to contain only lines for drivers you will need.
e Edit <oskit/fs/linux filesystems.h> to contain only lines for filesystems you will need.

e Edit the top-level GNUmakefile (created by configure) to set SUBDIRS to only the directories you will
need. This step should only be done after you are somewhat experienced with the OSKit and know
what directories you need. An alternative to this is to specify the subdirs directly in GNUmakefile.in
instead of using the value @SUBDIRS@. This has the advantage of persisting after future configure
runs, which create a new GNUmakefile from GNUmakefile.in.

e Set your CFLAGS environment variable to =01 -pipe. This will speed up compiles by doing less opti-
mization than the default -02, and may also make the compiler go faster if your compiler doesn’t write
its temporary files into a memory-based filesystem.

1.5 Building the OSKit

Building the OSKit currently requires these tools and versions:
e GNU make

e GNU CC (gcc) version 2.7.x. More recent gcc versions and eges may work but have not been well
tested.

e GNU binutils version 2.8.x, or 2.9.1 with BFD 2.9.1.

To build the OSKit, go to the top-level source directory (or the top-level object directory, if you configured
the toolkit to build in a separate object directory), and run GNU make (e.g., just ‘make’ on Linux systems,
or ‘gmake’ on BSD systems). Note that the OSKit requires GNU make. Don’t even think about trying to
get it to work with another version of make. You’ll be better off porting GNU make to your system. Really.
To avoid confusion, the OSKit’s makefiles are named GNUmakefile rather than just Makefile; this way, if
you accidentally run the wrong make utility, it will simply complain that it can’t find any makefile, instead
of producing an obscure error.

To build or rebuild only one specific part of the OSKit, such as one of the libraries, you can simply go into
the appropriate subdirectory of the object tree and run GNU make from there. The top-level GNUmakefile
essentially does nothing except recursively run make in each subdirectory, so it is always safe to run any
OSKit makefile manually. A few OSKit directories depend on others being built first—for example, the
example kernels cannot be built until the OSKit libraries they use have been generated—but most of the
OSKit libraries can be built completely independently of each other.

Once the toolkit is built, you can install it with ‘make install’. By default, the libraries will go
into /usr/local/lib and the header files into /usr/local/include, unless you specified a --prefix on
the configure command line. All of the OSKit header files are installed in an oskit/ subdirectory (e.g.

30 CHAPTER 1. INTRODUCTION

/usr/local/include/oskit), so they should not conflict with any header files already present. Although
the libraries are installed in the main library directory (e.g., /usr/local/lib) and not a subdirectory, all
the library names are prefixed with oskit_ to avoid conflicts with other unrelated libraries you may want to
place there. For example, the OSKit’s minimal C library is named 1iboskit_c.a rather than just libc.a,
allowing you to install a “real” C library in the same directory if desired.

The standard make variables such as CFLAGS and LDFLAGS are used by the OSKit’s build rules but are not
actually defined by any of the OSKit makefiles; thus they are available for use on the make command line.
For example, you can type ‘make CFLAGS="-save-temps"’to cause GCC to leave its intermediate files in the
object directory, such as the preprocessed C source and the assembly language compiler output. (Internally,
the OSKit makefiles use OSKIT_ prefixes on most standard makefile variables.)

1.6 Using the OSKit

To use the OSKit, simply link your kernel (or servers, or whatever) with the appropriate libraries. Detailed
information on how to use each library is provided in the appropriate chapters in this document. For initial
experimentation with the OSKit, you can simply hack on the example kernels or create new kernels in the
same directory (see Section 1.6.1 for a tour through our examples); however, once your own system grows
beyond the stage of a simple demo kernel you will probably want to set up a separate source tree and link
in the OSKit components from the installation directory.

Linking libraries into a kernel may seem strange at first, since all of the existing OS kernels that we have
encountered seem to have a strong “anti-library” do-everything-yourself attitude. However, the linker can
link libraries into a kernel just as easily as it can link them into application programs; we believe that the
primary reason existing kernels avoid libraries is because the available libraries aren’t designed to be used
in kernels; they make too many assumptions about the environment they run in. Filling that gap is the
purpose of the OSKit.

All of the OSKit libraries are designed so that individual components of each library can be replaced
easily; we have taken pains to document the dependencies clearly so that clients can override whatever
components they need to, without causing unexpected results. In fact, in many cases, particularly in the
function libraries, it is necessary to override certain functions or symbols in order to make effective use of
the toolkit. To override a library function or any other symbol defined by a library, just define your own
version of it in your kernel or other client program; the linker will ensure that your definition is used instead
of the library’s. We strongly suggest that you use the linker to replace components of the OSKit, instead of
making changes directly in the OSKit source (except, of course, to fix bugs in the OSKit). Maintaining a
clean separation between the OSKit and your kernel will make things much easier when upgrading to a new
version of the OSKit.

1.6.1 Example Kernels

If you are starting a new OS kernel, or just want to experiment with the OSKit in a “standalone” fashion,
an easy way to begin is with one of the example “kernels” in the examples directory. These examples
build up from the kernel equivalent of a “Hello World” application, demonstrating how to use various
facilities separately or together, such as the base environment initialization code in kern, the minimal console
driver code, the minimal C library, the remote debugging stub, and device, filesystem and network COM
interfaces. The code implementing these examples is almost as small and simple as equivalent ordinary user-
level applications would be because they fully rely on the OSKit to provide the underlying infrastructure
necessary to get started. The compilation and linking rules in the GNUmakerules files for these example
programs demonstrate how to link kernels for various startup environments.

The following example “kernels,” and many more, are provided. See the examples/README file for a list
of most of them, and their source for more detail.

e hello: What else? Absolutely useless, but you must have one!

° multiboot: Prints out info passed by the boot loader and info about the CPU.

1.6.

USING THE OSKIT 31

anno_test: Simple example of the use of trap and interrupt annotations. See section 10.19 for
details on annotations.

timer_com: Shows a way to use timer interrupts.
blkio: Demonstrates use of basic low-level disk access.
linux fs_com: Shows how to use the low-level filesystem interfaces to the Linux filesystems.

bmodfs: Shows use of the BMOD filesystem and the POSIX layer over the OSKit FS interfaces. See
section 10.20 for details on the BMOD filesystem.

pingreply: Shows how to use the low-level network access.
socket _bsd: Demonstrates use of the BSD socket layer over the low-level network interfaces.

smp: A simple MultiBoot kernel that demonstrates how to use the SMP support.

1.6.2 Booting Kernels

The example kernels, as well as custom kernels you build using the OSKit, can be booted from either the
GRUB, Linux, Mach, or BSD boot loaders, from MS-DOS directly, or from the NetBoot “meta-kernel.”
(NetBoot is described in Section 34.) GRUB and NetBoot can boot the kernels as-is, since they directly
support the MultiBoot standard, whereas the other boot loaders need the kernel to be in a different format.
This conversion can be done with the mkbsdimage, mklinuximage, and mkdosimage “boot adapter” scripts,
which are automatically built and installed with the OSKit when configured for the appropriate host. See
comments in each script for the argument syntax.

e The mklinuximage script is installed with the OSKit when configured for a Linux or other ELF-based

host; given a MultiBoot boot image, it creates a standard Linux boot image that can be loaded from
LILO or other Linux boot loaders.

The mkbsdimage script is installed when the OSKit is configured for a Mach or BSD host; its script
creates an NMAGIC a.out image from a MultiBoot image that can be loaded from any of the BSD
or Mach boot loaders. Note that mkbsdimage requires GNU 1d to work properly: on BSD systems,
which don’t normally use GNU 1d, you will have to build and install GNU 1d manually.

The mkdosimage script is installed when the OSKit is configured for DOS-based targets such as
i386-msdos and i386-moss. Like the mkbsdimage script, mkdosimage requires GNU 1d; you may
have to build and install GNU 14 first, configured as a cross-inker for an MS-DOS target, before
mkdosimage will build properly.

The mkmbimage is installed with all OSKit configurations And, unlike the other scripts, doesn’t do
any conversion. It simply allows for the combining of a kernel and additional files into one MultiBoot
image. The resulting image can be used with MultiBoot boot loaders such as GRUB and NetBoot.

For example, the following command creates a bootable BSD-style image named ‘Image’:

% mkbsdimage hello

the mktypeimage scripts can also do more complex things, such as combining an arbitrary number of addi-
tional files or “boot modules” into the image. See 10.14 and the scripts for more info.

For details on the MultiBoot standard see Section 10.14.12.

32 CHAPTER 1. INTRODUCTION

1.6.3 Command line arguments

The various boot adapters convert their respective command-line formats, such as the boothowto word in
the BSD boot loader, into the string format used by MultiBoot-compliant operating systems. The OSKit
expects this string to be in a certain format, which looks like:

progname [jboot-opts and env-vars; --] jargs to main;,

Note that if no -- is present then all of the args will be passed to main.
The default OSKit MultiBoot startup code then converts this string into a C-style argv/argc pair, an
environ global array, and a set of booting-options in the oskit_bootargv/oskit _bootargc global variables.
The argv/argce pair and the environ array are passed to main, the latter as the third parameter com-
monly called envp. The booting-options in oskit_bootargv/oskit bootargc are interpreted by the default
OSKit console startup code and the following flags have special meaning:

-h Use the serial line for the console. See also the -f flag. The serial port to use is determined by the
cons_com_port variable in 1ibkern’s base_console.c;

-d Enable debugging via GDB over a serial line; The serial port to use is determined by the gdb_com_port
variable in libkern’s base_console.c. This port may differ from the serial console port, in fact it is
advantageous to do so.

-p Enable profiling. The OS must have been compiled accordingly. See Section 21 for more details on
profiling;

-k Enable “killswitch” support. This allows one to kill the running kernel by sending characters to the
second serial line;

-f When using a serial console, run it at 115200 baud instead of the default 9600. This is a Utah extension
and is not in BSD.

These flags are decidedly BSD-centric, but that is because at Utah we most commonly boot OSKit kernels
from the FreeBSD boot-loader.

In addition, if the NetBoot booting program is being used, then an additional parameter will be present
in oskit_bootargv:

-retaddr address This specifies a location in physical memory where the OS can jump to and return
control to NetBoot. The default _exit routine in libkern’s base_console.c uses this value when
exiting.

Chapter 2

Execution Environments

2.1 Introduction

Because the components of the OSKit are intended to be usable in many different kernel and user-mode
environments, it is important that their requirements be defined fully, not only in terms of interface depen-
dencies, but also in terms of ezecution environment. A component’s execution environment involves many
implicit and sometimes subtle factors such as whether and in what cases the component is reentrant. A client
using a component must either use an execution environment directly compatible with the environment ex-
pected by the component, or it must be able to provide an environment in which the component can run by
adding appropriate glue code. For example, most of the OSKit’s components are not inherently thread- or
multiprocessor-safe; although they can be used in multithreaded or multiprocessor environments, they rely
on the client OS to provide the necessary locking as part of the “glue” the client OS uses to interface with
the component.

In order to make it reasonably easy for the client OS to adapt to the execution environment requirements
of OSKit components, the execution models used by the OSKit components are purposely kept as simple
and easy to understand as possible without sacrificing significant functionality or performance. Another
factor driving the OSKit components’ execution models is the goal of being able to integrate large amounts
of code, such as device drivers and network protocol stacks, virtually unmodified from traditional kernels
such as BSD and Linux; this requirement inevitably places some restrictions on the execution models of
the OSKit components derived from these source bases. However, in general, even the execution models of
these complex OSKit components are considerably simpler and more well-defined than the original execution
environments of the legacy systems from which the components were adapted; this simplification is enabled
by carefully-designed OSKit glue code surrounding the legacy code which emulates and hides from the OSKit
user the more subtle aspects of the legacy execution environments.

Since the OSKit includes components with a wide range of size and complexity, and as a result different
components naturally tend to have different levels of dependence on their execution environment, the OSKit
defines a set of standard execution models arranged on a continuum from simplest and least restrictive to
most complex and demanding on the client OS. This range of execution models allows the client OS to
adopt the simpler OSKit components quickly and with minimal fuss, while still providing all the detailed
environment information necessary for the client OS to incorporate the most demanding components. For
example, the basic memory-management libraries, LMM and AMM, use an extremely simple execution
models with very few restrictions, allowing them to be used immediately in almost any context. The device
driver libraries, on the other hand, necessarily place much greater demands on the client since they must
deal with interrupts, DMA, and other hardware facilities closely tied to the execution environment; however,
these requirements are defined explicitly and generically so that with a little effort even these components
can be used in many different contexts.

The remaining sections of this chapter describe each of the execution models used in the OSKit, in order
from simplest to most complex. In general, each succeeding execution model builds on and extends the
previous model.

33

34 CHAPTER 2. EXECUTION ENVIRONMENTS

2.2 Pure Model

The pure execution model is the most basic of the OSKit execution environments; it has the following
properties:

e Pure functions and components have no implicit global state. For example, they do not define or use
any global or static variables; they only use and manipulate data passed explicitly the client. For
example, many functions in the minimal C library, such as memcpy and strlen, are pure by nature
in that they only touch data areas passed in parameters by the client and have no other side-effects.
As a less trivial example, the LMM and AMM memory manager components include functions that
maintain state across calls, but only in explicit data structures visible to the client.

e Pure functions and components are fully reentrant and thread-safe with respect to disjoint data sets.
For example, if the client OS uses the LMM to manage several separate and disjoint memory pools,
then the Imm functions may be run concurrently on two different processors in a multiprocessor system
without synchronization, as long as each processor is manipulating a different LMM memory pool. This
property is a natural consequence of the fact that pure OSKit components maintain no implicit global
state.

e Pure functions and components are not reentrant or thread-safe with respect to overlapping data
sets. For example, just as it is not safe to make several memcpy calls concurrently with overlapping
destination buffers, it is not safe to call LMM functions concurrently on the same memory pool. This is
true for interrupt-style as well as thread-style concurrency: for example, the client OS must not call an
LMM function on a particular memory pool from within an interrupt handler if the interrupt handler
might have interrupted another LMM function call using the same memory pool. In order to use these
components in an interruptible or multithreaded /multiprocessor environment, the client OS must wrap
them with appropriate synchronization code, such as locking or interrupt priority management, in order
to ensure that only one call can be made at a time for a given data set.

e Pure functions and components are mot reentrant with respect to overlapping data sets even during
callbacks from the component to the client OS. In other words, callbacks are assumed to be atomic as
far as the component is concerned. For example, the address map manager, AMM, makes calls back
to the client OS to allocate and free memory for use in maintaining the address map, as well as to
perform client-defined processing when address map regions are split or joined together. During the
processing of one of these callbacks, the client OS must not attempt to make a reentrant call back into
the AMM operating on the same address map.

Figure 2.1 illustrates the pure execution environment. Since pure functions and components contain
no implicit global state, separate “instances” or uses of these components by the client can be treated as
completely independent objects: although each individual instance of the component is single-threaded and
non-reentrant, the client OS can manage synchronization between independent instances of the component
in any way it chooses.

2.3 Impure Model

Components that use the impure execution model act just like those operating in the pure model, except that
they may contain global shared state and therefore must be treated as a single “instance” for synchronization
and reentrancy purposes. For example, many of the functions in 1iboskit kern, the kernel support library,
set up and access global processor registers and data structures, and are therefore impure. Similarly, some of
the functions in the minimal C library, such as malloc and its relatives, inherently require the use of global
state and therefore are impure.

The impure execution model has the following properties:

e Impure functions and components may depend on implicit global state, such as global or static variables
or special processor registers.

2.4. BLOCKING MODEL 35

callback

Figure 2.1: Tllustration of the execution model used by pure components. Separate components, and separate instances of
each component, are fully independent and have no implicit shared global state; therefore they can be invoked concurrently with
no synchronization. However, each individual instance of a component (e.g., a particular LMM memory pool) is single-threaded
and non-reentrant; the client OS must avoid concurrent calls to that instance, as well as recursive calls to the same instance
through callbacks.

e Impure functions and components are not reentrant or thread-safe, except when explicitly stated
otherwise. In order to use these components in an interruptible or multithreaded/multiprocessor
environment, the client OS must provide appropriate synchronization code. Many impure components
and functions provide explicit synchronization hooks for the convenience of the client OS. For example,
the minimal C library’s malloc functions make calls to mem_lock and mem unlock, which are empty
functions by default but can be overridden by the client to provide real synchronization; see Section 9.5
for more information.

e Impure functions and components are not reentrant even during callbacks from the component to the
client OS, except when explicitly stated otherwise. In other words, callbacks are assumed to be atomic
as far as the component is concerned.

2.4 Blocking Model

The blocking execution model extends the impure model to support non-preemptive multithreading; it is
essentially the execution model used in traditional Unix-like kernels such as BSD and Linux. Components
that use the blocking model have the same properties as those that use the impure model, except that they
are re-entrant with respect to some callback functions; these functions are known as blocking functions. This
means that, whenever the component makes a call to a blocking function, the client OS may re-enter the
component in a different context, e.g., in the context of a different thread or processor. The set of callback
functions that are assumed to be blocking is part of the component’s contract with the client OS; in general,
a function is blocking unless it is explicitly stated to be nonblocking.

In order to use a blocking-model component in a fully preemptive, interruptible, or multiprocessor en-
vironment, the client OS must do essentially the same thing to adapt to the component’s execution model
as it would for a pure or impure component: namely, it must surround the component with a lock which
is taken before entry to the component and released on exit. However, because the component supports
re-entrancy through callbacks that are defined to be blocking functions, the client OS’s implementations of
these callback functions may release the component’s lock temporarily and re-acquire it before returning into
the component, thereby allowing other concurrent uses of the component.

36 CHAPTER 2. EXECUTION ENVIRONMENTS

2.5 Interruptible Blocking Model

The interruptible blocking execution model, unlike the other models, allows a component to be re-entered
at arbitrary points under certain conditions. In the interrupt model, there are two “levels” in which a
component’s code may execute: interrupt level and process level. (Note that in this context we use the
term “process” only because it is the traditional term used in this context; the components in fact have no
notion of an actual “process.”) The interrupt model also assumes a one-bit interrupt enable flag, which the
component can control through well-defined callback functions which must be provided by the client OS.
When the component is running at either level and interrupts are enabled, the component may be re-entered
at interrupt level, typically to execute an interrupt handler of some kind. To be specific, the properties of
the interruptible blocking model are as follows:

1. Each component is a single-threaded execution domain: only one (virtual or physical) CPU may execute
code in the component at a given time. For example, on a multiprocessor, only one processor may
be allowed to execute in a component set at a time at process level; this can be handled by placing
a global lock around the component. (Different components can be allowed to execute concurrently,
as long as the client OS takes appropriate precautions to keep them fully independent of each other.)
Similarly, if the host OS is preemptible, then the OS must ensure that if a component is preempted,
then that component will not be re-entered in another context before the first context has finished or
entered a blocking function.

2. Multiple process-level activities may be outstanding at a given time in a component, as long as only
one is actually ezecuting at a time (as required by rule 1). A subset of the callback functions provided
by the client OS are defined as blocking functions; whenever one of these functions is called, the host
OS may start a new activity in the component, or switch back to other previously blocked activities.

3. The host OS supplies each outstanding activity with a separate stack, which is retained across blocking
function calls. Stacks are only relinquished by a component when the operation completes and the
component’s code returns from the original call that was used to invoke it.

4. Code in a component always runs at one of two levels: process level or interrupt level. Whenever the
host OS invokes a component through its interface, it enters the component at one of these two levels.
Typically, some of the component’s exported functions or methods can be invoked only at process level,
while others can be invoked only at interrupt level, and there may be a few that can be invoked at
either level; which functions can be invoked at which levels is part of the component’s interface (its
contract with the client OS), and thus is defined in the component’s description. Typically, most of a
component’s entrypoints can only be invoked at process level; therefore, entrypoints for which no level
is explicitly specified can be entered only at process level.

5. Both process-level and interrupt-level execution in a component can be interrupted at any time by inter-
rupt handlers in the component, except when the code has disabled interrupts using osenv_intr_disable
(see Section 6.15.1).

6. When a component is entered at process level, the component assumes that interrupts are enabled.
The component may temporarily disable interrupts during processing, but must re-enable them be-
fore returning to the client OS. Similarly, when a component is entered at interrupt level (e.g., a
hardware interrupt handler in a device driver), interrupts are assumed to be initially disabled as if
osenv_intr_disable had been called implicitly before entering the handler. However, the component
may re-enable interrupts, at which point the client OS is allowed to interrupt the component again
with other interrupt-level activities.

7. Interrupt-level activities must be strictly stacked. In other words, when the client OS interrupts a
process-level activity in a component, that interrupt-level activity must be allowed to run to completion
before the client OS may resume the process-level activity. Similarly, if an interrupt-level activity is
itself interrupted, then the most recent interrupt-level activity must finish before the client OS may
resume previous interrupt-level activities. This constraint is generally satisfied automatically if the

2.5. INTERRUPTIBLE BLOCKING MODEL 37

client OS is running on a uniprocessor and uses only a single stack for both process-level and interrupt-
level processing; however, the OSKit components do not require the client OS to use only a single stack
as long as it meets these re-entrancy requirements.

8. Code in a component that may run at interrupt level may not call blocking callback functions provided
by the client OS; only nonblocking callback functions may be called at interrupt level.

Although on the surface it may appear that these requirements place severe restrictions on the host OS,
the required execution model can in fact be provided quite easily even in most kernels supporting other
execution models. The following sections describe some example techniques for providing this execution
model.

2.5.1 Use in multiprocessor kernels

Global spin lock: The easiest way to provide the required execution model for interruptible, blocking
components in a nonpreemptive, process-model, multiprocessor kernel such as Mach 3.0 is to place a single
global spin lock around all code running in the device driver framework. A process must acquire this lock
before entering driver code, and release it after the operation completes. (This includes both process-level
entry through the component’s interface, and interrupt-level entry into the components’ interrupt handlers.)
In addition, all blocking callback functions which the host OS supplies should release the global lock before
blocking and acquire the lock again after being woken up. This way, other processors, and other processes
on the same processor, can run code in the same or other drivers while the first operation is blocked.

Note that this global lock must be handled carefully in order to avoid deadlock situations. A simple,
“naive” non-reentrant spin lock will not work, because if an interrupt occurs on a processor that is already
executing process-level driver code, and that interrupt tries to lock the global lock again, it will deadlock
because the lock is already held by the process-level code. The typical solution to this problem is to implement
the lock as a “reentrant” lock, so that the same processor can lock it twice (once at process level and once
at interrupt level) without deadlocking.

Another strategy for handling the deadlock problem is for the host OS simply to disable interrupts
before acquiring the global spin lock and enable interrupts after releasing it, so that interrupt handlers
are only called while the process-level device driver code is blocked. (In this case, the osenv_intr_enable
and osenv_intr_disable calls, provided by the OS to the drivers, would do nothing because interrupts are
always disabled during process-level execution.) This strategy is not recommended, however, because it will
increase interrupt latency and break some existing partially-compliant device drivers which busy-wait at
process level for conditions set by interrupt handlers.

Spin lock per component: As a refinement to the approach described above, to achieve better paral-
lelism, the host OS kernel may want to maintain a separate spin lock for each component. This way, for
example, a network device driver can be run on one processor while a disk device driver is being run on
another. This parallelism is allowed by the framework because components are fully independent and do not
share data with each other directly. Of course, the client OS must be careful to maintain this independence
in the way it uses the components: for example, if the client OS wants to have one component make calls to
another (e.g., to connect a file system component to a disk device driver), and it wants the two components
to be separately synchronized and use separate locks, the client OS must interpose some of its own code to
release one lock and acquire the other during calls from one component to the other.

2.5.2 Use in preemptive kernels

The issues and solutions for implementing the required execution model in preemptive kernels are similar
to those for multiprocessor kernels: basically, locks are used to protect the component’s code. Again, the
locking granularity can be global or per-component (or anything in between, as the OS desires). However,
in this case, a blocking lock must be used rather than a simple spin lock because the lock must continue
to be held if a process running the component’s code is preempted. (Note the distinction between OS-level
“blocking,” which can occur at any time during execution of the component’s code but is made invisible to

38 CHAPTER 2. EXECUTION ENVIRONMENTS

the component’s code through the use of locks; and component-level “blocking,” which only occurs when a
component calls a blocking function.)

An alternative solution to the preemption problem is simply to disable preemption while running the
component’s code. This solution is likely to be simpler in terms of implementation and to have less overhead,
but it may greatly increase thread dispatch latency, possibly defeating the purpose of kernel preemption in
the first place.

2.5.3 Use in multiple-interrupt-level kernels

Many existing kernels, particularly those derived from Unix or BSD, implement a range of “interrupt priority
levels,” typically assigning different levels to different classes of devices such as block, character, or network
devices. In addition, some processor architectures, such as the 680x0, directly support and require the use
of some kind of IPL-based scheme. Although the OSKit device drivers and other OSKit components do not
directly support a notion of interrupt priority levels, it can be simulated fairly easily in IPL-based kernels
by assigning a particular IPL to each component used by the kernel. In this case, the osenv_intr_disable
routine provided by the kernel does not disable all interrupts, but instead only disables interrupts at the
interrupt priority level that the client OS has assigned to the calling component, and at all lower priority
levels. This way, although the code in each component is only aware of interrupts being “enabled” or
“disabled,” the host OS can in effect enforce a general IPL-based scheme.

An obvious limitation, of course, is that all of the device drivers in a particular driver set must generally
have the same IPL. However, this is usually not a problem, since the drivers in a set are usually closely
related anyway.

2.5.4 Use in interrupt-model kernels

Many small kernels use a pure interrupt model internally rather than a traditional process model; this
basically means that there is only one kernel stack per processor rather than one kernel stack per process,
and therefore kernel code can’t block without losing all of the state on its stack. This is probably the most
difficult environment in which to use the framework, since the framework fundamentally assumes one stack
per outstanding component invocation. Nevertheless, there are a number of reasonable ways to work around
this mismatch of execution model, some of which are described briefly below as examples:

e Switch stacks while running driver code. Before the kernel invokes a component operation (e.g.,
makes a read or write request), it allocates a special “alternate” kernel stack, possibly from a “pool”
of stacks reserved for this purpose. This alternate stack is associated with the outstanding operation
until the operation completes; the kernel switches to the alternate stack before executing process-
level component code, and switches back to the per-processor kernel stack when the driver blocks or
returns. Depending on the details of the kernel’s execution model, the kernel may also have to switch
back to the per-processor stack when the process-level component code is interrupted, due to an event
such as a hardware interrupt or a page fault occurring while copying data into or out of a user-mode
process’s address space. However, note that stack switching is only required when running process-level
component code; interrupt handlers in this execution model are already “interrupt model” code and
need no special adaptation.

¢ Run process-level device driver code on a separate kernel thread. If the kernel supports kernel
threads in some form (threads that run using a traditional process model but happen to execute in the
kernel’s address space), then process-level component code can be run on a kernel thread. Basically, the
kernel creates or otherwise “fires off” a new kernel thread for each new component operation invoked,
and the thread terminates when the operation is complete. (If thread creation and termination are
expensive, then a “pool” of available threads can be cached.) The kernel must ensure that the threads
active in a particular component at a given time cannot preempt each other arbitrarily except in the
blocking functions defined by this framework; one way to do this is with locks (see Section 2.5.2).
Conceptually, this solution is more or less isomorphic to the stack switching solution described above,
since a context switch basically amounts to a stack switch; only the low-level details are really different.

2.5. INTERRUPTIBLE BLOCKING MODEL 39

e Run the device drivers in user mode. If a process-model environment cannot easily be provided
or simulated within the kernel, then the best solution may be to run components in user mode, as
ordinary threads running on top of the kernel. Of course, this solution brings with it various potential
complications and efficiency problems; however, in practice they may be fairly easily surmountable,
especially in kernels that already support other kinds of user-level OS components such as device
drivers, file systems, etc.

e Run the device drivers at an intermediate privilege level. Some processor architectures,
such as the x86 and PA-RISC, support multiple privilege levels besides just “supervisor mode” and
“user mode.” Kernels for such architectures may want to run blocking OSKit components under
this framework at an intermediate privilege level, if this approach results in a net win in terms of
performance or implementation complexity. Alternatively, on most architectures, the kernel may be
able to run blocking OSKit components in user mode but with an address map identical to the kernel’s,
allowing them direct access to physical memory and other important kernel resources.

40

CHAPTER 2. EXECUTION ENVIRONMENTS

Part 11

Interfaces

41

Chapter 3

Introduction to OSKit Interfaces

The OSKit’s interfaces provide clean, well-defined intra-process or intra-kernel protocols that can be used to
define the interaction between different modules of an operating system. For example, the OSKit provides
a “block I/O” interface for communication between file systems and disk device drivers, a “network I/0”
interface for communication between network device drivers and protocol stacks, and a file system interface
similar to the “VFS” interface in BSD. However, the OSKit’s interfaces were designed with a number of
properties that make them much more useful as parts of a toolkit than are comparable traditional OS-level
interfaces. These properties partly stem from the use of the Component Object Model (COM), described
in Chapter 4 as the underlying framework in which the interfaces are defined, and partly just from careful
interface design with these properties in mind. The primary important properties of the OSKit interfaces
include:

Extensibility. Anyone can define new interfaces or extend existing ones with no need to interact with
a centralized authority. Components can simultaneously use and export interfaces defined by many
different sources.

Simplicity. All of the OSKit’s interfaces take a minimalist design strategy: only the most obvious
and fundamental features are included in the base interfaces. Get it right first; frills and optimizations
can be added later through additional or extended interfaces.

Full extensibility while retaining interoperability. Adding support in a component for a new or
extended interface does not cause existing clients to break. Similarly, adding support in a client for a
new interface does not make the client cease to work with existing components.

Clean separation between components. The clean object model used by the OSKit interfaces
ensures that components do not develop implicit dependencies on each other’s internal state or im-
plementation. Such dependencies can still be introduced explicitly when desirable for performance
reasons, by defining additional specialized interfaces, but the object model helps prevent them from
developing accidentally.

Orthogonality of interfaces. Like the OSKit components that use them, the interfaces themselves
are designed to be as independent of and orthogonal to each other as possible, so that exactly the set of
interfaces needed in a particular situation can be used without requiring a lot of other loosely related
interfaces to be implemented or used as well.

No required standardized infrastructure code. The OSKit interfaces can be used irrespective of
which actual OSKit components are used, if any; they do not require any fixed “support libraries” of
any kind which all clients must link with in order to use the interfaces. This is one important difference
between the application of COM in the OSKit versus its original Win32 environment, which requires
all components to link with a standard “COM Library.”

Efficiency. The basic cost of invocation of an OSKit COM interface is no more than the cost of a
virtual function call in C++. Through the use of additional specialized interfaces even this cost can
be eliminated in performance-critical situations.

43

44 CHAPTER 3. INTRODUCTION TO OSKIT INTERFACES

e Automation. The simplicity and consistent design conventions used by the OSKit’s interfaces make
them amenable to use with automated tools, such as Flick, the Flux IDL Compiler!, in the future.

e Binary compatibility. The Component Object Model and the OSKit’s interfaces are designed to
support not only source-level but binary-level compatibility across future generations of components
and clients.

As with all other parts of the OSKit, the client is not required to use the OSKit’s interfaces as the
primary inter-module interfaces within the system being designed. Similarly, the client may use only some
of the interfaces and not others, or may use the OSKit’s interfaces as a base from which to build more
powerful, efficient interfaces specialized to the needs of the system being developed. Naturally, since the
specific components provided in the OSKit must have some interface, they have been designed to use the
standardized OSKit interfaces so that they can easily be used together when desired; however, the OS
developer can choose whether to adopt these interfaces as primary inter-module interfaces in the system, or
simply to use them to connect to particular OSKit components that the developer would like to use.

3.1 Header File Conventions

This section describes some specific important properties of the design and organization of the OSKit header
files.

3.1.1 Basic Structure

All of the OSKit’s public header files are installed in an oskit subdirectory of the main installation directory
for header files (e.g., /usr/local/include by default). Assuming client code is compiled with the main
include directory in its path, this means that OSKit-specific header files are generally included with lines
of the form ‘#include <oskit/foo.h>’. This is also the convention used by all of the internal OSKit
components. Confining all the OSKit headers into a subdirectory in this way allows the client OS to place
its own header files in the same header file namespace with complete freedom, without worrying about
conflicting with OSKit header files.

The OSKit follows this rule even for header files with well-known, standardized names: for example, the
ANSI/POSIX header files provided by the minimal C library (e.g., string.h, stdlib.h, etc.) are all located
in a header file subdirectory called oskit/c. On the surface this may seem to make it more cumbersome
for the client OS to use these headers and hence the minimal C library, since for example it would have
to ‘#include <oskit/c/string.h>’ instead of just the standard ‘#include <string.h>’. However, this
problem can easily be solved simply by adding the oskit/c subdirectory to the C compiler’s include path
(e.g., add -I/usr/local/include/oskit/c to the GCC command line); in fact this is exactly what most
of the OSKit components themselves do. Furthermore, strictly confining the OSKit headers to the oskit
subdirectory, it makes it possible for the client OS and the OSKit itself to have several different sets of
“standard” header files coexisting in the same directory structure: for example, the OSKit components
derived from Linux or BSD typically leave oskit/c out of the compiler’s include path and instead use the
native OS’s header files; this makes it much easier to incorporate legacy code with minimal changes.

3.1.2 Namespace Cleanliness

A similar namespace cleanliness issue applies to the actual symbols defined by many the OSKit header files.
In particular, all OSKit header files defining COM interfaces, as well as any related header files that they
cross-include such as oskit/types.h and oskit/error.h, only define symbols having a prefix of oskit._,
OSKIT_, osenv_, or OSENV_. This rule allows these headers to be included along with arbitrary other headers
from different environments without introducing a significant chance of name conflicts. In fact, the OSKit
components derived from legacy systems, such as the Linux driver set and the FreeBSD drivers and TCP/IP
stack, depend on this property, to allow them to include the OSKit headers defining the COM interfaces

Lhttp://www.cs.utah.edu/projects/flux/flick /

3.1. HEADER FILE CONVENTIONS 45

they are expected to export, along with the native Linux or BSD header files that the legacy code itself relies
on.

Once again, this rule creates a potential problem for header files whose purpose is to declare standard,
well-known symbols, such as the minimal C library header files. For example, string.h clearly should declare
memcpy simply as memcpy and not as oskit_memcpy or somesuch, since in the latter case the “C library”
wouldn’t be conforming to the standard C library interface. However, there are many types, structures, and
definitions that are needed in both the minimal C library headers and the COM interfaces: for example,
both the oskit_ttystream COM interface and the minimal C library’s termios.h need to have some kind
of termios structure; however, in the former case a disambiguating oskit_ prefix is required, whereas in
the latter case such a prefix is not allowed. Although technically these two termios structures exist in
separate contexts and could be defined independently, for practical purposes it would be very convenient
for them to coincide, to avoid having to perform unnecessary conversions in code that uses both sets of
headers. Therefore, the solution used throughout the OSKit header files is to define the non-prefixed versions
of equivalent symbols with respect to the prefixed versions whenever possible: for example, the errno.h
provided by the minimal C library simply does a ‘#include <oskit/error.h>’ and then defines all the
errno values with lines of the form:

#define EDOM O0SKIT_EDOM
#define ERANGE OSKIT_ERANGE

Unfortunately this is not possible for structures since C does not have a form of typedef statement for
defining one structure tag as an alias for another. Therefore, the few structures that need to exist in both
contexts (such as the termios structure mentioned above) are simply defined twice. Since these structures
are generally well-defined and standardized by ANSI C, posix, or CAE, they are not expected to change
much over time, so the added maintenance burden should not be significant and is vastly outweighed by the
additional flexibility provided by the clean separation of namespaces.

46 CHAPTER 3. INTRODUCTION TO OSKIT INTERFACES

3.2 Common Header Files

This section describes a few basic header files that are used throughout the OSKit and are cross-included by
many of the other OSKit headers.

3.2.1 boolean.h: boolean type definitions
SYNOPSIS

#include <oskit/boolean.h>

DESCRIPTION

Defines the fundamental values TRUE and FALSE for use with the machine-dependent oskit_bool_t
type.

3.2.2 compiler.h: compiler-specific macro definitions
SYNOPSIS

#include <oskit/compiler.h>

DESCRIPTION

Defines a variety of macros used to hide compiler-dependent ways of doing things.

OSKIT_BEGIN_DECLS, OSKIT_END_DECLS: All function prototypes should be surrounded by these
macros, so that a C++ compiler will identify them as C functions.

OSKIT_INLINE: Identifies a function as being inline-able.

OSKIT_PURE: Identifies a function as “pure.” A pure function has no side-effects: it examines no
values other than its arguments and changes no values other than its return value.

OSKIT_NORETURN: Identifies a function as never returning (e.g., _exit).

OSKIT_STDCALL: Indicates that a function uses an alternative calling convention compatibile
with COM. In particular, this option indicates the called function will pop its parameters
unless there were a variable number of them.

3.2.3 config.h: OSKit configuration-specific definitions
SYNOPSIS

#include <oskit/config.h>

DESCRIPTION

This file is generated by the configure program. It identifies a number of environment-dependent
parameters. Currently these are all related to the compiler and assembler used to build the OSKit.
HAVE_ CR4: Defined if the assembler supports the %cr4 register.

HAVE DEBUG_REGS: Defined if the assembler supports the debug registers.

HAVE P2ALIGN: Defined if the assembler supports the .p2align pseudo-op.

HAVE_CODE16: Defined if your assembler supports the .codel6 pseudo-op.

HAVE WORKING BSS: Defined if your assembler allows .space within .bss segments.
HAVE_PACKED_STRUCTS: Defined if your compiler groks __attribute_((packed)) on structs.

3.2. COMMON HEADER FILES 47

HAVE PURE: Defined if your compiler groks __attribute_ ((pure)) on functions.
HAVE_NORETURN: Defined if your compiler groks __attribute_((noreturn)) on functions.
HAVE STDCALL: Defined if your compiler groks __attribute_((stdcall)) on functions.

3.2.4 machine/types.h: basic machine-dependent types
SYNOPSIS

#include <oskit/machine/boolean.h>

DESCRIPTION

This header file defines a number of types whose exact definitions are dependent on the processor
architecture and compiler in use.

The following set of types are guaranteed to be ezxactly the indicated width regardless of processor
architecture; they are used to get around the fact that different C compilers assign different
meanings to the built-in C types such as int and long:

oskit_s8_t: Signed 8-bit integer

oskit_s16_t: Signed 16-bit integer

oskit_s32_t: Signed 32-bit integer

oskit_s64_t: Signed 64-bit integer

oskit_u8_t: Unsigned 8-bit integer

oskit_ul6_t: Unsigned 16-bit integer

oskit_u32_t: Unsigned 32-bit integer

oskit_u64_t: Unsigned 64-bit integer

oskit £32_t: 32-bit floating point type

oskit f64_t: 64-bit floating point type

The following types depend in various ways on the target processor architecture:

oskit bool_t: This type represents the most efficient integer type for storage of simple boolean
values; on typical architectures it is the smallest integer type that the processor can handle
with no extra overhead.

oskit_addr_t: This is an unsigned integer type the same size as a pointer, which can therefore
be used to hold virtual or physical addresses and offsets.

oskit_size_t: This is an unsigned integer type equivalent to oskit_addr_t, except that it is
generally used to represent the size of a data structure or memory buffer, or a difference
between two oskit_addr_ts.

oskit_ssize_t: This is a signed integer type the same size as oskit_size.

oskit_reg t: This is an unsigned integer type of the same size as a general-purpose processor
register; it is generally but not necessarily always equivalent to oskit_addr_t.

oskit_sreg t: This is a signed integer type the same size as oskit_reg_t.

48 CHAPTER 3. INTRODUCTION TO OSKIT INTERFACES

3.2.5 types.h: basic machine-independent types
DESCRIPTION

This header file defines a few basic types which are used throughout many of the OSKit’s COM
interfaces. These types correspond to standard POSIX types traditionally defined in sys/types.h;
however, this does not mean that the client OS must use these types as its standard definitions
for the corresponding POSIX symbols; it only means that the client must use these types when
interacting with OSKit components through the OSKit’s COM interfaces. All of the type names
are prefixed by oskit_, for exactly this reason.

oskit_dev_t: Type representing a device number; used in the oskit_stat structure in the
OSKit’s file system interfaces. Note that the OSKit’s file system components themselves
don’t know or care about the actual assignment or meaning of device numbers; it is up to
the client OS to determine how these device numbers are used, if at all.

oskit_ino_t: Type representing a file serial number (“inode” number), again used in the OS-
Kit’s file system interfaces.

oskitnlink t: Type representing the link count of a file.

oskit_pid_t: Type representing a process ID. This type is used in a few COM interfaces, such
as the oskit_ttystream interface which includes PosiX-like job control methods. Currently
the OSKit currently does not include any process management facilities, but this type and
the related methods that use it are included in case such a facility is added in the future.

oskituid t: Type representing a traditional POSIX user ID. The current OSKit components do
not know or care about POSIX security, but for example the NetBSD file system component
knows how to store and retrieve user IDs in BSD file system partitions.

oskit_gid_t: Type representing a traditional POSIX group ID. The same considerations apply
as for oskit_uid_t.

oskitmode_t: Type representing a file type and access permissions bit mask; again used in the
file system interface.

oskit_off_t: Type representing a 64-bit file offset; used in the file system interface.

oskit_wchar_t: Unicode “wide” character.

Chapter 4

The Component Object Model

The Component Object Model (COM) is an architecture and infrastructure for building fast, robust, and
extensible component-based software. This chapter describes the basic subset of COM that is used by the
OSKit; the complete COM specification is available from Microsoft’s web site!.

At its lowest level, COM is merely a language-independent binary-level standard defining how software
components within a single address space can rendezvous and interact with each other efficiently, while
retaining a sufficient degree of separation between these components so that they can be developed and
evolved independently. To achieve this goal, COM specifies a standard format for dynamic dispatch tables
associated with objects. These dispatch tables are similar in function to the virtual function tables (“vtables”)
used in C++, but they are specified at the binary level rather than the language level, and they include
additional functionality: in particular, a standardized run-time type determination (“narrowing”) facility,
and reference counting methods. This minimal basis allows a software component to dynamically determine
the types of interfaces supported by another unknown component and negotiate a common “language”
or set of interfaces through which further interaction can take place. (“Parlez vous Francais? Sprechen
Sie Deutsch?”) COM builds a whole range of services on top of this basic facility, such as cross-address-
space RPC (MIDL), object linking and embedding (OLE), scripting (OLE Automation), etc. However, it is
primarily this lowest-level facility that is used by and relevant to the OSKit.

4.1 Objects and Interfaces

The COM dynamic dispatch facility revolves around the fundamental concepts of objects and interfaces. An
object in COM is a fairly abstract concept, not necessarily associated with a particular data structure in
memory like C++ or Java objects. A COM object can be implemented in any language and can maintain
its internal state in any way it chooses; as far as COM is concerned, the only thing relevant about the object
is its interfaces. A client accessing a COM object generally does not have direct access to the actual data
contained in the object; instead COM objects are only accessible through the set of interfaces the object
exports. A reference to a COM object is really just a pointer to one of the object’s interfaces. An object
may support any number of interfaces; each interface represents one particular “view” of the object, or one
“protocol” through which the object can be accessed. Each interface has its own dynamic dispatch table,
consisting of a few standard methods (function pointers) whose calling conventions and semantics are defined
by COM, followed by an arbitrary number of custom methods whose calling conventions and semantics are
specific to that particular interface.

Although the COM specification defines a few basic interfaces, anyone can independently define new COM
interfaces, and in fact the OSKit defines quite a number of such interfaces. COM interfaces are identified by
128-bit globally unique identifiers (GUIDs), which are algorithmically generated through various standardized
mechanisms; this avoids all the accidental collisions that can easily occur when human-readable names are
used as identifiers. COM GUIDs are the equivalent to and compatible with the Universally Unique Identifiers
(UUIDs) used in the Distributed Computing Environment (DCE) originally developed at Apollo and the

Lhttp://www.microsoft.com/com/

49

50 CHAPTER 4. THE COMPONENT OBJECT MODEL

Open Software Foundation (OSF). Although COM interfaces generally also have human-readable names such
as IUnknown and IStream, these names are only for the programmer’s benefit at development time; they get
compiled out in the final program and only the GUIDs are used at run-time.

4.1.1 Interface Inheritance and the IUnknown Interface

COM interfaces can directly extend other COM interfaces in single-inheritance relationships, simply by
adding additional methods to the dispatch table defined by the base interface and/or further restricting
the semantic requirements defined by the base interface. (Derived interfaces cannot relax or weaken the
requirements of the base interface, since that would violate the whole principle of subtyping.) Multiple
inheritance of COM interfaces cannot be implemented simply by extending dispatch tables this way, since
in this case there would be multiple mutually conflicting dispatch tables to extend; however, the effect of
multiple inheritance can be achieved by making the object support multiple independent interfaces using
the querying mechanism described below. Note that the only form of inheritance of relevance to COM is
subtyping, or inheritance of interfaces (types), as opposed to subclassing, or implementation inheritance:
COM doesn’t care how an object is implemented, only what interfaces it exports.

Ultimately, every COM interface is derived from a single standard universal base interface, known as
IUnknown in the COM standard and oskit_iunknown in the OSKit headers. This minimal COM interface
contains only three standard methods, query, addref, and release, which provide the basic administrative
facilities that all COM objects are expected to implement. These basic facilities, which essentially provide
run-time type determination and reference counting, are described in the following sections.

4.1.2 Querying for Interfaces

The first function pointer slot in the dynamic dispatch table of any COM interface always points to the
standard query method (called QueryInterface in the COM specification); this means that a reference to
any COM interface can always be used to find any of the other interfaces the object supports. To determine
if a COM object supports a particular interface, the client simply calls the standard query method on the
object, passing the GUID of the desired interface as a parameter. If the object supports the requested
interface, it returns a pointer to that interface; this returned pointer is generally, though not always, a
different pointer from the one the client already had, since it points to a different interface, even though the
interface refers to the same underlying logical object. The client can then interact with the object through the
methods defined by this interface. On the other hand, if the object doesn’t support the requested interface,
the query method simply returns an error.

Since interfaces are identified only by simple GUIDs and do not directly contain any detailed information
about the methods defined by the interface, the client must already know before it requests the interface
what methods the interface supports and what their semantics are. In other words, the basic COM query
mechanism only allows the client and to determine the common set of interfaces both it and the object
already understand; it does not directly enable the client to learn about other arbitrary unknown interfaces
the object might support. Such a dynamic invocation interface can be built on top of the basic COM
infrastructure, and in fact that is exactly what is done in ActiveX/OLE Automation scripting; however, the
OSKit currently does not support or use this extended invocation facility.

Semantics of the Query Operation

The COM standard specifies that all COM objects must support the standard query operation, and fur-
thermore, the query operation must have certain well-defined semantics. In particular, an object’s interfaces
must be:

e Static: If a query on one specific interface to obtain another interface succeeds the first time, then it
must also succeed on subsequent calls; similarly, if it fails, it must continue to fail on subsequent calls.

e Symmetric: A query on an interface for the same interface must succeed.

e Reflexive: If a query on interface A for interface B succeeds, then a query on interface B for interface
A must also succeed.

4.1. OBJECTS AND INTERFACES o1

e Transitive: If a query on interface A for interface B succeeds, and a query on interface B for interface
C succeeds, then a query on interface C for interface A must succeed.

However, note that subsequent queries for a given interface identifier on a given object are not required
always to return the same pointer. This allows objects to create interfaces dynamically upon request and
free them later when they are no longer in use, independently of the lifetime of the object itself.

As a special exception to this rule, queries on an object for the IUnknown interface must always return
the same pointer; this allows clients to perform a reliable object identity test between two arbitrary COM
interface pointers by querying each for their ITUnknown interfaces and comparing the pointers. However, as an
approzimate object identity test, in which occasional false negative answers can be tolerated (i.e., two objects
appear different when they are in fact the same), it is sufficient simply to compare two pointers having the
same interface type (i.e., the same interface identifier): although objects sometimes export multiple “copies”
of an interface, as in certain multiple inheritance or interface caching scenarios, this is rare enough that
simple pointer comparison can work well as a heuristic.

4.1.3 Reference Counting

In addition to the basic interface negotiation mechanism provided by standard query method, every COM
interface must also export two additional standard methods, addref and release, which are used to control
the object’s life cycle through reference counting. Whenever a client receives a pointer to a COM interface,
e.g., as the result of a call to a method on a different interface, the client is considered to have one reference
to the interface. When the client is done using this reference, it must call the release method on that
interface so that the object will know when it is no longer in use and can delete itself. If the client needs to
copy the reference, e.g., to give it to some third party while still retaining a reference itself, the client must
call the addref method on the interface. Eventually, both the client and the third party will call release
on their respective pointers to this interface (possibly at different times and in arbitrary order); the object
can then be destroyed only when both outstanding references are released.

In COM, only interfaces are reference counted, not the objects themselves. After a client has obtained
a reference to a particular interface, it must call the release method on ezactly that interface, and not a
different interface referring to the same object. This allows object implementations to maintain individual
reference counts on each of their interfaces if they choose. Object implementations are also free to maintain
only a single reference count for the entire object, in which case the addref and release methods on all the
object’s interfaces will happen to do the same thing; however, clients must not depend on this behavior.

Cycles

As with all reference counted systems, there is a danger of cycles developing among COM objects and
preventing proper garbage collection. For example, if object A holds a reference to object B, and object
B holds a reference to object A, then assuming nothing is specifically done to change this situation, the
reference counts of both objects will remain nonzero and the objects will effectively “keep each other alive”
indefinitely even if nothing else in the system still refers to either of those objects. COM does not provide
any automatic facility to solve this problem: instead, it must be solved manually by careful design.

One particular technique that can often be used to avoid cycles when two objects both need to maintain
pointers to each other is to make one of the objects maintain a reference not to the other object itself,
but rather to an inner object which is logically (and possibly physically) part of the main object but is
independently reference counted. For example, often a client needs to register a callback object of some kind,
such as the network-packet-receive callback object passed to the open method of the oskit_netdev interface.
To avoid cycles, the client object should not pass a reference to itself as the callback, but instead should
create a separate, independently reference counted callback object which is logically contained in the main
client object, and pass a reference to the callback object rather than the main object. This way, the client
can keep a reference to the server object, and the server can keep a reference to the callback object, but no
cycle will develop and garbage collection works properly.

52 CHAPTER 4. THE COMPONENT OBJECT MODEL

4.2 Reference and Memory Management Conventions

Since the set of methods and semantics attached to a COM interface represented by a particular GUID
only needs to be informally defined by the designer of the interface and understood by the programmers
writing code that uses that interface, the exact semantics of the interface can be arbitrary - COM makes no
explicit restrictions on the interface’s methods and semantics as long as they are meaningful and well-defined.
However, for convenience and consistency, and to make it more practical for COM interfaces to be defined
in a form usable by automated tools such as IDL compilers, COM provides a set of method invocation
conventions which interface designers are recommended to use when possible. These conventions mainly
deal with the allocation and deallocation of memory across method calls, and similarly, the allocation and
deallocation of COM object references.

As with typical interface definition languages (IDLs), COM defines three basic logical types of parameters,
each with its own standard semantic rules for memory and object reference management. Although COM
interfaces do not need to be defined in any IDL, this categorization makes COM’s conventions consistent
with common IDLs and makes COM interfaces easier to define in IDLs when necessary:

e in parameters are parameters through which the caller passes information to the callee. Memory is
allocated and freed by the caller: if the callee wants to retain a copy of the data after returning from
the call, it must allocate its own memory area and copy the data into it. The callee must not modify or
deallocate the memory since it is merely “on loan” from the caller. Similarly, COM object references
are allocated and freed by the caller: the callee merely “borrows” the object reference during the call,
and if it wants to retain its own reference to the object after returning from the call, it must call the
addref method on the interface pointer before returning.

e out parameters are parameters through which the callee passes information back to the caller. In this
case, memory buffers and object references are allocated by the callee and freed by the caller: in other
words, the method allocates the buffers or references itself and then hands the responsibility for their
management to the caller on return.

e in-out parameters are parameters through which the caller passes information to the callee at call
time, and the callee later passes information back to the caller at return time. In this case, the caller
initially allocates the parameters and initializes them with their initial “ingoing” values; however,
during the call, the callee may free and reallocate some or all of these parameters and reinitialize them
with the final “outgoing” values to be passed back to the caller. After the call is complete, the caller
is then responsible for deallocating these final memory buffers and object references.

By convention, the return value of a COM interface method is normally used to return a generic suc-
cess/failure code to the caller (see Section 4.3, below). However, sometimes methods are instead defined
to return something else as their return value; in this case, the return value can be thought of as an out
parameter for purposes of memory and object reference management.

4.3 Error Handling

The COM specification defines a standard 32-bit namespace for error codes, which the OSKit adopts as
the error code namespace for all of its exported interfaces, both COM and conventional. COM error return
values are divided into three fields: a one-bit severity flag, indicating success (zero) or failure (one), a 15-bit
facility, providing a broad categorization of error, and finally, a 16-bit code, which indicates the specific error
and is only meaningful with respect to a particular facility.

Unfortunately, the management of error codes is one of the relatively few parts of COM in which
Microsoft-centrism appears in force. Ideally, error codes should be GUIDs, just like interface identifiers;
however, this would be too cumbersome and inefficient in practice. Therefore, COM divides the error code
namespace into two categories: globally-unique, centrally allocated error codes, and interface-specific error
codes. Most interfaces are expected to use the interface-specific range; these error codes are only meaningful
when returned from methods on a particular COM interface, and their meanings are defined as part of that

4.4. BINARY ISSUES 53

Private object state
(opaque to client) § Interface function table
Interface pointer | Function table pointer > Query method pointer

AddRef method pointer
Release method pointer

777777777777777777777777777777777 Method pointer 4 iml;ngle?;Sng
Method pointer 5 > interface
Method pointer 6 - methods
Method pointer 7

Figure 4.1: Diagram of the structure of a COM interface. The client holds a pointer to a pointer to a table of function
pointers; the pointers in the function table point to the object’s implementations of the methods exported to the client through
the interface.

COM interface. However, as may be expected, most of Microsoft’s COM interfaces use centrally admin-
istrated error codes since they are much easier to deal with in large software systems and, conveniently,
Microsoft happens to be the “central administrative authority.” Furthermore, again as may be expected,
Microsoft does not readily allocate facility codes to third parties.

The OSKit defines a number of error codes that need to be valid across a large number of interfaces, both
COM and non-COM; it would be difficult or impossible to make these error codes fit into the “interface-
specific” paradigm. Further, since only one small 64K range has been assigned for interface-specific error
codes, out of the two billion possible values, we felt that using values in the interface-specific range to
represent errors that are treated as globally unique by OSKit components would be just asking for trouble
in the long term, since in such a small namespace collisions are inevitable. Therefore, for global error codes
used by the OSKit, we have informally allocated (i.e., stolen) facility code 0xf10 for our purposes. For the
specific assignment of error codes in this range, see the description of oskit/error.h, in Section 4.6.2.
However, the OSKit still uses the interface-specific error code range, when appropriate, for error codes only
meaningful to a particular interface.

4.4 Binary Issues

Since COM is a binary-level standard, it defines the exact in-memory layout of COM interfaces and their
function tables as seen by clients of those interfaces. Any object can implement any COM interface in
whatever way it chooses, as long as it conforms to these basic rules.

4.4.1 Interface Structure

Figure 4.1 shows a diagram of the structure of a COM interface. From the client’s viewpoint, a reference
to a COM interface is a pointer to a pointer (the function table pointer) to a table of pointers to functions
(the dynamic dispatch table). The function table pointer is generally just a part of a larger data structure
representing the internal state of the object, illustrated in the figure by the dotted box; however, only the
function table pointer itself is visible to the client. To call one of the interface’s methods, the client follows
the interface pointer to the function table pointer, then dereferences the function table pointer to find the
function table, looks up the appropriate function pointer in the table, and finally calls the function. In
general, the first parameter to this function will be a copy of the original interface pointer the client started
with, allowing the object implementation to locate its private object state quickly and easily.

54 CHAPTER 4. THE COMPONENT OBJECT MODEL

4.4.2 Calling Conventions

The specific calling conventions used in a method call is also standardized by the COM specification but
depends on the processor architecture. On the Intel x86 architecture, where different types of calling conven-
tions abound, the standard calling conventions for COM interfaces are the stdcall conventions defined by
Microsoft and used throughout the Win32 API. Note that these calling conventions generally do not match
the default calling conventions of any particular C or C++ compiler, so implementors of COM interfaces
must be careful to use the appropriate declarations. In the OSKit, the 0SKIT_COMCALL macro can be used to
declare functions and function pointers to use standard COM calling conventions, regardless of the compiler
or processor architecture in use; see 4.6.1 for more details.

4.5 Source Issues

The OSKit header files defining COM interfaces do not use the traditional Win32 type names used in the
corresponding Microsoft header files; instead, they follow the naming and style conventions used in the rest
of the OSKit. For example, the type representing a 32-bit unsigned integer is called oskit u32_t instead of
DWORD as in Win32, and the type representing the standard COM stream interface is named oskit_stream t
instead of IStream. This is done for two reasons:

e To retain a consistent overall style with the rest of the OSKit, and present a consistent naming con-
ventions to clients.

e To avoid name conflicts with actual Win32 header files if the OSKit is actually used in a Win32 or
similar environment.

However, all of the COM interfaces in the OSKit use the standard COM function calling and interface
layout conventions, so that binary-level compatibility with Win32 environments is possible (though it hasn’t
been tried yet). Since COM is primarily a binary-level rather than source-level standard, this appeared to
be the best approach to retaining compatibility with COM while maximizing the flexibility and ease-of-use
of the OSKit.

4.6. COM HEADER FILES

4.6 COM Header Files

This section describes the general COM-related public header files provided by the OSKit.

4.6.1 com.h: basic COM types and constants
DESCRIPTION

This header file defines various types and other symbols for defining and using COM interfaces.
Most of these symbols correspond directly to similar symbols in the Win32 API; however, all
of the names are prefixed with oskit_ to avoid conflicts with actual Win32 headers or other
symbols used in the client OS environment, and they are named according to the standard
OSKit conventions for consistency with the rest of the OSKit.

The oskit_guid structure and corresponding type oskit_guid_t define the format of DCE/COM
globally unique identifiers:

struct oskit_guid {

oskit_u32_t datal; /* Data - often time stamp */
oskitul6_t data2; /* Data */
oskitul6_t data3; /* Data */

oskitu8.t data4[8]; /* Data - often MAC address */
b
Additionally, the related preprocessor macro 0SKIT_GUID can be used to declare initializers for
GUID structures.

The type oskit_iid_t is defined as an alias for oskit_guid_t, and is specifically used for COM
interface identifiers (IIDs).

The following preprocessor symbols are defined for constructing and testing COM error codes:

OSKIT_SUCCEEDED: Evaluates to true if the error code parameter indicates success (the high bit
is zero).

OSKIT_FAILED: Evaluates to true if the error code parameter indicates failure (the high bit is
one).

OSKIT_ERROR_SEVERITY: Extracts the the severity (success/failure) flag from the supplied error
parameter.

OSKIT_ERRORFACILITY: Extracts the the facility code (bits 16-30) from the supplied error pa-
rameter.

OSKIT_ERROR_CODE: Extracts the the code portion (low 16 bits) of the supplied error parameter.

OSKIT_S_0K: Defined as zero, the standard return code for COM methods indicating “all’s well,
nothing to report.”

OSKIT_S_TRUE: Defined as zero, the same as 0SKIT_S_OK; this is used when the method returns
a true/false flag of some kind on success.

OSKIT_S_FALSE: Defined as one (which, as a COM error value, still indicates success); used when
the method returns a true/false flag of some kind on success. Note that this representation
is exactly reversed from normal C conventions for boolean flags; it’s a unfortunate inherited
Microsoftism.

Finally, the following macros, whose exact definitions are compiler-specific, are used in declara-
tions of functions and function pointers for COM interfaces, to ensure that the standard COM
calling conventions are used:

OSKIT_COMCALL: Declares a function to use standard COM calling conventions, known as stdcall
conventions in the COM specification. This tag must be placed in the function prototype be-
tween the return value and the symbol being declared, e.g., oskit_error_t 0SKIT_COMCALL

56 CHAPTER 4. THE COMPONENT OBJECT MODEL

query(...). (Note that the GNU C compiler also allows the tag to be placed at the end of
the prototype, but this placement is not compatible with other compilers and therefore not
recommended.)

OSKIT_COMDECL: This is simply a shorthand for oskit_error_t OSKIT_COMCALL; it is used in
declarations of normal COM methods which return an error code as the result.

OSKIT_COMDECL.U: This is simply a shorthand for oskit_u32_t OSKIT_COMCALL; it is generally
used in declarations of the addref and release methods common to all COM interfaces,
which return integer reference counts as their result.

OSKIT_COMDECL.V: This is simply a shorthand for void OSKIT_COMCALL; it is used in declarations
of COM methods having no return value.

4.6.2 error.h: error codes used in the OSKit COM interfaces
DESCRIPTION

This header file defines the type oskit_error_t, representing a COM error status; it is equivalent
to the HRESULT type in Win32. It also defines a number of specific error codes that are widely
applicable and used throughout the OSKit.

The following symbols correspond directly to standard COM errors, and use the standard values;
they differ only in the 0SKIT_ prefix added to the names to avoid conflicts with other header files
the client may use.

OSKIT_E_UNEXPECTED: Unexpected error

OSKIT_ENOTIMPL: Not implemented

OSKIT_E_NOINTERFACE: Interface not supported

OSKIT_E_POINTER: Bad pointer

OSKIT_E_ABORT: Operation aborted

OSKIT_E_FAIL: General failure

OSKIT_E_ACCESSDENIED: Access denied

OSKIT_E_OUTOFMEMORY: Out of memory

OSKIT_E_INVALIDARG: Invalid argument

The following symbols correspond to the errno values defined by the 1990 ISO/ANSI C standard:

OSKIT_EDOM: Argument out of domain

OSKIT_ERANGE: Result too large

The following symbols correspond to the errno values defined by the 1990 POSIX.1 standard;
although many of them are never actually generated by existing OSKit components, the full set
is included for completeness:

0SKIT_E2BIG: Argument list too long

OSKIT_EACCES: Permission denied

OSKIT_EAGAIN: Resource temporarily unavailable

OSKIT_EBADF: Bad file descriptor

OSKIT_EBUSY: Device busy

OSKIT_ECHILD: No child processes

OSKIT_EDEADLK: Resource deadlock avoided

OSKIT_EEXIST: File exists

4.6. COM HEADER FILES

OSKIT_EFAULT: Bad address. This is the same as 0SKIT_E_POINTER.

OSKIT_EFBIG: File too large

OSKIT_EINTR: Interrupted system call

OSKIT_EINVAL: Invalid argument. This is the same as 0SKIT_E_INVALIDARG.
OSKIT_EIO: Input/output error

OSKIT_EISDIR: Is a directory

OSKIT_EMFILE: Too many open files

OSKIT_EMLINK: Too many links

OSKIT_ENAMETOOLONG: File name too long

OSKIT_ENFILE: Max files open in system

OSKIT_ENODEV: Operation not supported by device

OSKIT_ENOENT: No such file or directory

OSKIT_ENQOEXEC: Exec format error

OSKIT_ENOLCK: No locks available

OSKIT_ENOMEM: Cannot allocate memory. This is the same as 0SKIT_E_OUTOFMEMORY.
OSKIT_ENOSPC: No space left on device

OSKIT_ENOSYS: Function not implemented. This is the same as 0SKIT_E_NOTIMPL.
OSKIT_ENOTDIR: Not a directory

OSKIT_ENOTEMPTY: Directory not empty

OSKIT_ENOTTY: Inappropriate ioctl

OSKIT_ENXIO: Device not configured

OSKIT_EPERM: Operation not permitted. This is the same as 0SKIT_E_ACCESSDENIED.
OSKIT_EPIPE: Broken pipe

OSKIT_EROFS: Read-only file system

OSKIT_ESPIPE: Illegal seek

OSKIT_ESRCH: No such process

OSKIT_EXDEV: Cross-device link

The following symbols correspond to the errno values added by the 1993 POSIX.1 standard
(real-time extensions); although most of them are never actually generated by existing OSKit
components, they are included for completeness:

OSKIT_EBADMSG: Bad message

OSKIT_ECANCELED: Operation canceled

OSKIT_EINPROGRESS: Operation in progress

OSKIT_EMSGSIZE: Bad message buffer length

OSKIT_ENOTSUP: Not supported

The following symbol corresponds to the errno value added by the 1996 POSIX.1 standard:
OSKIT_ETIMEDOUT: Operation timed out

The following symbols correspond to the errno values defined by the 1994 X/Open Unix CAE
standard, and not defined by one of the above standards. Most of them are related to networking,
and are therefore used by the OSKit networking components; a few are not used at all by the
OSKit (such as the “reserved” and STREAMS-related codes), but are included for completeness.

o7

o8

CHAPTER 4.

OSKIT_EADDRINUSE: Address in use
OSKIT_EADDRNOTAVAIL: Address not available
OSKIT_EAFNOSUPPORT: Address family unsupported
OSKIT_EALREADY: Already connected
OSKIT_ECONNABORTED: Connection aborted
OSKIT_ECONNREFUSED: Connection refused
OSKIT_ECONNRESET: Connection reset
OSKIT_EDESTADDRREQR: Destination address required
OSKIT_EDQUOT: Reserved

OSKIT_EHOSTUNREACH: Host is unreachable
OSKIT_EIDRM: Identifier removed

OSKIT_EILSEQ: Illegal byte sequence
OSKIT_EISCONN: Connection in progress
OSKIT_ELOOP: Too many symbolic links
OSKIT_EMULTIHOP: Reserved

OSKIT_ENETDOWN: Network is down
OSKIT_ENETUNREACH: Network unreachable
OSKIT_ENOBUFS: No buffer space available
OSKIT_ENODATA: No message is available
OSKIT_ENOLINK: Reserved

OSKIT_ENOMSG: No message of desired type
OSKIT_ENOPROTOOPT: Protocol not available
OSKIT_ENOSR: No STREAM resources
OSKIT_ENOSTR: Not a STREAM
OSKIT_ENOTCONN: Socket not connected
OSKIT_ENOTSOCK: Not a socket
O0SKIT_EOPNOTSUPP: Operation not supported on socket
OSKIT_EOQVERFLOW: Value too large
OSKIT_EPROTO: Protocol error
OSKIT_EPROTONOSUPPORT: Protocol not supported
OSKIT_EPROTOTYPE: Socket type not supported
OSKIT_ESTALE: Reserved

OSKIT ETIME: Stream ioctl timeout
OSKIT_ETXTBSY: Text file busy
0SKIT_EWOULDBLOCK: Operation would block

THE COMPONENT OBJECT MODEL

4.7. OSKIT_IUNKNOWN: BASE INTERFACE FOR ALL COM OBJECTS 99

4.7 oskit_iunknown: base interface for all COM objects

The oskit_iunknown interface, known as IUnknown in the Win32 API, serves as the basis for all other COM
interfaces; it provides the following three methods which all COM interfaces are required to support:

query: Query for a different interface to the same object.
addref: Increment the reference count on the interface.

release: Decrement the reference count on the interface.

4.7.1 query: Query for a different interface to the same object
SYNOPSIS

#include <oskit/com.h>
OSKIT_COMDECL query (oskit_iunknown_t *obj, const oskit_iid_t *iid, [out] void **ihandle);

DESCRIPTION

Given a reference to any of an object’s COM interfaces, this method allows the client to obtain
a reference to any of the other interfaces the object exports by querying for a specific interface
identifier (IID).

PARAMETERS

obj: The object being queried.
itd: The interface identifier of the requested interface.

ihandle: On success, the requested interface pointer is returned in this parameter. The client
must release the returned reference when it is no longer needed.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error. Usually the
only error code this method returns is 0SKIT_E_ NOINTERFACE, indicating that the object does not
support the requested interface.

4.7.2 addref: Increment an interface’s reference count
SYNOPSIS

#include <oskit/com.h>
0SKIT_COMDECL_U addref(oskit_iunknown_t *obj);

DESCRIPTION

This method adds one to the interface’s reference count (or to the object’s reference count, if
the object implements only one counter for all its interfaces). A corresponding call must later be
made to the release method.

PARAMETERS

obj: The interface on which to increment the reference count.

60 CHAPTER 4. THE COMPONENT OBJECT MODEL

RETURNS

Returns the new reference count. This return code should only be used for debugging purposes,
as its value is generally unstable at run time and its behavior depends on the object’s implemen-
tation.

4.7.3 release: Release a reference to an interface
SYNOPSIS

#include <oskit/com.h>
0SKIT_COMDECL U release(oskit_iunknown_t *o0bj);

DESCRIPTION

This method decrements the interface’s reference count (or the object’s reference count, if the
object implements only one counter for all its interfaces). The object destroys itself if its reference
count drops to zero. Note that the client must be careful never to release a reference too many
times, or to release a reference to a different interface from the one on which addref was called,
or chaos will surely ensue.

PARAMETERS

obj: The interface on which to release a reference.

RETURNS

Returns the new reference count. This return code should only be used for debugging purposes,
as its value is generally unstable at run time and its behavior depends on the object’s implemen-
tation.

4.8. O0SKIT_STREAM: STANDARD INTERFACE FOR BYTE STREAM OBJECTS 61

4.8 oskit_stream: standard interface for byte stream objects

The oskit_stream COM interface supports reading and writing to stream objects, and corresponds to the
Microsoft COM IStream interface?.

The oskit_stream COM interface inherits from oskit_iunknown, and has the following additional meth-
ods:

read: Read from this object, starting at the current seek pointer.
write: Write to this object, starting at the current seek pointer.
seek: Change the seek pointer of this object.

setsize: Change the size of this object.

copyto: Copy from this object to another stream object.

commit: Commit all changes to this object.

revert: Revert to last committed version of this object.
lockregion: Lock a region of this object.

unlockregion: Unlock a region of this object.

stat: Get attributes of this object.

clone: Create a new stream object for the same underlying object.

4.8.1 read: Read from this stream, starting at the seek pointer
SYNOPSIS

#include <oskit/com/stream.h>

OSKIT_COMDECL oskit_stream_read(oskit_stream_t xf void *buf, oskit_u32_t len, [out]
oskitu32_t *out_actual);

DESCRIPTION

This method reads no more than len bytes into buf from this stream, starting at the current
seek pointer of this stream. out_actual is set to the actual number of bytes read.

PARAMETERS

f: The object from which to read.
buf: The buffer into which the data is to be copied.
len: The maximum number of bytes to read.

out_actual: The actual number of bytes read.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

2http://www.microsoft.com/msdn/sdk/platforms/doc/activex/src/if-r2z_62.htm

62 CHAPTER 4. THE COMPONENT OBJECT MODEL

4.8.2 write: Write to this stream, starting at the seek pointer
SYNOPSIS

#include <oskit/com/stream.h>

OSKIT_COMDECL oskit_stream_write(oskit_stream t *f, const void *buf, oskit_u32_t len,
[out] oskit_u32_t *out_actual);

DESCRIPTION

This method writes no more than len bytes from buf into this stream, starting at the current
seek pointer of this stream. out_actual is set to the actual number of bytes written.

PARAMETERS

f: The object to which to write.
buf: The buffer from which the data is to be copied.
len: The maximum number of bytes to write.

out_actual: The actual number of bytes written.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

4.8.3 seek: Change the seek pointer of this stream
SYNOPSIS

#include <oskit/com/stream.h>

OSKIT_COMDECL oskit_stream_seek(oskit_stream_t xf, oskit_s64_t ofs, oskit_seek_t whence,
[out] oskit_ub4_t *out_newpos);

DESCRIPTION

This method changes the seek pointer of this stream. If whence is 0SKIT_SEEK SET, then ofs
is used as the new seek pointer value. If whence is 0SKIT_SEEK_CUR, then the new seek pointer
value is set to the sum of ofs and the former seek pointer value. If whence is 0SKIT_SEEK_END,
then the new seek pointer value is set to the sum of ofs and the size of the stream object. The
new seek pointer value is returned via out_newpos.

PARAMETERS

f: The object whose seek pointer is to be changed.
ofs: The relative offset used in computing the new seek pointer.
whence: The location that ofs to which ofs is relative.

out_newpos: The new seek pointer value.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

4.8. O0SKIT_STREAM: STANDARD INTERFACE FOR BYTE STREAM OBJECTS

4.8.4 setsize: Set the size of this object
SYNOPSIS

#include <oskit/com/stream.h>

0SKIT_COMDECL oskit_stream setsize(oskit _stream t xf, oskit u64_t new_size);

DESCRIPTION

This method sets the size of this stream to new_size bytes. If new_size is larger than the former

size of this stream, then the contents of the stream between its former end and its new end are
undefined.

The seek pointer is not affected by this method.

PARAMETERS

f: The object whose size is to be changed.

new_size: The new size in bytes for this object.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

4.8.5 copyto: Copy data from this object to another stream object
SYNOPSIS

#include <oskit/com/stream.h>

0SKIT_COMDECL oskit_stream_copyto(oskit_stream t *f, oskit_stream_t *dst, oskit_ u64_t
size, [out] oskit_ub4_t *out_read, [out] oskit ubd_t *out_written);

DESCRIPTION

This method copies size bytes from the current seek pointer in this stream to the current seek
pointer in dst.

Both seek pointers are updated by this method. This method is functionally equivalent to
performing an oskit_stream read on the source stream followed by an oskit_stream write on
the destination stream.

PARAMETERS

f: The source stream from which to copy.

dst: The destination stream to which to copy.

size: The number of bytes to copy.

out_read: The actual number of bytes read from the source.

out_written: The actual number of bytes written to the destination.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

63

64 CHAPTER 4. THE COMPONENT OBJECT MODEL

4.8.6 commit: Commit all changes to this object
SYNOPSIS

#include <oskit/com/stream.h>

0SKIT_COMDECL oskit_stream_commit(oskit_stream_t *f, oskit_u32_t commit_flags);

DESCRIPTION

This method flushes all changes made to this stream object to the next level storage object.

PARAMETERS

f: The object to commit.

commit_flags: Conditions for performing the commit operation.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

4.8.7 revert: Revert to last committed version of this object
SYNOPSIS

#include <oskit/com/stream.h>

0SKIT_COMDECL oskit_stream _revert(oskit_stream t *f);

DESCRIPTION
This method changes the state of this stream object to its last committed state if the stream is
a transacted object. Otherwise, this method does nothing.

PARAMETERS

f: The object to revert.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

4.8.8 1lockregion: Lock a region of this object
SYNOPSIS

#include <oskit/com/stream.h>

0SKIT_COMDECL oskit_stream_lockregion(oskit_stream_t *f, oskit_u64_t offset, oskit u64_t
size, oskit_u3d2_t lock_type);
DESCRIPTION

This method locks a range of this stream object, where the range starts at the specified byte
offset and extends for the specified size bytes.

4.8. O0SKIT_STREAM: STANDARD INTERFACE FOR BYTE STREAM OBJECTS 65

PARAMETERS

f: The object to lock.

offset: The starting byte offset of the range to be locked.
size: The length in bytes of the range.

lock_type: The type of lock to apply.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

4.8.9 unlockregion: Unlock a region of this object
SYNOPSIS

#include <oskit/com/stream.h>

0SKIT_COMDECL oskit_stream_unlockregion(oskit stream t xf, oskit_u4_t offset, oskit u64_t
size, oskit_u3d2_t lock_type);

DESCRIPTION

This method unlocks a range of this stream object, where the range starts at the specified byte
offset and extends for the specified size bytes.

The parameters must match the parameters used in a prior oskit_stream lockregion call.

PARAMETERS

f: The object to unlock.

offset: The starting byte offset of the range to be unlocked.
size: The length in bytes of the range.

lock_type: The type of lock to release.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

4.8.10 stat: Get attributes of this object
SYNOPSIS

#include <oskit/com/stream.h>

0SKIT_COMDECL oskit_stream_stat(oskit_stream t *f, [out] oskit_stream_stat_t *out_stat,
oskit u32_t stat_flags);

DESCRIPTION

This method returns the attributes of this stream object. out_stat is a pointer to an oskit_stream stat_t
structure, defined as follows:

struct oskit_stream stat {
oskit_char t *name; /* string name (optional) */
oskitu32t type; /* type of object */
oskit ub4t size; /* size in bytes */

b

66 CHAPTER 4. THE COMPONENT OBJECT MODEL

PARAMETERS

f: The object whose attributes are desired.
out_stat: The attributes of the stream object.

stat_flags: Which attributes to obtain.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

4.8.11 clone: Create a new stream object for the same underlying object
SYNOPSIS

#include <oskit/com/stream.h>
0SKIT_COMDECL oskit_stream_clone(oskit_stream_t *f, [out] oskit_stream_t **out_stream);

DESCRIPTION

This method creates a new stream object for the same underlying object, with a distinct seek
pointer. The seek pointer of the new object is initially set to the current seek pointer of this
object.

Subsequent modifications of data within one stream object are visible to readers of the other
object; likewise, locking on either object affects the other object.
PARAMETERS

f: The object to be cloned.

out_stream: The new stream object

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

4.9. SERVICES REGISTRY 67

4.9 Services Registry

The services registry allows components to lookup and rendezvous with an arbitrary ”service” using the
interface ID (IID) of the desired interface. More than one interface supporting a particular IID can be
registered. For example, the C library queries the registry for the lock manager (see Section 4.12) so
that it can allocate locks to properly protect its internal data structures when running in a multithreaded
environment. The services registry supports the following interface functions.

oskit_register: Register an interface in the services registry.
oskit_unregister: Unregister a previously registered interface.
oskit_lookup: Obtain a list of all the registered interfaces with a specified IID.

oskit_lookup_first: Lookup the first interface registered for a specified IID.

4.9.1 oskit_register: Register an interface in the services registry
SYNOPSIS

#include <oskit/com/services.h>

oskit_error_t oskit_register(const struct oskit_guid *iid, void xinterface);

DESCRIPTION

Register a COM interface in the services registry. An additional reference on the interface is
taken. More than one interface may be registered for a particular IID. Attempts to register an
interface that is already registered will succeed, although the registry will remain unchanged and
no additional references will be taken.

PARAMETERS

itd: The oskit_guid of the COM interface being registered.
interface: The COM interface being registered.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

4.9.2 oskit_unregister: Unregister a previously registered interface
SYNOPSIS

#include <oskit/com/services.h>

oskit_error_t oskit_unregister(const struct oskit_guid *iid, void *interface);

DESCRIPTION
Unregister a COM interface that has been previously registered in the services registry. The
reference on the interface that was taken in oskit _register is released.

PARAMETERS

itd: The oskit_guid of the COM interface being registered.
interface: The COM interface being registered.

68 CHAPTER 4. THE COMPONENT OBJECT MODEL

RETURNS

Returns 0 on success, or OSKIT_E_INVALIDARG if the specified IID and COM interface is not
in the registry.

4.9.3 oskit_lookup: Obtain a list of all COM interfaces registered for an ITD
SYNOPSIS

#include <oskit/com/services.h>

oskit_error_t oskit_lookup(const struct oskit_guid *iid, [out] void ***out_interface_array);

DESCRIPTION

Look up the set of interfaces that have been registered with a particular IID, returning an array
of COM interfaces. The client is responsible for releasing the references on the interfaces, and
deallocating the array. By default, the first interface registered is the first interface placed in the
array.

PARAMETERS

itd: The oskit_guid of the COM interface being looked up..

out_interface_array: The array of COM interfaces registered for the given IID.

RETURNS

Returns the number of COM interfaces found, or 0 if there were no matches.

4.9.4 oskit_lookup first: Obtain the first COM interface registered for an IID
SYNOPSIS

#include <oskit/com/services.h>

oskit_error_t oskit_lookup_first(const struct oskit_guid *iid, [out] void **out_interface);

DESCRIPTION
Look up the first COM interface that has been registered with a particular IID. The client is
responsible for releasing the reference on the interface.

PARAMETERS

itd: The oskit_guid of the COM interface being looked up..
out_interface: The first COM interface registered for the given IID.

RETURNS

Always returns 0, setting out_interface to NULL if there was no match.

4.10. 0SKIT_LOCK: THREAD-SAFE LOCK INTERFACE 69

4.10 oskit_lock: Thread-safe lock interface

The oskit_lock COM interface allows components to protect data structures from concurrent access by
multiple threads. The interface is intended to be generic so that components do not need to know the
specifics of any particular thread system. The user of a lock should be prepared for the possibilty that the
thread will be put to sleep if the lock cannot be granted. There are two variants supported; a regular lock
and a critical lock. A critical lock differs only in that interrupts are blocked while the lock is held. The
oskit_lock COM interface inherits from oskit_iunknown, and has the following additional methods:

lock: Lock a lock.

unlock: Unlock a lock.

4.10.1 1lock: Lock a lock
SYNOPSIS

#include <oskit/com/lock.h>
0SKkIT_COMDECL oskit_lock _lock(oskit lock t *lock);

DESCRIPTION
This method attempts to lock lock. If the lock cannot be immediately granted, the current
thread is put to sleep until the lock can be granted.

PARAMETERS

lock: The oskit_lock COM interface for the lock.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

4.10.2 1lock: Unlock a lock
SYNOPSIS

#include <oskit/com/lock.h>
0SKIT_COMDECL oskit_lock_unlock(oskit_lock_t *lock);

DESCRIPTION
This method unlocks lock. If there are any threads waiting for the lock, one will be woken up
and granted the lock.

PARAMETERS

lock: The oskit_lock COM interface for the lock.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

70 CHAPTER 4. THE COMPONENT OBJECT MODEL

4.11 oskit_condvar: Condition variable interface

The oskit_condvar COM interface allows components to wait for conditions. The interface is intended to be
generic so that components do not need to know the specifics of any particular thread system. A condition
is typically combined with an oskit_lock object to faciliate building monitor type objects. Attempting
to wait on a condition without supplying a locked oskit_lock object results in undefined behaviour. The
oskit_lock COM interface inherits from oskit_iunknown, and has the following additional methods:

wait: Wait on a condition variable.
signal: Signal a condition variable.

broadcast: Broadcast a condition variable.

4.11.1 wait: Wait on a condition variable
SYNOPSIS

#include <oskit/com/condvar.h>
0SKIT_COMDECL oskit_condvar_wait(oskit_condvar_t *condvar, oskit_lock_t *lock);

DESCRIPTION

This method causes the current thread is to wait until the condition variable is signaled or
broadcast. The oskit_lock object must be locked when called. The lock is released prior to
waiting, and reacquired before returning.

PARAMETERS

condvar: The oskit_condvar COM interface for the condition variable.

lock: The oskit_lock COM interface for the lock.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

4.11.2 signal: Signal a condition variable
SYNOPSIS

#include <oskit/com/condvar.h>
0SKIT_COMDECL oskit_condvar_signal(oskit_condvar_t *condvar);

DESCRIPTION

Wake up exactly one thread waiting on the condition variable object condvar.

PARAMETERS

condvar: The oskit_condvar COM interface for the condition variable.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

4.11. 0SKIT_CONDVAR: CONDITION VARIABLE INTERFACE

4.11.3 broadcast: Broadcast a condition variable
SYNOPSIS

#include <oskit/com/condvar.h>
0SKIT_COMDECL oskit_condvar_broadcast(oskit_condvar_t *condvar);

DESCRIPTION

Wake up all threads waiting on the condition variable object condvar.

PARAMETERS

condvar: The oskit_condvar COM interface for the condition variable.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

71

72 CHAPTER 4. THE COMPONENT OBJECT MODEL

4.12 oskit lock mgr: Lock manager: Interface for creating locks
and condition variables

The lock manager is registered in the services registry (See Section 4.9) when the threading system (if it is
included) is initialized. Components that need to protect data structures can query the services registry for
the lock manager. Since the lock manager will only be registered by the threading system, the client can
assume that the absence of a lock manager implies a single threaded system (locks are unnecessary). The
oskit_lock.-mgr COM interface inherits from oskit_iunknown, and has the following additional methods:

allocate_lock: Allocate a lock object.

allocate critical lock: Allocate a critical lock object.

4.12.1 allocate_lock: Allocate a thread-safe lock
SYNOPSIS

#include <oskit/com/lockmgr.h>
0SKIT_COMDECL oskit_lock_mgr_allocate_lock(oskit_lock mgr_t *lmgr, [out] oskit_lock t

*out_lock);
DESCRIPTION

This method returns an oskit_lock_t COM interface in out_lock.

PARAMETERS

Imgr: The lock manager COM interface.
out_lock: The oskit_-lock COM interface for the new lock.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

4.12.2 allocate_critical_lock: Allocate a critical thread-safe lock
SYNOPSIS

#include <oskit/com/lockmgr.h>

0SKIT_COMDECL oskit_lock_mgr_allocate_critical lock(oskit_lock mgr_t *Imgr, [out]
oskit_lock_t *out_lock);

DESCRIPTION

This method returns an oskit_lock_t COM interface in out_lock. The lock is flagged as critical
so that interrupts are blocked while the lock is held.

PARAMETERS

Imgr: The lock manager COM interface.
out_lock: The oskit_-lock COM interface for the new lock.

4.12. 0SKIT_LOCKMGR: LOCK MANAGER: INTERFACE FOR CREATING LOCKS AND CONDITION VARIABLES73

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

4.12.3 allocate_condvar: Allocate a condition variable
SYNOPSIS

#include <oskit/com/lockmgr.h>
0SKIT_COMDECL oskit_lock_mgr_allocate_condvar(oskit_lock mgr_t *lmgr, [out] oskit_condvar_t

*out_condvar);

DESCRIPTION
This method returns an oskit_condvar_t COM interface in out_condvar. Condition variables
may be used in conjuction with locks to form monitors.

PARAMETERS

Imgr: The lock manager COM interface.

out_condvar: The oskit_condvar COM interface for the new condition variable.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

74

CHAPTER 4. THE COMPONENT OBJECT MODEL

Chapter 5

Input/Output Interfaces

This chapter defines the I/O-related COM interfaces which are defined by header files in the oskit/io
directory. Most of these interfaces are fairly generic and can be used in a wide variety of situations. Some
of these interfaces, such as the bufio interface, are extensions to other more primitive interfaces, and allow
objects to export the same functionality in different forms, permitting clients to select the service that most
directly meets their needs thereby reducing interface crossing overhead and increasing overall performance.

75

76 CHAPTER 5. INPUT/OUTPUT INTERFACES

5.1 oskit absio: Absolute I/O Interface

The oskit_absio interface supports reading from and writing to objects at specified absolute offsets, with
no concept of a seek pointer. The oskit_absio interface is identical to the oskit _blkio COM interface,
except that the block size is always one, since absolute IO is byte-oriented. In fact, an object that supports
byte-granularity reads and writes can easily export both oskit_blkio and oskit_absio using exactly the
same function pointer table, simply by implementing an oskit_blkio interface that always returns one
from getblocksize, and then returning a pointer to that interface on queries for either oskit_blkio or
oskit_absio.
The oskit_absio COM interface inherits from IUnknown, and has the following additional methods:

read: Read from this object, starting at the specified offset.
write: Write to this object, starting at the specified offset.
getsize: Get the current size of this object.

setsize: Set the current size of this object.

5.1.1 read: Read from this object, starting at specified offset
SYNOPSIS

#include <oskit/io/absio.h>

0SKIT_COMDECL oskit_absio_read(oskit_absio_t *f, void xbuf, oskit_off_t offset, oskit_size_t
amount, [out] oskit_size_t *out_actual);

DESCRIPTION

This method reads no more than amount bytes into buf from this object, starting at offset.
out_actual is set to the actual number of bytes read.

PARAMETERS

f: The object from which to read.

buf: The buffer into which the data is to be copied.
offset: The offset in this object at which to start reading.
amount: The maximum number of bytes to read.

out_actual: The actual number of bytes read.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

5.1.2 write: Write to this object, starting at specified offset
SYNOPSIS

#include <oskit/io/absio.h>

OSKIT_COMDECL oskit_absio_write(oskit_absio_t *f, const void *buf, oskit_off_t offset,
oskit_size_t amount, [out] oskit_size_t *out_actual);

5.1. OSKIT_ABSIO: ABSOLUTE I/O INTERFACE

DESCRIPTION
This method writes no more than amount bytes from buf into this object, starting at offset.
out_actual is set to the actual number of bytes written.

PARAMETERS

f: The object to which to write.

buf: The buffer from which the data is to be copied.
offset: The offset in this object at which to start writing.
amount: The maximum number of bytes to write.

out_actual: The actual number of bytes written.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

5.1.3 getsize: Get the size of this object
SYNOPSIS

#include <oskit/io/absio.h>
0SKIT_COMDECL oskit_absio_getsize(oskit absio_t xf, [out] oskit_off_t *out_size);

DESCRIPTION

This method returns the current size of this object in bytes.

PARAMETERS

f: The object whose size is desired.

out_size: The current size in bytes of this object.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

5.1.4 setsize: Set the size of this object
SYNOPSIS

#include <oskit/io/absio.h>
0SKIT_COMDECL oskit_absio_setsize(oskit_absio_t xf oskit_off_t new._size);

DESCRIPTION

This method sets the size of this object to new_size bytes. If new_size is larger than the former

size of this object, then the contents of the object between its former end and its new end are
undefined.

Note that some absolute I/O objects may be fixed-size, such as objects representing preallocated
memory buffers; in such cases, this method will always return 0SKIT_E_NOTIMPL.

7

78 CHAPTER 5. INPUT/OUTPUT INTERFACES

PARAMETERS

f: The object whose size is to be changed.

new_size: 'The new size in bytes for this object.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

5.2. OSKIT_ASYNCIO: ASYNCHRONOUS I/O INTERFACE 79

5.2 oskit asyncio: Asynchronous I/O Interface

XXX This section needs work.
The oskit_asyncio interface provides interfaces in support of basic asynchronous I/ O, based on registered
callback objects. This can be used, for example, to implement Unix SIGIO or select or POSIX.1b aio.
The oskit_asyncio COM interface inherits from IUnknown, and has the following additional methods:

poll: Poll for currently pending asynchronous I/O conditions.
add_listener: Add a callback object for async I/O events.
remove_listener: Remove a previously registered callback object.

readable: Returns the number of bytes that can be read.

80 CHAPTER 5. INPUT/OUTPUT INTERFACES

5.3 oskit blkio: Block I/O Interface

The oskit_blkio interface supports reading and writing of raw data in units of fixed-sized blocks which
are some power of two. This interface is identical to the oskit_absio interface except for the addition of a
getblocksize method; in fact, an object that supports byte-granularity reads and writes can easily export
both oskit_blkio and oskit_absio using exactly the same function pointer table, simply by implementing
an oskit_blkio interface that always returns one from getblocksize, and then returning a pointer to that
interface on queries for either oskit_blkio or oskit_absio.

The oskit_blkio interface inherits from IUnknown, and has the following additional methods:

getblocksize: Return the minimum block size of this block I/O object.
read: Read from this object, starting at the specified offset.

write: Write to this object, starting at the specified offset.

getsize: Get the current size of this object.

setsize: Set the current size of this object.

5.3.1 getblocksize: Return the minimum block size of this block I/O object
SYNOPSIS

#include <oskit/io/blkio.h>
0SKIT_COMDECL U oskit_blkio_getblocksize(oskit blkio t f);

DESCRIPTION

This method simply returns the block size of the object, which must be a power of two. Calls
by the client to read from or write to the object must only use offsets and sizes that are evenly
divisible by this block size.

PARAMETERS

f: The block I/O object.

RETURNS

Returns the block size of the object.

5.3.2 read: Read from this object, starting at specified offset
SYNOPSIS

#include <oskit/io/blkio.h>

0SKIT_COMDECL oskit_blkio_read(oskit_blkio_t *f, void xbuf, oskit_off_t offset, oskit_size_t
amount, [out] oskit_size_t *out_actual);

DESCRIPTION

This method reads no more than amount bytes into buf from this object, starting at offset.
out_actual is set to the actual number of bytes read.

5.3. OSKITBLKIO: BLOCK I/O INTERFACE 81

PARAMETERS

f: The object from which to read.
buf: The buffer into which the data is to be copied.

offset: The offset in this object at which to start reading. Must be a multiple of the object’s
block size.

amount: The maximum number of bytes to read. Must be a multiple of the object’s block size.

out_actual: The actual number of bytes read. Must be a multiple of the object’s block size.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

5.3.3 write: Write to this object, starting at specified offset

SYNOPSIS

#include <oskit/io/blkio.h>
0SKIT_COMDECL oskit_blkio_write(oskit_blkio_t *f, const void *buf, oskit_off_t offset,

oskit_size_t amount, [out] oskit_size_t *out_actual);

DESCRIPTION
This method writes no more than amount bytes from buf into this object, starting at offset.
out_actual is set to the actual number of bytes written.

PARAMETERS

f: The object to which to write.
buf: The buffer from which the data is to be copied.

offset: The offset in this object at which to start writing. Must be a multiple of the object’s
block size.

amount: The maximum number of bytes to write. Must be a multiple of the object’s block size.

out_actual: The actual number of bytes written. Must be a multiple of the object’s block size.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

5.3.4 getsize: Get the size of this object

SYNOPSIS

#include <oskit/io/blkio.h>
0SKIT_COMDECL oskit_blkio_getsize(oskit_blkio_t *f, [out] oskit_off_t *out_size);

DESCRIPTION

This method returns the current size of this object in bytes.

82 CHAPTER 5. INPUT/OUTPUT INTERFACES

PARAMETERS

f: The object whose size is desired.

out_size: The current size in bytes of this object. Must be a multiple of the object’s block size.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

5.3.5 setsize: Set the size of this object
SYNOPSIS

#include <oskit/io/blkio.h>
0SKIT_COMDECL oskit_blkio_setsize(oskit _blkio_t *f, oskit_off_t new_size);

DESCRIPTION

This method sets the size of this object to new_size bytes. If new_size is larger than the former
size of this object, then the contents of the object between its former end and its new end are
undefined.

Note that some block I/O objects may be fixed-size, such as objects representing physical disks
or partitions; in such cases, this method will always return 0SKIT_E_NOTIMPL.
PARAMETERS

f: The object whose size is to be changed.

new_size: The new size in bytes for this object. Must be a multiple of the object’s block size.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

5.4. 0SKIT_BUFIO: BUFFER-BASED I/O INTERFACE 83

5.4 oskit bufio: Buffer-based I/0O interface

The oskit_bufio interface extends the oskit_absio interface, providing additional alternative methods of
accessing the object’s data. In particular, for objects whose data is stored in an in-memory buffer of some
kind, this interface allows clients to obtain direct access to the buffer itself so that they can read and write
data using loads and stores, rather than having to copy data into and out of the buffer using the read and
write methods. In addition, this interface provides similar methods to allow clients to “wire” the buffer’s
contents to physical memory, enabling DM A-based hardware devices to access the buffer directly.

However, note that only the read/write methods, inherited from oskit_absio, are mandatory; the others
may consistently fail with 0SKIT_E_NOTIMPL if they cannot be implemented efficiently in a particular situation.
In that case, the caller must use the basic read and write methods instead to copy the data. In other words,
oskit_bufio object implementations are not required to implement direct buffer access, either software- or
DMA-based; the purpose of this interface is merely to allow them to provide this optional functionality easily
and consistently. In general, the map and wire methods should only be implemented if they can be done
more efficiently than simply copying the data. Further, even if a buffer I/O implementation does implement
map and/or wire it may allow only one mapping or wiring to be in effect at once, failing if the client attempts
to map or wire the buffer a second time before the first mapping is undone. Similarly, on some buffer I/0
implementations, these operations may only work on certain areas of the buffer or only when the request has
certain size or alignment properties: for example, a buffer object that stores data in discontiguous segments,
such as BSD’s mbuf system, may only allow a buffer to be mapped if the requested region happens to fall
entirely within one segment. Thus, the client of a bufio object should call the map or wire methods whenever
it can take advantage of direct buffer access, but must always be prepared to fall back to the basic copying
methods.

A particular buffer object may be semantically read-only or write-only; it is assumed that parties passing
bufio objects around will agree upon this as part of their protocols. For a read-only buffer, the write
method may or may not fail, and a mapping established using the map method may or may not actually be a
read-only memory mapping; it is the client’s responsibility not to attempt to write to the buffer. Similarly,
for a write-only buffer, the read method may or may not fail; it is the client’s responsibility not to attempt
to read from the buffer.

The oskit_bufio interface extends the oskit_absio interface with the following additional methods:

map: Map some or all of this buffer into locally accessible memory.
unmap: Release a previously mapped region of this buffer.

wire: Wire a region of this buffer into contiguous physical memory.
unwire: Unwire a previously wired region of this buffer.

copy: Create a copy of the specified portion of this buffer.

5.4.1 map: Map some or all of this buffer into locally accessible memory
SYNOPSIS

#include <oskit/io/bufio.h>

OSKIT_COMDECL map(oskit_bufio_t *io, [out] void **addr, oskit_off_t offset, oskit_size t
amount);

DESCRIPTION

This method attempts to map some or all of this buffer into memory directly accessible to the
client, so that the client can access it using loads and stores. The operation may or may not
succeed, depending on the parameters and the implementation of the object; if it fails, the client
must be prepared to fall back to the basic read and write methods. If the mapping operation
succeeds, the pointer returned is not guaranteed to have any particular alignment.

84 CHAPTER 5. INPUT/OUTPUT INTERFACES

If a call to the map method requests only a subset of the buffer to be mapped, the object may
actually map more than the requested amount; however, since no information is passed back
indicating how much of the buffer was actually mapped, the client must only attempt to access
the region it requested.

Note that this method does not necessarily twiddle with virtual memory, as its name may seem
to imply; in fact in most cases in which it is implemented at all, it just returns a pointer to a
buffer if the data is already in locally-accessible memory.

PARAMETERS

t0: The object whose contents are to be mapped.

addr: On success, the method returns in this parameter the address at which the client can
directly access the requested buffer region.

offset: The offset into the buffer of the region to be mapped.

size: The size of the region to be mapped.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

5.4.2 unmap: Release a previously mapped region of this buffer
SYNOPSIS

#include <oskit/io/bufio.h>

OSKIT_COMDECL unmap(oskit_bufio_t *io, void *addr, oskit_off_t offset, oskit_size_t
amount);

DESCRIPTION

After a successful call to the map method, the client should call this method after it is finished
accessing the buffer directly, so that the buffer object can clean up and free any resources that
might be associated with the mapping.

The addr parameter passed to this method must be exactly the value returned by the map request,
and the offset and amount parameters must be exactly the same as the values previously passed in
the corresponding map call. In other words, clients must only attempt to unmap whole regions;
they must not attempt to unmap only part of a region, or to unmap two previously mapped
regions in one call, even if the two regions appear to be contiguous in memory.

PARAMETERS

io: The object whose contents are to be mapped.
addr: The address of the mapped region, as returned from the corresponding map call.
offset: The offset into the buffer of the mapped region, as passed to the corresponding map call.

size: The size of the mapped region, as passed to the corresponding map call.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

5.4. 0SKIT_BUFIO: BUFFER-BASED I/O INTERFACE

5.4.3 wire: Wire a region of this buffer into contiguous physical memory
SYNOPSIS

#include <oskit/io/bufio.h>

0SKIT_COMDECL wire(oskit bufio_t *io, [out] oskit_addr_t *phys_addr, oskit_off t offset,
oskit_size_t amount);

DESCRIPTION

This method attempts to wire down some or all of this buffer into memory directly accessible
by DMA hardware. The operation may or may not succeed, depending on the parameters and
the implementation of the object; if it fails, the client must be prepared to fall back to the basic
read and write methods.

If the wiring operation succeeds, the physical address of the buffer is guaranteed not to change or
otherwise become invalid until the region is unwired or the bufio object is released. The wired
buffer is not guaranteed to have any particular alignment or location properties: for example, on
a PC, if the device that is going to be accessing the buffer requires memory below 16MB, then
it must be prepared to use appropriate bounce buffers if the wired buffer turns out to be above
16MB.

If a call to the wire method requests only a subset of the buffer to be mapped, the object may
actually wire more than the requested amount; however, since no information is passed back
indicating how much of the buffer was actually wired, the client must only attempt to use the
region it requested.

PARAMETERS

io: The object whose contents are to be wired.

addr: On success, the method returns in this parameter the physical address at which DMA
hardware can directly access the requested buffer region.

offset: The offset into the buffer of the region to be wired.
size: The size of the region to be wired.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

5.4.4 unwire: Unwire a previously wired region of this buffer
SYNOPSIS

#include <oskit/io/bufio.h>

OSKIT_COMDECL unwire(oskit_bufio_t xjo, void *addr, oskit_off_t offset, oskit_size_t
amount);

DESCRIPTION

After a successful call to the wire method, the client should call this method after the hardware is
finished accessing the buffer directly, so that the buffer object can clean up and free any resources
that might be associated with the wiring.

The addr parameter passed to this method must be exactly the value returned by the wire
request, and the offset and amount parameters must be exactly the same as the values previously
passed in the corresponding wire call. In other words, clients must only attempt to unwire whole
regions; they must not attempt to unwire only part of a region, or to unwire two previously wired
regions in one call, even if the two regions appear to be contiguous in physical memory.

85

86 CHAPTER 5. INPUT/OUTPUT INTERFACES

PARAMETERS

io: The object whose contents are to be wired.
addr: The address of the wired region, as returned from the corresponding map call.
offset: The offset into the buffer of the wired region, as passed to the corresponding wire call.

size: The size of the wired region, as passed to the corresponding wire call.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

5.4.5 copy: Create a copy of the specified portion of this buffer
SYNOPSIS

#include <oskit/io/bufio.h>

OSKIT_COMDECL cOpy(oskit_bufio_t *io, oskit_off_t offset, oskit_size_t amount, [out] oskit_bufio_t
**0ut_i0);

DESCRIPTION

This method attempts to create a logical copy of a portion of this buffer object (possibly the whole
buffer), returning a new oskit_bufio object representing the copy. As with the map and wire
methods, this method should only be implemented by an object if it can be done more efficiently
than a simple “brute-force” copy using read. For example, in virtual memory environments,
the object may be able to use copy-on-write optimizations. Similarly, if the buffer’s contents are
stored in special memory not efficiently accessible to the processor, such as memory on a video
or coprocessor board, this method could use on-board hardware to perform a much faster copy.

PARAMETERS

io: The object whose contents are to be copied.
offset: The offset into the buffer of the region to be copied.
size: The size of the region to be copied.

out_io: On success, this parameter holds the bufio object representing the newly created copy
of the buffer’s contents.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

5.5. OSKITNETIO: NETWORK PACKET I/O INTERFACE 87

5.5 oskit netio: Network packet I/O interface

This interface builds on the above interfaces to provide a clean and simple but powerful interface for passing
network packets between device drivers and protocol stacks, and possibly between layers of a protocol stack
as well.

The oskit netio interface uses a symmetric sender-driven model for asynchronous communication. Each
party involved (e.g., the network device driver and the protocol stack) must implement a netio object and
pass a reference to its own netio object to the other party. For example, in the oskit_netdev interface,
which represents a network device of some kind, this exchange of netio objects occurs when the protocol
stack or other client opens the device. The oskit netio interface defines only a single additional method
beyond the basic methods inherited from oskit_iunknown; this method, appropriately named push, is used
to “push” a network packet to the “other” party. For example, when a network device driver receives a
packet from the hardware, the driver calls the push method on the netio object provided by the protocol
stack; conversely, when the protocol stack needs to send a packet, it calls the netio object returned by
the device driver at the time the device was opened. Thus, a netio object essentially represents a “packet
consumer.”

The following section describes the specifics of the push method.

5.5.1 push: Push a packet through to the packet consumer
SYNOPSIS

#include <oskit/io/netio.h>
0SKIT_COMDECL push(oskit netio_t *io, oskit_bufio *buf, oskit_size t size);

DESCRIPTION

This method feeds a network packet to the packet consumer represented by the netio object;
what the consumer does with the packet depends entirely on who the consumer is and how it
is configured. The packet is contained in a bufio object which must be at least the size of the
packet, but may be larger; the size parameter on the push call indicates the actual size of the
packet.

If the consumer needs to hold on to the provided bufio object after returning from the call,
it must call addref on the bufio object to obtain its own reference; then it must release this
reference at some later time when it is done with the buffer. Otherwise, if the consumer doesn’t
obtain its own reference, the caller may recycle the buffer as soon as the call returns.

The passed buffer object is logically read-only; the consumer must not attempt to write to it.
The size parameter to this call is the actual size of the packet; the size of the buffer, as returned
by the getsize method, may be larger than the size of the packet.

PARAMETERS

io: The oskit_netio interface representing the packet consumer.
buf: The oskit bufio interface to the buffer object containing the packet.

size: The actual size of the packet; must be less than or equal to the size of the buffer object.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

88 CHAPTER 5. INPUT/OUTPUT INTERFACES

5.6 oskit posixio: posix I/O interface

The oskit_posixio interface defines the minimal POsIx I/O interface that any Posix I/0 object (file, device,
pipe, socket, etc) can be expected to support. Only per-object methods are provided by this interface.
Additional I/O operations are supported through separate interfaces, such as the oskit_stream interface
and oskit_absio COM interface.

The oskit_posixio COM interface inherits from oskit_iunknown, and has the following additional
methods:

stat: Get this object’s attributes.
setstat: Set this object’s attributes.

pathconf: Get this object’s value for a configuration option variable.

5.6.1 stat: Get attributes of this object
SYNOPSIS

#include <oskit/io/posixio.h>

OSKIT_COMDECL oskit_posixio_stat(oskit_posixio_t *f, [out] oskit_stat_t *out_stats);

DESCRIPTION

This method returns the attributes of this object. Depending on the type of object, only some of
the attributes may be meaningful. out_stats is a pointer to a oskit_stat_t structure defined
as follows:

struct oskit_stat {

oskit_dev_t dev; /* device on which inode resides */
oskit_ino_t ino; /* inode’s number */
oskit_mode_t mode; /* file mode */
oskit nlink_ t nlink; /* number of hard links to file */
oskit_uid t uid; /* user id of owner */
oskit _gid t gid; /* group id of owner */
oskit_dev_t rdev; /* device number, for device files */
oskit_timespec.t atime; /* time of last access */
oskit_timespec.t mtime; /* time of last data modification */
oskit_timespec_t ctime; /* time of last attribute change */
oskit_off_t size; /* size in bytes */
oskit_u64_t blocks; /* blocks allocated for file */
oskit_u32_t blksize; /* optimal block size in bytes */
};
PARAMETERS

f: The object whose attributes are desired.

out_stats: The attributes of the specified object.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

5.6. 0SKIT_POSIXIO: POSIX I/O INTERFACE 89

5.6.2 setstat: Set the attributes of this object
SYNOPSIS

#include <oskit/io/posixio.h>

0SKIT_COMDECL oskit_posixio_setstat(oskit_posixio_t *f, oskit u32_t mask, const oskit_stat_t
*stat);

DESCRIPTION

This method sets the attributes specified in mask to the values specified in stat. mask may be
any combination of the following;:

OSKIT_STAT_MODE: Set the file mode, except for the file type bits, as in the Unix chmod system
call.

OSKIT_STAT.UID: Set the file user id, as in the Unix chown system call.

OSKIT_STAT_GID: Set the file group id, as in the Unix chown system call.

OSKIT_STAT SIZE: Set the file size, as in the Unix truncate system call.

OSKIT_STAT_ATIME: Set the file’s last access timestamp to a particular value, as in the Unix
utimes system call with a non-NULL parameter.

OSKIT_STAT MTIME: Set the file’s last data modification timestamp to a particular value, as in
the Unix utimes system call with a non-NULL parameter.

OSKIT_STAT UTIMES NULL: Set the file’s last access timestamp and data modification timestamp
to the current time, as in the Unix utimes system call with a NULL parameter.

Typically, this method is not supported for symbolic links.

PARAMETERS

f: The object whose attributes are to be changed.
mask: The attributes to be changed.

stat: The new attribute values.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

5.6.3 pathconf: Get value of a configuration option variable
SYNOPSIS

#include <oskit/io/posixio.h>

0SKIT_COMDECL oskit_posixio_pathconf(oskit posixio_t *f, oskit_s32_t option, [out]
oskit_s32_t *out_val);

DESCRIPTION

This method returns the value of the specified configuration option variable for this object. The
value of option may be one of the following:

OSKIT_PC_LINK_MAX: Get the maximum file link count.

OSKIT_PC_MAX_CANON: Get the maximum size of the terminal input line.

OSKIT_PC_MAX_INPUT: Get the maximum input queue size.

90 CHAPTER 5. INPUT/OUTPUT INTERFACES

OSKIT_PC_NAME MAX: Get the maximum number of bytes in a filename.
OSKIT_PC_PATH MAX: Get the maximum number of bytes in a pathname.
0SKIT_PC_PIPEBUF: Get the maximum atomic write size to a pipe.
O0SKIT_PC_CHOWN_RESTRICTED: Determine whether use of chown is restricted.
OSKIT_PC_NO_TRUNC: Determine whether too-long pathnames produce errors.
OSKIT_PC_VDISABLE: Get value to disable special terminal characters.
OSKIT_PC_ASYNC_I0: Determine whether asynchronous IO is supported.
OSKIT_PC_PRION_I0: Determine whether prioritized 10 is supported.
OSKIT_PC_SYNC_IO: Determine whether synchronized 10 is supported.

PARAMETERS

f: The object from which to obtain a configuration option value
option: The configuration option variable

out_val: The value of the configuration option value.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

5.7. OSKIT_TTYSTREAM: INTERFACE TO UNIX TTY-LIKE STREAMS 91

5.7 oskit ttystream: Interface to Unix TTY-like streams

This interface extends the standard COM IStream interface with PosiX/Unix TTY functionality, such as
methods to control serial port settings, enable, disable, and control line editing, flush the input and output
queues, etc.

This interface is currently exported by character-oriented device drivers incorporated into the OSKit from
legacy systems such as BSD and Linux, in which full Unix TTY functionality can be provided easily. In the
future, these drivers are expected to export more minimal, lower-level interfaces instead of or in addition to
this interface; however, in the short term, this interface allows clients to obtain full Unix terminal functionality
quickly and easily.

The oskit_ttystream interface inherits from oskit_stream, and has the following additional methods:

getattr: Get the stream’s current TTY attributes.
setattr: Set the stream’s TTY attributes.

sendbreak: Send a break signal over the line.

drain: Wait until all buffered output has been transmitted.
flush: Discared buffered input and/or output data.

flow: Suspend or resume data transmission or reception.

In addition, this header file defines a structure called oskit_termios, corresponding to the standard
POSIX termios structure, and a set of related definitions used to specify terminal-related settings. See the
posIX and Unix standards for details on the exact contents and meaning of this structure.

5.7.1 getattr: Get the stream’s current TTY attributes
SYNOPSIS

#include <oskit/io/ttystream.h>
OSKIT_COMDECL getattr(oskit ttystream t *ity, [out] struct oskit_termios *attr);

DESCRIPTION

This method retrieves the current line settings of this stream and returns them in the specified
oskit_termios structure. This method corresponds to the POSIX tcgetattr function; see the
POsIX standard for details.

PARAMETERS

tty: The TTY stream object to query.

attr: The structure to be filled with the current line settings.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

5.7.2 setattr: Set the stream’s TTY attributes
SYNOPSIS

#include <oskit/io/ttystream.h>
0OSKIT_COMDECL setattr(oskit_ttystream t *ity, const struct oskit_termios *attr);

92 CHAPTER 5. INPUT/OUTPUT INTERFACES

DESCRIPTION
This method sets the line settings of this stream based on the specified oskit_termios structure.
This method corresponds to the POSIX tcsetattr function; see the POSIX standard for details.
PARAMETERS

tty: The TTY stream object to modify.

attr: The structure containing the new line settings.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

5.7.3 sendbreak: Send a break signal
SYNOPSIS

#include <oskit/io/ttystream.h>
0SKIT_COMDECL sendbreak(oskit_ttystream_t xtty, oskit u32_t duration);

DESCRIPTION

On streams controlling asynchronous serial communication, this method sends a break signal (a
continuous stream of zero-valued bits) for a specific duration. This method corresponds to the
POSIX tcsendbreak function; see the POSIX standard for details.

PARAMETERS

tty: The TTY stream on which to send the break.

duration: The duration of the break signal to send. If this parameter is zero, then the duration
will be between 0.25 and 0.5 seconds.
RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

5.7.4 drain: Wait until all buffered output has been transmitted
SYNOPSIS

#include <oskit/io/ttystream.h>
0SKIT_COMDECL drain(oskit_ttystream t *tty);

DESCRIPTION

This method waits until any buffered output data that has been written to the stream is suc-
cessfully transmitted. This method corresponds to the POSIX tcdrain function; see the POSIX
standard for details.

PARAMETERS

tty: The TTY stream object to drain.

5.7. OSKIT_TTYSTREAM: INTERFACE TO UNIX TTY-LIKE STREAMS 93

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

5.7.5 flush: Discared buffered input and/or output data
SYNOPSIS

#include <oskit/io/ttystream.h>
OSKIT_COMDECL ﬂush(oskit_ttystream_t *tty, int queue_selector);

DESCRIPTION

This method discards any buffered output data that has not yet been transmitted, and/or any
buffered input data that has not yet been read, depending on the queue_selector parameter. This
method corresponds to the POSIX tcflush function; see the POSIX standard for details.

PARAMETERS

tty: The TTY stream object to flush.
quene_selector: Must be one of the following:

OSKIT_TCIFLUSH: Flush the input buffer.
OSKIT_TCOFLUSH: Flush the output buffer.
OSKIT_TCIOFLUSH: Flush the input and output buffers.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

5.7.6 flow: Suspend or resume data transmission or reception
SYNOPSIS

#include <oskit/io/ttystream.h>
OSKIT_COMDECL flow (oskit_ttystream_t *tty, int action);

DESCRIPTION

This method controls the transmission or reception of data on this TTY stream. This method
corresponds to the POSIX tcflow function; see the POSIX standard for details.

PARAMETERS
tty: The TTY stream object to control.

action: Must be one of the following:

OSKIT_TCOOFF: Suspend output.
OSKIT_TCOON: Restart output.
OSKIT_TCIOFF: Transmit a STOP character.
OSKIT_TCION: Transmit a START character.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

94

CHAPTER 5. INPUT/OUTPUT INTERFACES

Chapter 6

OSKit Device Driver (OS
Environment) Framework

6.1 Introduction

Note: the framework’s obsolete name as “device driver framework” is historical baggage from its first client
component, imported device drivers. Today, a more accurate name would be the “OS Environment” frame-
work. It provides the API and glue used by all “large” encapsulated components (devices, networking, filesys-
tems) imported from other operating systems. We’'ll change the name and documentation in the future.

A note on organization and content: this chapter really contains three quite separate parts: a general
narrative about execution models, some very sketchy documentation of the “up-side” device interfaces, and
the bulk covers the “osenv” interfaces. A later chapter (12) talks sketchily about the default implementation
of the interfaces found here.

The OSKit device driver framework is a device driver interface specification designed to allow existing
device drivers to be borrowed from well-established operating systems in source form, and used unchanged to
provide extensive device support in new operating systems or other programs that need device drivers (e.g.,
hardware configuration management utilities). With appropriate glue, this framework can also be used in
an existing operating system to augment the drivers already supported by the OS. (We believe it’s possible
to extend the framework to accomodate drivers in binary form.) This chapter describes the device driver
framework itself; other chapters later in this document describe specific libraries provided as part of the
OSKit that provide driver and kernel code implementing or supporting this interface.

The primary goals of this device driver framework are, in order from most to least important:

1. Breadth of hardware coverage. There is a tremendous range of common hardware available these
days, each typically supporting its own device programming interface and requiring a special device
driver. Device drivers for a given device are generally only available for a few operating systems,
depending on how well-established the particular device and OS is. Thus, in order to achieve maximum
hardware coverage, the framework must be capable of incorporating device drivers originally written
for a variety of different operating systems.

2. Adaptability to different environments. This device driver framework is intended to be useful
not only in traditional Unix-like kernels, but also in operating systems with widely different structures,
e.g., kernels written in a “stackless” interrupt model, or kernels that run all device drivers as user mode
programs, or kernels that do not support virtual memory.

3. Ease-of-use. It should be reasonably easy for an OS developer to add support for this framework to
a new or existing OS. The set of support functions the OS developer must supply should be kept as
small and simple as possible, and there should be few “hidden surprises” lurking in the drivers. In
situations where existing device drivers supported by the OSKit have special requirements that the OS
must satisfy in order to use them, these requirements are clearly documented in the relevant chapters.

95

96 CHAPTER 6. OSKIT DEVICE DRIVER (OS ENVIRONMENT) FRAMEWORK

4. Performance. In spite of the above constraints, device drivers should be able to run under this
framework with as little unnecessary overhead as possible. Performance issues are discussed further in
Section 6.5.

Since the most important goal of this framework is to achieve wide hardware coverage by making use
of existing drivers, and not to define a new model or interface for writing drivers, it is somewhat more
demanding and restricting in terms of OS support than would be ideal if we were writing entirely new device
drivers from scratch. Other device driver interface standards, such as DDI/DKI and UDI, are not designed
to allow easy adaptation of existing drivers; instead, they are intended to define and restrict the interfaces
and environment used by new drivers specially written for those interfaces, so that these new drivers will
be as widely useful as possible. For example, UDI requires all conforming drivers to be implemented in a
nonblocking interrupt model; this theoretically allows UDI drivers to run easily in either process-model or
interrupt-model kernels, but at the same time it eliminates all possibility of adapting existing traditional
process-model drivers to be UDI conformant without extensive changes to the drivers themselves. Hopefully,
at some point in the future, one of these more generic device driver standards will become commonplace
enough so that conforming device drivers are available for “everything”; however, until then, the OSKit
device driver framework takes a compromise approach, being designed to allow easy adaptation of a wide
range of existing drivers while keeping the primary interface as simple and flexible as possible.

6.1.1 Full versus partial compliance

Because the range of existing drivers to be adopted under this framework is so diverse in terms of the
assumptions and restrictions made by the drivers, it would be impractical to define the requirements of
the framework as a whole to be the “union” of all the requirements of all possible drivers. For example,
if we had taken that approach, then the framework would only be usable in kernels in which all physical
memory is directly mapped into the kernel’s virtual address space at identical addresses, because some drivers
will not work unless that is the case. This restriction would make the framework completely unusable in
many common OS environments, even though there are plenty of drivers available that don’t make the
virtual = physical assumption and should work fine in OS environments that don’t meet that requirement.

For this reason, we have defined the framework itself to be somewhat more generic than is suitable for
“all” existing drivers, and to account for the remaining “problematic” drivers, we make a distinction between
full and partial compliance. A fully compliant driver is a driver that makes no additional assumptions
or requirements beyond those defined as part of the basic driver framework; these drivers should run in
any environment that supports the framework. A partially compliant driver is a driver that is compliant
with the framework, ezcept that it makes one or more additional restrictions or requirements, such as the
virtual = physical requirement mentioned above. For each partially-compliant driver provided with the
OSKit, the exact set of additional restrictions made by the driver are clearly documented and provided in
both human- and machine-readable form so that a given OS environment can make use of the framework as
a whole while avoiding drivers that will not work in the environment it provides.

6.2 Organization

In a typical OS environment in which all device drivers run in the kernel, Figure 6.1 illustrates the basic
organization of the device driver framework.

The heavy black horizontal lines represent the actual interfaces comprising the framework, which are
described in this chapter. There are two primary interfaces: the device driver interface (or just “driver
interface”), which the OS kernel uses to invoke the device drivers; and the driver-kernel interface (or just
“kernel interface”), which the device drivers use to invoke kernel support functions. The kernel implements
the kernel interface and uses the driver interface; the drivers implement the driver interface and use the
kernel interface.

Chapter 12 describes a library supplied as part of the OSKit that provides facilities to help the OS
implement the kernel interface and use the driver interface effectively. Default implementations suitable in
typical kernel environments are provided for many operations; the OS can use these default implementations
or not, as the situation demands.

6.2. ORGANIZATION 97

AAAAAAAAAAAYAYAYAVAVAVAVAVAVAVAVAVAVAVA

OS Kernel

OSKit Device
Driver Interface

OS-specific
glue

Native Linux Network Linux SCSI FreeBSD Block
OS-Specific Driver Set Driver Set Driver Set
Drivers (libfdev_linux_net) (libfdev_linux_scsi) (libfdev_freebsd_blk)
OSKit Device- OS-specific
Kernel Interface glue

Hardware

You provide - OSKIT provides OSKIT Provides (from existing OS)

Figure 6.1: Organization of OSKit Device Driver Framework in a typical kernel

98 CHAPTER 6. OSKIT DEVICE DRIVER (OS ENVIRONMENT) FRAMEWORK

Several chapters in Part IV describe device driver sets supplied with the OSKit for use in environments
supporting the OSKit device driver framework. Since the Flux project is not in the driver writing business,
and does not wish to be, these driver sets are derived from existing kernels, either unchanged or with as
little code modified as possible so that the versions of the drivers in the OSKit can easily be kept up-to-date
with the original source bases from which they are derived.

6.3 Driver Sets

Up to this point we have used the term “device driver set” fairly loosely; however, in the context of the OSKit
device driver framework, this term has a very important, specific meaning. A driver set is a set of related
device drivers that work together and are fairly tightly integrated together. Different driver sets running in
a given environment are independent of each other and oblivious to each other’s presence. Drivers within a
set may share code and data structures internally in arbitrary ways; however, code in different driver sets
may not directly share data structures. (Different driver sets may share code, but only if that code is “pure”
or operates on a disjoint set of data structures: for example, driver sets may share simple functions such as
memcpy.)

Of course, the surrounding OS can maintain shared data structures in whatever way it chooses; this is the
only way drivers in different sets can interact with each other. For example, if a kernel is using a FreeBSD
device driver to drive one network card and a Linux driver to drive another, then the kernel can take IP
packets coming in on one card and route them out through the other card, but the network device drivers
themselves are completely oblivious to each other’s presence.

Some driver sets may contain only a single driver; this is ideal for modularity purposes, since in this case
each such driver is independent of all others. Also, given some effort on the part of the OS, some multi-driver
sets can be “split up” into multiple single-driver sets and used independently; Section 6.4.1 describes one
way this can be done.

In essence, each driver set represents an “encapsulated environment” with a well-defined interface and a
clearly-bounded set of state. The concept of a driver set has important implications throughout the device
driver framework, especially in terms of execution environment and synchronization; the following sections
describe these aspects of the framework in more detail.

Note that currently all “osenv” code in the same address space is essentially a single driver set. We are
planning on changing this to allow drivers to be independant from each other. Currently, the only way to
achieve this is to run them in separate address spaces.

6.4 Execution Model

Device drivers running in the OSKit device driver framework use the interruptible, blocking execution model,
defined in Section 2.5, and all of the constraints and considerations described in that section generally apply
to OSKit device drivers. However, there are a few execution model issues specific to device drivers, which
are dealt with here.

6.4.1 Use in out-of-kernel, user-mode device drivers

In some situations, for reasons of elegance, modularity, configuration flexibility, robustness, or even (in
some cases) performance, it is desirable to run device drivers in user mode, as “semi-ordinary” application
programs. This is done as a matter of course by some microkernels. There is nothing in the OSKit device
driver framework that prevents its device drivers from executing in user mode, and in fact the framework
was deliberately designed with support for user-mode device drivers in mind.

Figure 6.2 illustrates an example system in which device drivers are located in user-mode processes. In
this case, all of the code within a given driver set is part of the user-level device driver process, and the
“surrounding” OS-specific code, which makes calls to the drivers through the driver interface, and provides
the functions in the “kernel interface,” is not actually kernel code at all but, rather, “glue” code that handles
communication with the kernel and other processes. For example, many of the functions in the driver-kernel

6.4. EXECUTION MODEL 99

Linux Network FreeBSD Block

Driver Set
(libfdev_freebsd_blk)

Driver Set
(libfdev_linux_net)

Application Process

OS-specific glue code OS-specific glue code

Driver Process Driver Process

Kernel

Hardware

You provide - OSKIT provides OSKIT Provides (from existing OS)

Figure 6.2: Using the framework to create user-mode device drivers

interface, such as the calls to allocate interrupt request lines, will be implemented by this glue code as system
calls to the “actual” kernel, or as remote procedure calls to servers in other processes.

Device driver code running in user space will typically run in the context of ordinary threads; the execution
environment required by the driver framework can be built on top of these threads in different ways. For
example, the OS-specific glue code may run on only a single thread and use a simple coroutine mechanism
to provide a separate stack for each outstanding process-level device driver operation; alternately, multiple
threads may be used, in which case the glue code will have to use locking to provide the nonpreemptive
environment required by the framework.

Dispatching interrupt handlers in these user-mode drivers can be handled in various ways, depending
on the environment and kernel functionality provided. For example, interrupt handlers may be run as
“signal handers” of some kind “on top of” the thread(s) that normally execute process-level driver code;
alternatively, a separate thread may be used to run interrupt handlers. In the latter case, the OS-specific
glue code must use appropriate locking to ensure that process-level driver code does not continue to execute
while interrupt handlers are running.

Shared interrupt request lines

One particularly difficult problem for user-level drivers in general, and especially for user-level drivers built
using this framework, is supporting shared interrupt lines. Many platforms, including PCI-based PCs, allow
multiple unrelated devices to send interrupts to the processor using a single request line; the processor must
then sort out which device(s) actually caused the interrupt by checking each of the possible devices in turn.
With user-level drivers, the code necessary to perform this checking is typically part of the user-mode device
driver, since it must access device-specific registers. Thus, in a “naive” implementation, when the kernel
receives a device interrupt, it must notify all of the drivers hooked to that interrupt, possibly causing many
unnecessary context switches for every interrupt.

The typical solution to this problem is to allow device drivers to “download” small pieces of “disambigua-

100 CHAPTER 6. OSKIT DEVICE DRIVER (OS ENVIRONMENT) FRAMEWORK

tion” code into the kernel itself; the kernel then chains together all of the code fragments for a particular
interrupt line, and when an interrupt occurs, the resulting code sequence determines exactly which device(s)
caused the interrupt, and hence, which drivers need to be notified. This solution works fine for “native”
drivers designed specifically for the kernel in question; however, there is no obvious, straightforward way to
support such a feature in the driver framework.

For this reason, until a better solution can be found, the following policy applies to using shared interrupts
in this framework: for a given shared interrupt line, either the kernel must unconditionally notify all registered
drivers running under this framework, and take the resulting performance hit; or else the drivers running
under this framework will not support shared interrupts at all. (Native drivers written specifically for the
kernel in question can still use the appropriate facilities to support shared interrupt lines efficiently.)

6.5 Performance

Since this framework emphasizes breadth, adaptability, and ease-of-use over raw performance, the perfor-
mance of device drivers running under this framework is likely to suffer somewhat; how much depends on
how well-matched the particular driver is to the driver framework and to the host OS. Various factors can
influence driver performance: for example, if the OS’s network code does not match the network drivers in
terms of whether scatter/gather message buffers are supported or required, performance is likely to suffer
somewhat due to extra copying between the driver and the OS’s network code. The OS developer will have
to take these issues into account when selecting which sets of device drivers to use (e.g., FreeBSD versus
Linux network drivers). If the device driver sets are chosen carefully and the OS’s driver support code is
designed well, in many cases it should be possible to use these drivers with minimal performance loss.

Another consideration is how extensively the OS should rely on this device driver framework. There is
nothing preventing the OS from maintaining its own (probably smaller) collection of “native” drivers designed
and tuned for the particular OS; this way, the OS can achieve maximum performance for particularly common
or performance-critical hardware devices, and use the larger set of device drivers easily available through
this framework to provide support for other types of hardware that otherwise wouldn’t be supported at all.
This approach of combining native and emulated drivers is likely to be especially important for kernels that
are not well matched to the existing drivers this framework was designed around: e.g., “stackless” interrupt
model kernels which must run emulated device drivers on special threads or in user space.

For a very rough idea of the performance of drivers and kernels using this framework, see the results in
our SOSP’97 paper “The Flux OSKit: A Substrate for OS and Language Research.” Performance results
for a related but less formal and less encapsulated framework can be found in the USENIX’96 paper “Linux
Device Driver Emulation in Mach.”

6.6 Device Driver Initialization

When the host OS is ready to start using device drivers in this framework, it typically calls a probe function
for each driver set it uses; this function initializes the drivers and checks for hardware devices supported by
any of the drivers in the set. If any such devices are found, they are registered with the host OS by calling a
registration routine specific to the type of bus on which the device resides (e.g., ISA, PCI, SCSI). The host
OS can then record this information internally so that it knows which devices are available for later use.
The OS can implement device registration any way it chooses; however, the driver support library (1ibdev)
provided by the OSKit provides a default implementation of a registration mechanism which builds a single
“hardware tree” representing all known devices; see Section 12.2 for more information.

When a device driver discovers a device, it creates a device node structure representing the device.
The device node structure can be of arbitrary size, and most of its contents are private to the device
driver. However, the first part of the device node is always a structure of type oskit_device_t, defined
in oskit/dev/dev.h, which contains generic information about the device and driver needed by the OS to
make use of the device. In addition, depending on the device’s type, there may be additional information
available to the host OS, as described in the following section.

6.7. DEVICE CLASSIFICATION 101

6.7 Device Classification

Device nodes have types that follow a C++-like single-inheritance subtyping relationship, where oskit_device_t
is the ultimate ancestor or “supertype” of all device types.

In general, the host OS must know what class of device it is talking to in order to make use of it properly.
On the other hand, it is not strictly necessary for the host OS to recognize the specific device type, although
it may be able to make better use of the device if it does.

The block device class has the following attributes:

e All input and output is synchronously driven by the host OS, through calls to the read and write
methods of the associated blkio object; the driver never calls the asynchronous I/O functions defined
in Section 5.2. I/O operations always complete “promptly”: barring device driver or hardware bugs,
reads and writes are never delayed indefinitely due to external conditions. (This contrasts with network
devices, for example, where input is received when another machine sends a message, not when the
host OS asks for input.)

e There may be a minimum read/write granularity, or block size, which may be obtained through the
getblocksize method. The block size is always a power of two (e.g., typically 512 for most disks),
and is always less than the processor’s minimum page size (PAGE_SIZE, Section 10.2.1). The offset
and count parameters of all read/write calls made by the host OS to this device driver must be an
even multiple of this block size. For block devices with no minimum read/write granularity, the driver
specifies a block size of 1 (i.e., one-byte granularity).

e Block devices may have removable media, such as floppy drives, CD-ROM drives, or removable hard
drives. The device driver provides an indication to the OS of whether or not the device supports
removable media.

The character device class has the following characteristics:

e Output is synchronous, directed by the host OS, but input is asynchronous, directed by the external
device.

e Incoming and outgoing data consists of a stream of bytes; there is no larger minimum read/write
granularity. Multiple bytes of data can be sent and received in one operation, but this is just an
optimization; there is no semantic difference from handling each byte individually.

The network device class has the following characteristics:

e Output is synchronous, directed by the host OS, but input is asynchronous, directed by the external
device.

e Data is handled in units of packets; one send or receive operation is performed for each packet.

e Packets sent and received typically have specific size and format restrictions, depending on the specific
network type (e.g., ethernet, myrinet).

Note that it would certainly be possible to decompose these device classes into a deeper type hierarchy.
For example, in abstract terms it might make sense to arrange character and network devices under a single
supertype representing “asynchronous” devices. However, since the structure representing this “abstract
supertype” would contain essentially nothing in terms of actual code or data, this additional level was not
deemed useful for the driver framework. Of course, the OS is free to use any type hierarchy (or non-hierarchy)
it desires for its own data structures representing devices, drivers, etc.

6.8 Buffer Management

XXX overview

102 CHAPTER 6. OSKIT DEVICE DRIVER (OS ENVIRONMENT) FRAMEWORK

6.9 Asynchronous I/0O

While asynchronous I/O is not directly suported by the OSKit device interface, it is possible to create an
asychronous interface in the OS itself, which calls the blocking fdev functions.

6.10 Other Considerations

XXX some rare, poorly-designed hardware does not work right if long delays occur while programming the
devices. (This is supposedly the case for some IDE drives, for example.) For this reason, reliability and
hardware compatibility may be increased by implementing osenv_intr_disable as a function that really
does disable all interrupts on the processor in question.

XXX Symbol name conflicts among libraries... For each existing driver set, provide a list of “reserved”
symbols used by the set.

XXX This should be moved somewhere else:

All functions may block, except those specifically designated as nonblocking.

All functions may be called at any time, including during driver initialization. In other words, all
of the functionality exposed by this interface must be present and fully operational by the time
the device drivers are initialized.

6.11. COMMON DEVICE DRIVER INTERFACE 103

6.11 Common Device Driver Interface

This section describes the OSKit device driver interfaces that are common to all types of drivers and hard-
ware.

6.11.1 dev.h: common device driver framework definitions
SYNOPSIS

#include <oskit/dev/dev.h>

XXX

oskit_dev_init

oskit X_init_X

oskit_dump_drivers

oskit_dev_probe

oskit_dump_devices

rtc_get and rtc_set interfaces (Real time clock).

104 CHAPTER 6. OSKIT DEVICE DRIVER (OS ENVIRONMENT) FRAMEWORK

6.12 Driver Memory Allocation

The OS must provide routines for drivers to call to allocate memory for the private use of the drivers, as well
as for I/O buffers and other purposes. The OSKit device driver framework defines a single set of memory
allocation functions which all drivers running under the framework call to allocate and free memory.

Device drivers often need to allocate memory in different ways, or memory of different types, for different
purposes. For this reason, the device driver framework defines a set of flags provided to each memory
allocation function describing how the allocation is to be done, or what type of memory is required.

As with other aspects of the OSKit device driver framework, the 1ibdev library provides default im-
plementations of the memory allocation functions, but these implementations may be replaced by the OS
as desired. The default implementations make a number of assumptions which are often invalid in “real”
OS kernels; therefore, these functions will often be overridden by the client OS. Specifically, the default
implementation assumes:

e The LMM pool malloc_lmm is used to manage kernel memory.
e Memory allocation and deallocation never block.
e All memory allocation functions can be called at interrupt time.
e All allocated blocks are physically as well as virtually contiguous.
Additionally, the default routines which deal with physical memory addresses make these assumptions:
e Virtual address is the same as the physical address.

e Paging is not enabled.

6.12.1 osenv._memflags_t: memory allocation flags
SYNOPSIS

XXX typedef unsigned osenv_memflags._t;

DESCRIPTION

All of the memory allocation functions used by device drivers in the OSKit device framework
take a parameter of type osenv_memflags t, which is a bit field describing various option flags
that affect how memory allocation is done. Device drivers often need to allocate memory that
satisfies certain constraints, such as being physically contiguous, or page aligned, or accessible
to DMA controllers. These flags abstract out these various requirements, so that all memory
allocation requests made by device drivers are sent to a single set of routines; this design allows
the OS maximum flexibility in mapping device memory allocation requests onto its internal kernel
memory allocation mechanisms.

Routing all memory allocations through a single interface this way may have some impact on
performance, due to the cost of decoding the flags argument on every allocation or deallocation
call. However, this cost is expected to be small compared to the typical cost of actually performing
the requested operation.

The specific flags currently defined are as follows:

OSENV_AUTO_SIZE: The memory allocator must keep track of the size of allocated blocks allo-
cated using this flag; in this case, the value size parameter passed in the corresponding
osenv_mem free call is meaningless. For blocks allocated without this flag set, the caller
(device driver) promises to keep track of the size of the allocated block, and pass it back to
osenv_mem_free on deallocation.

It is possible for the OS to implement these memory allocation routines so that they ignore
the OSENV_AUTO0_SIZE flag and simply always keep track of block sizes themselves. However,

6.12. DRIVER MEMORY ALLOCATION

note that in some situations, doing so may produce extremely inefficient memory usage. For
example, if the OS memory allocation mechanism prefixes each block with a word containing
the block’s length, then any request by a device driver to allocate a page-aligned page (or
some other naturally-aligned, power-of-two-sized block) will consume that page plus the
last word of the previous page. If many successive allocations are done in this way, only
every other page will be usable, and half of the available memory will be wasted. Therefore,
it is generally a good idea for the memory allocation functions to pay attention to the
OSENV_AUTO_SIZE flag, at least for allocations with alignment restrictions.

OSENV_NONBLOCKING: If set, this flag indicates that the memory allocator must not block during

the allocation or deallocation operation. More specifically, the flag indicates that the device
driver code must not be run in the context of other, concurrent processes while the allocation
is taking place. Any calls to the allocation functions from interrupt handlers must specify
the 0SENV_NONBLOCKING flag.

OSENV_PHYS WIRED: Indicates that the must must be non-pageable. Accesses to the returned

memory must not fault.

OSENV_PHYS_CONTIG: Indicates the underlying physical memory must be contiguous.
OSENV_VIRT_EQ_PHYS: Indicates the virtual address must ezactly equal the physical address so

the driver may use them interchangeably. The 0SENV_PHYS_CONTIG flag must also be set
whenever this flag is set.

OSENV_ISADMA MEM: This flag applies only to machines with ISA busses or other busses that are

software compatible with ISA, such as EISA, MCA, or PCI. It indicates that the memory
allocated must be appropriate for DMA access using the system’s built-in DMA controller.
In particular, it means that the buffer must be physically contiguous, must be entirely
contained in the low 16MB of physical memory, and must not cross a 64KB boundary. (By
implication, this means that allocations using this flag are limited to at most 64KB in size.)
The OSENV_PHYS_CONTIG flag must also be set if this flag is set.

OSENV_X861MB MEM: This flag only applies to x86 machines, in which some device drivers may

6.12.2

SYNOPSIS

need to call 16-bit real-mode BIOS routines. Such drivers may need to allocate physical
memory in the low 1MB region accessible to real-mode code; this flag allows drivers to
request such memory. This is not used by existing driver sets.

osenv_mem_alloc: allocate memory for use by device drivers

void *osenv_mem_alloc(oskit_size_t size, osenv_memflags_t flags, unsigned align);

DIRECTION

Component — OS, Blocking

DESCRIPTION

This function is called by the drivers to allocate memory. Allocate the requested amount of

memory with the restrictions specified by the flags argument as described above.

XXX: While this is defined as blocking, the current glue code cannot yet handle this blocking,

as it

is not prepared for another request to enter the component. This will be fixed.

PARAMETERS

size:

Amount of memory to allocate.

flags: Restrictions on memory.

105

106 CHAPTER 6. OSKIT DEVICE DRIVER (OS ENVIRONMENT) FRAMEWORK

align: Boundary on which memory should be aligned, which must be a power of two, or 0 which
means the same as 1 (no restrictions).

RETURNS

Returns the address of the allocated block in the driver’s virtual address space, or NULL if not
enough memory was available.

6.12.3 osenv_mem free: free memory allocated with osenv_mem _alloc
SYNOPSIS

void osenv_mem _free(void *block, osenv_memflags_t flags, oskit_size_t size);

DIRECTION

Component — OS, Blocking

DESCRIPTION

Frees a memory block previously allocated by osenv_mem_alloc.

XXX: While this is defined as blocking, the current glue code cannot yet handle this blocking,
as it is not prepared for another request to enter the component. This will be fixed.

PARAMETERS

block: A pointer to the memory block, as returned from osenv_mem_alloc.

flags: Flags indicating deallocation semantics required. Only 0SENV_AUTO_SIZE and OSENV_NONBLOCKING
are meaningful in this context. 0SENV_AUT0_SIZE must be set if and only if it was set during
the allocation, and OSENV_NONBLOCKING indicates that the deallocation operation must not
block.

size: If flags doesn’t include OSENV_AUTO_SIZE, then this parameter must be the size requested
when this block was allocated. Otherwise, the value of the size parameter is meaningless.

6.12.4 osenv_mem_get_phys: find the physical address of an allocated block
SYNOPSIS

oskit_addr_t osenv_mem_get_phys(oskit_addr_t va);

DIRECTION

Component — OS, Nonblocking

DESCRIPTION

Returns the physical address associated with a given virtual address. Virtual address should refer
to a memory block as returned by osenvmem_alloc. XXX does it have to be the exact same
pointer, or just a pointer in the block? In systems which do not support address translation, or
for blocks allocated with 0SENV_VIRT_EQ_PHYS, this function returns wva.

The returned address is only valid for the first page of the indicated block unless it was allocated
with OSENV_PHYS_CONTIG. In a system supporting paging, the result of the operation is only
guaranteed to be accurate if O0SENV_PHYS_WIRED was specified when the block was allocated.
XXX other constraints?

6.12. DRIVER MEMORY ALLOCATION 107

PARAMETERS

va: The virtual address of a memory block, as returned from osenv_mem alloc.

RETURNS

Returns the PA for the associated (wired) VA. XXX zero (or something else) if VA is not valid?

6.12.5 osenv_mem get_virt: find the virtual address of an allocated block
SYNOPSIS

oskit_addr_t osenv_mem_get_virt(oskit_addr_t pa);

DIRECTION

Component — OS, Nonblocking

DESCRIPTION

Returns the virtual address of an allocated physical memory block. Can only be called with the
physical address of blocks that have been allocated with osenv_mem_alloc. XXX or else what?

XXX error codes?
XXX If the Linux glue uses this, and gets and error, should the physical memory be mapped (by

the glue) (if it is not in the address space) and re-try?
PARAMETERS

pa: The physical memory location.

RETURNS

Returns the VA for the mapped PA.

6.12.6 osenv_mem phys max: find the largest physical memory address
SYNOPSIS

oskit_addr_t osenv_mem_phys_max(void);

DIRECTION

Component — OS, Nonblocking

DESCRIPTION

Returns the top of physical memory, which is noramlly equivelent to the amount of physical RAM
in the machine. Note that memory-mapped devices may reside higher in physical memory, but
this is the largest address normal RAM could have.

RETURNS

Returns the amount of physical memory.

108 CHAPTER 6. OSKIT DEVICE DRIVER (OS ENVIRONMENT) FRAMEWORK

6.12.7 osenv_mem map phys: map physical memory into kernel virtual memory
SYNOPSIS

int osenv_mem_map_phys(oskit_addr_t pa, oskit_size_t length, void **kaddr, int

flags);

DIRECTION

Component — OS, Blocking

DESCRIPTION

Allocate kernel virtual memory and map the caller supplied physical addresses into it. The
address and length must be aligned on a page boundary.

This function is intended to provide device drivers access to memory-mapped devices.
An osenv_mem_unmap_phys interface will likely be added in the future.

XXX: While this is defined as blocking, the current glue code cannot yet handle this blocking,
as it is not prepared for another request to enter the component. This will be fixed.

Flags:

PHYS_MEM_NOCACHE: Inhibit cache of data in the specified memory.

PHYS_MEM_WRITETHROUGH: Data cached from the specified memory must be synchronously writ-
ten back on writes.

PARAMETERS

pa: Starting physical address.
length: Amount of memory to map.

kaddr: Kernel virtual address allocated and returned by the kernel that maps the specified
memory.

flags: Memory mapping attributes, as described above.

RETURNS

Returns 0 on success, non-zero on error.

6.13. DMA 109

6.13 DMA

This section is specific to ISA devices utilizing the Direct Memory Access controller.

If the OS wishes to support devices that utilize DMA, then basic routines must be provided to allow
access to the DMA controller.

The Linux drivers directly access the DMA controller themselves, with macros and with embedded
assembly. All devices that utilize the DMA controller must be in the same driver set, as there is not way to
arbitrate between different driver sets. Because this shortcoming is in the encapsulated drivers, and would
take significant effort to correct, we have not provided an interface to access the DMA controller, although
we may in the future.

6.13.1 osenv_isadma_alloc: Reserve a DMA channel

SYNOPSIS

int osenv_isadma_alloc(int channel);

DIRECTION

Component — OS, Nonblocking

DESCRIPTION

This requests a DMA channel.
If sucessfull, the driver must be able to directly manipulate the ISA DMA controller.

PARAMETERS

channel: The DMA channel to reserve.

RETURNS

Returns 0 on success, non-zero if already allocated.

6.13.2 osenv_isadma_free: Release a DMA channel
SYNOPSIS

void osenv_isadma_free(int channel);

DIRECTION

Component — OS, Nonblocking

DESCRIPTION

This releases a DMA channel. The DMA channel must have already been reserved by the driver.

PARAMETERS

channel: The DMA channel to release.

110 CHAPTER 6. OSKIT DEVICE DRIVER (OS ENVIRONMENT) FRAMEWORK

6.14 1I/0 Ports

Many devices have a concept of “I/O space”. In general, multiple devices cannot share the same range of
I/0 ports. Unfortunately, there are a few exceptions, most notably the keyboard and PS/2 mouse, and the
Floppy and IDE controllers.

Many of the device drivers assume they may access port 0x80, for use in timing loops. This is not used
in most computers, although POST cards are used to display the last value written to that port.

6.14.1 osenv_io_avail: Check availability of a range of ports
SYNOPSIS

oskit_bool_t osenv_io_avail(oskit_addr_t port, oskit_size_t size);

DIRECTION

Component — OS, Nonblocking

DESCRIPTION
Returns true (nonzero) if the range is free; false (zero) if any ports in the range are already
allocated.

PARAMETERS

port: The start of the I/O range.

size: The number of ports to check.

RETURNS

Returns 0 (false) if any part of the range is unavailable, non-zero otherwise.

6.14.2 osenv_io_alloc: Allocate a range of ports
SYNOPSIS

oskit_error_t osenv_io_alloc(oskit_addr_t port, oskit_size_t size);

DIRECTION

Component — OS, Nonblocking

DESCRIPTION

Returns 0 if the range is free, or an error code if any ports in the range are already allocated.
XXX: shared ports?
XXX: Default implementation panics if range is allocated.

Note: this is based on the assumption that I/O space is not mapped through the MMU. On a
system where this is not the case (memory mapped I/0), osenv_mem_map_phys should be used
instead.

PARAMETERS

port: The start of the I/O range.

size: The number of ports to check.

6.14. I/O PORTS 111

6.14.3 osenv_io_free: Release a range of ports
SYNOPSIS

void osenv_io_free(oskit_addr_t port, oskit_size_t size);

DIRECTION

Component — OS, Nonblocking

DESCRIPTION

Releases a range previously allocated. All ports in the range must have been allocated by the
device.

PARAMETERS

port: The start of the I/O range.

size: The number of ports to check.

112 CHAPTER 6. OSKIT DEVICE DRIVER (OS ENVIRONMENT) FRAMEWORK

6.15 Hardware Interrupts

Shared interrupts are supported, as long as OSENV_IRQ_SHAREABLE is requested by all devices wishing
to use the interrupt.

In a given driver environment in this framework, there are only two “interrupt levels”: enabled and
disabled. In the default case in which all device drivers of all types are linked together into one large driver
environment in an OS kernel, this means that whenever one driver masks interrupts, it masks all device
interrupts in the system.!

However, an OS can implement multiple interrupt priority levels, as in BSD or Windows NT, if it so
desires, by creating separate “environments” for different device drivers. For example, if each driver is built
into a separate, dynamically-loadable module, then the osenv_intr_ calls in different driver modules could
be resolved by the dynamic loader to spl-like routines that switch between different interrupt priority levels.
For example, the osenv_intr_disable call in network drivers may resolve to splnet, whereas the same call
in a disk driver may be mapped to splbio instead.

6.15.1 osenv_intr disable: prevent interrupts in the driver environment
SYNOPSIS

void osenv_intr_disable(void);

DIRECTION

Component — OS, Nonblocking

DESCRIPTION

Disable further entry into the calling driver set through an interrupt handler. This can be
implemented either by directly disabling interrupts at the interrupt controller or CPU, or using
some software scheme.

XXX Merely needs to prevent intrs from being dispatched to the driver set. Drivers may see
spurious interrupts if they briefly cause interrupts while disabled.

XXX Timing-critical sections need interrupts actually disabled.

6.15.2 osenv_intr_enable: allow interrupts in the driver environment
SYNOPSIS

void osenv_intr_enable(void);

DIRECTION

Component — OS, Nonblocking

DESCRIPTION

Enable interrupt delivery to the calling driver set. This can be implemented either by directly
enabling interrupts at the interrupt controller or CPU, or using some software scheme.

IRationale: The Linux device drivers work this way, and we can’t provide more than what we have to work with. This
also makes the OS interface simpler, and may allow the basic operations to be faster due to this simplicity.

6.15. HARDWARE INTERRUPTS 113

6.15.3 osenv_intr_enabled: determine the current interrupt enable state
SYNOPSIS

int osenv_intr_enabled(void);

DIRECTION

Component — OS, Nonblocking

DESCRIPTION

Returns the driver’s view of the current interrupt status.

RETURNS

Returns true if interrupts are currently enabled, false otherwise. XXX 1 and 0 instead of true
and false?

6.15.4 osenv_irq alloc: allocate an interrupt request line
SYNOPSIS

int osenv_irq_alloc(int irgnum, void (*handler)(void *), void *data, int flags);

DIRECTION

Component — OS, Blocking

DESCRIPTION

Allocate an interrupt request line and attach the specified handler to it. On interrupt, the kernel
must pass the data argument to the handler.

XXX: interrupts should be “disabled” when the handler is invoked.

XXX: This has not been verified to function correctly if an incomming request is processed while
this is blocked.

Flags:

OSENV_TRQ_SHAREABLE: If this flag is specified, the interrupt request line can be shared between
multiple devices. On interrupt, the OS will call each handler attached to the interrupt line.
Without this flag set, the OS is free to return an error if another handler is attached to the
interrupt request line. (If shared, ALL handlers must have this set).

PARAMETERS

wrgnum: The interrupt request line to allocate.

handler: Interrupt handler.

data: Data passed by the kernel to the interrupt handler.

flags: Flags indicating special behavior. Only OSENV_IRQ_SHAREABLE is currently used.

RETURNS

Returns 0 on success, non-zero on error.

114 CHAPTER 6. OSKIT DEVICE DRIVER (OS ENVIRONMENT) FRAMEWORK

6.15.5 osenv_irq free: Unregister the handler for the interrupt
SYNOPSIS

void osenv_irq_free(int irgnum, void (*handler)(void *), void *data);

DIRECTION

Component — OS, Nonblocking

DESCRIPTION
Removes the indicated interrupt handler. The handler is only removed if it was registered with
osenv_irq alloc for the indicated interrupt request line and with the indicated data pointer.
PARAMETERS

irq: The physical interrupt line.
handler: The function handler’s address. This is necessary if multiple handlers are registered
for the same interrupt.

data: The data value registered with osenv_irq.alloc.

6.15.6 osenv_irq disable: Disable a single interrupt line
SYNOPSIS

void osenv_irq_disable(int irg);

DIRECTION

Component — OS, Nonblocking

DESCRIPTION

Prevents a specific interrupt line from delivering an interrupt. Can be done in software or by
disabling at the interrupt controller.

If the interrupt does occur while disabled, it should be delivered as soon as osenv_irq_enable is
called (see that section for details).
PARAMETERS

irg: The physical interrupt line.

6.15.7 osenv_irqg enable: Enable a single interrupt line
SYNOPSIS

void osenv_irq_enable(int irg);

DIRECTION

Component — OS, Nonblocking

DESCRIPTION

This allows the specified interrupt to be received, provided interrupts are enabled. (e.g., os-
env_intr_enabled also returns true)

6.15. HARDWARE INTERRUPTS 115

PARAMETERS

irg: The physical interrupt line.

6.15.8 osenv_irqg.pending: Determine if an interrupt is pending for a single line
SYNOPSIS

int osenv_irq_pending(int irg);

DIRECTION

Component — OS, Nonblocking

DESCRIPTION

Determine if an interrupt is pending for the specified interrupt line.

PARAMETERS

irq: The physical interrupt line.

RETURNS

Returns 1 if an interrupt is pending for the indicated line, 0 otherwise.

116 CHAPTER 6. OSKIT DEVICE DRIVER (OS ENVIRONMENT) FRAMEWORK

6.16 Sleep/Wakeup

The current driver model only allow one thread or request into the driver set at a time. However, if the
driver set is waiting for an external event and can handle another request while it is waiting, then the driver
sleeps.

The default implementation of sleep busy-waits on the event, as it is not possible for it to do more without
knowledge of the operating sysmte environment it is in.

6.16.1 osenv_sleep_init: prepare to put the current process to sleep
SYNOPSIS

#include <oskit/dev/dev.h>

void osenv_sleep_init(osenv_sleeprec_t *sleeprec);

DIRECTION

Component — OS, Nonblocking

DESCRIPTION

This function initializes a “sleep record” structure in preparation for the current process’s going
to sleep waiting for some event to occur. The sleep record is used to avoid races between actually
going to sleep and the event of interest, and to provide a “handle” on the current activity by
which osenv_wakeup can indicate which process to awaken.

PARAMETERS

sleeprec: A pointer to the process-private sleep record.

6.16.2 osenv_sleep: put the current process to sleep
SYNOPSIS

#include <oskit/dev/dev.h>

int osenv_sleep(osenv_sleeprec_t *sleeprec);

DIRECTION

Component — OS, Blocking

DESCRIPTION

The driver calls this function at process level to put the current activity (process) to sleep until
some event occurs, typically triggered by a hardware interrupt or timer handler. The driver
must supply a pointer to a process-private “sleep record” variable (sleeprec), which is typically
just allocated on the stack by the driver. The sleeprec must already have been initialized using
osenv_sleep_init. If the event of interest occurs after the osenv_sleep_init but before the
osenv_sleep, then osenv_sleep will return immediately without blocking.

PARAMETERS

sleeprec: A pointer to the process-private sleep record, already allocated by the driver and
initialized using osenv_sleep_init.

6.16. SLEEP/WAKEUP 117

RETURNS

Returns the wakeup status value provided to osenv_wakeup.

6.16.3 osenv_wakeup: wake up a sleeping process
SYNOPSIS

#include <oskit/dev/dev.h>
void osenv_wakeup(osenv_sleeprec_t *sleeprec, int wakeup_status);

DIRECTION

Component — OS, Nonblocking

DESCRIPTION

The driver calls this function to wake up a process-level activity that has gone to sleep (or is
preparing to go to sleep) waiting on some event. The value of wakeup_status is subsequently
returned to the caller of osenv_sleep, making it possible to indicate various wakeup conditions
(such as abnormal termination). It is harmless to wake up a process that has already been woken.

PARAMETERS
sleeprec: A pointer to the sleep record of the process to wake up. Must actually point to a valid
sleep record variable that has been properly initialized using osenv_sleep_init.

wakeup_status: The status to be returned from osenv_sleep. OSKIT_WAKEUP indicates nor-
mal wakeup, while other status values indicate other conditions.

118 CHAPTER 6. OSKIT DEVICE DRIVER (OS ENVIRONMENT) FRAMEWORK

6.17 Driver-Kernel Interface: Timing

The device support code relies on the OS to provide timers to control events. Unfortunately, timers are in a
state of flux, and there are currently too many ways to do almost the same thing. We will be cleaning this

up.

Meanwhile... the interface provided by the host OS is currently at the osenv_timer layer. However, we
plan on moving the abstraction layer down to a simple “PIT” interface. (The existing osenv_timer_pit code
is similar to the planned interface).

When we move to an osenv_pit interface, the driver glue code will use an intermediate timer ‘device driver’
which will provide the higher-level functionality currently in the osenv_timer interface. The motivation for
this is to make the OS-provided interface as simple as possible and to build extra functionality on top.

dev/clock.c is an example device driver built on the osenv_timer interface. It could be implemented on
top of an osenv_pit interface as easily as on the osenv_timer interface.

The current implementation of the default osenv_timer code is based on the osenv_timer_pit interface.
osenv_timer_pit is not currently defined as part of the osenv API, but merely exists for implementation
convenience. However, over-riding the osenv_timer_pit implementation is probably the easiest way to provide
a different implementation of the osenv_timer interface.

The default osenv_timer implementation also provides an osenv_timer_shutdown hook for use by the host
operating system. osenv_timer_shutdown disables the osenv_timer.

6.17.1 osenv_timer_init: Initialize the timer support code
SYNOPSIS

void osenv_timer _init(void);

DIRECTION

Component — OS, Nonblocking

DESCRIPTION

XXX: Belongs in libdev.a section

Intiializes the timer code.

6.17.2 osenv_timer_register: Request a timer handler be called at the specified
frequency

SYNOPSIS

void osenv_timer_register(void (*func)(void), int freq);

DIRECTION

Component — OS, Nonblocking

DESCRIPTION

Requests that the function func gets called freq times per second.

XXX: Default implementation currently only works for freq equal to 100.

PARAMETERS

func: Address of function to be called.

freq: Times per second to call the handler.

6.17. DRIVER-KERNEL INTERFACE: TIMING 119

6.17.3 osenv_timer_unregister: Request a timer handler not be called
SYNOPSIS

void osenv_timer_unregister(void (*func)(void), int freq);

DIRECTION

Component — OS, Nonblocking

DESCRIPTION
The function pointer and frequency must be identically equal to parameters on a previous os-
env_timer_register call.

PARAMETERS

func: Address of function to be called.

freq: Times per second the handler was called.

6.17.4 osenv_timer_spin: Wait for a specified amount of time without blocking.
SYNOPSIS

void osenv_timer_spin(long nanosec);

DIRECTION

Component — OS, Nonblocking

DESCRIPTION
This allows a driver component to block for a specified amount of time (usually for hardware to
catch up) without blocking. Unlike with osenv_sleep, this cannot give up the process-level lock.
PARAMETERS

nanosec: Time to spin, in nanoseconds.

120 CHAPTER 6. OSKIT DEVICE DRIVER (OS ENVIRONMENT) FRAMEWORK

6.18 Misc

All output goes throught the osenv_vlog interface.

The following log priorities are defined. From highest priority to lowest, they are: OSENV_LOG_EMERG,
OSENV_LOG_ALERT, OSENV_LOG_CRIT, OSENV_LOG_ERR, OSENV_LOG_WARNING, OSENV_LOGNOTICE, OSENV_LOG_INFO,
and 0SENV_LOG DEBUG which correspond the the log priorities used by both BSD and Linux.

6.18.1 osenv_vlog: OS environment’s output routine
SYNOPSIS

void osenv_vlog(int priority, const char *fmt, va_list args);

DIRECTION

Component — OS, Nonblocking

DESCRIPTION

This is the output interface to the device driver framework. All output must go through this
interface, so the OS may decide what to do with it.

Normal printf-type calls should get converted to the OSENV_LOG_INFO priority.

PARAMETERS
priority:
fmt: printf-style message format

args: Any parameters required by the output format

6.18.2 osenv_log: OS environment’s output routine
SYNOPSIS

void osenv_log(int priority, const char xfmt, ...);

DIRECTION

Component — OS, Nonblocking

DESCRIPTION

Front-end to osenv_vlog

PARAMETERS

priority: Priority of the message.
fmt: printf-style message format

Any parameters required by the output format

6.18.3 osenv_vpanic: Abort driver set operation
SYNOPSIS

void osenv_vpanic(const char *fmt, va_list args);

6.18. MISC 121

DIRECTION

Component — OS, Nonblocking

DESCRIPTION

This function should only be called if the device driver framework can no longer continue and
cannot exit gracefully.

The driver’s ‘native’ panic calls will get resolved to this function call.

This should be provided by the OS to provide a graceful way of dealing with a situation that
prevents the drivers from continuing.
PARAMETERS

fmt: printf-style message format

args: Any parameters required by the output format

6.18.4 osenv_panic: Abort driver set operation
SYNOPSIS

void osenv_panic(const char xfmt, ...);

DIRECTION

Component — OS, Nonblocking

DESCRIPTION

Front-end to osenv_vpanic

PARAMETERS

fmt: printf-style message format

Any parameters required by the output format

122 CHAPTER 6. OSKIT DEVICE DRIVER (OS ENVIRONMENT) FRAMEWORK

6.19 Device Registration

Nothing here yet, sorry. See Section 12.2 for a tiny bit more information on our current default implemen-
tation of device registration. More information can be gained from the extensively commented header files in
the directory <oskit/dev>, starting with file device.h.

6.20. BLOCK STORAGE DEVICE INTERFACES 123

6.20 Block Storage Device Interfaces

This section is incomplete. Block device interfaces now provide an open method which returns a per-open
blkio object through which block reads and writes are done. See Section 5.3. In the absence of other
documentation, the example programs will be helpful.

XXX describe oskit_blkdev, blksize, etc.

124 CHAPTER 6. OSKIT DEVICE DRIVER (OS ENVIRONMENT) FRAMEWORK

6.21 Serial Device Interfaces

XXX: This section is in severe need of an update.
Character device support is provided in the OSKit using device drivers from FreeBSD.

6.22. DRIVER-KERNEL INTERFACE: ISA DEVICE REGISTRATION 125

6.22 Driver-Kernel Interface: ISA device registration

6.22.1 osenv_isabus_addchild: add a device node to an ISA bus

XXX: new device tree management

The address parameter is used to uniquely identify the device on the ISA bus. For example, if there are
two identical NE2000 cards plugged into the machine, the address will be be the only way the host OS can
distinguish them, because all of the other parameters of the device will be identical. If address is in the
range 0-0xffff (0-65535), it is interpreted as a port number in I/O space; otherwise, it is interpreted as a
physical memory address. For devices that use any I/O ports for communication with software, the base
of the “primary” range of I/O ports used by the device should be used as the address; a physical memory
address should be used only for devices that only communicate through memory-mapped 1/0.

6.22.2 osenv_isabus_remchild: remove a device node from an ISA bus

126 CHAPTER 6. OSKIT DEVICE DRIVER (OS ENVIRONMENT) FRAMEWORK

Chapter 7

OSKit File System Framework

7.1 Introduction

The OSKit file system framework has parallel goals to the OSKit device driver framework; the framework
provides a file system interface specification designed to allow existing filesystem implementations to be
borrowed from well-established operating systems in source form and used mostly unchanged to provide
file system support in new operating systems. The framework is also designed to allow file systems to be
implemented in diverse ways and then composed together.

The OSKit file system framework encompasses a collection of COM interfaces used by the client operating
system to invoke the file system libraries, and a collection of interfaces used by the file system libraries
to request services from the client operating system. The individual file system libraries supply additional
interfaces to the client operating system for initialization, and may supply additional interfaces for supporting
extended features unique to particular file system implementations.

The OSKit File, Directory and Open File COM interfaces inherit from several general COM interfaces,
such as Stream, Absolute I0 and POSIX IO. The inheritance relationships among these COM interfaces are
shown in Figure 7.1. Refer to Section 4 for more details on COM interfaces.

[Uknown
T T
POSIX 10 Absolute 10 Stream
File <~~~ *OpenFiIe
l
Directory

Figure 7.1: Interface hierarchy. Solid lines indicate that the child interface directly inherits the methods of the parent
interface. Dashed lines indicate that the child interface may optionally support the parent interface; this may be determined
by querying the object.

127

128 CHAPTER 7. OSKIT FILE SYSTEM FRAMEWORK

7.2 oskit principal: Principal Interface

The oskit_principal COM interface defines an interface for obtaining identity information about a principal
(aka subject or client). The filesystem libraries obtain an oskit_principal object for the current client by
invoking oskit_get_call_context on oskit_principal_iid.

The oskit_principal COM interface inherits from IUnknown, and has one additional method:

getid: Obtain identity attributes of principal.

7.2.1 getid: Get the identity attributes of this principal
SYNOPSIS

#include <oskit/principal.h>
oskit_error_t oskit_principal _getid(oskit principal t *p, [out] oskit_identity_t *out_id);

DIRECTION

filesystem library — client OS

DESCRIPTION

This method returns the identity attributes of this principal. out_id is a pointer to an oskit_identity-t
structure defined as follows:

struct oskit_identity {

oskituid t wuid; /* effective user id */
oskit gid t gid; /* effective group id */
oskit.ud2.t ngroups; /* number of groups */

oskit.ud2.t *groups; /* supplemental groups */
b
PARAMETERS

p: The principal whose identity is desired.
out_id: The identity attributes of this principal.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

7.3. OSKIT_FILESYSTEM: FILE SYSTEM INTERFACE 129

7.3 oskit filesystem: File System Interface

The oskit_filesystem COM interface defines an interface for operating on a filesystem, which is a logical
collection of files and a tree-structured namespace with a single root. The filesystem itself exists independent
of any given namespace, for there is no notion of mounts in this interface. That functionality must be
implemented at a higher level.

The oskit_filesystem COM interface inherits from IUnknown, and has the following additional methods:

statfs: Get attributes of this filesystem

sync: Write this filesystem’s data to permanent storage
getroot: Get this filesystem’s root directory

remount: Update this filesystem’s mount flags
unmount: Forcibly unmount this filesystem

lookupi: Lookup a file by inode number

7.3.1 statfs: Get attributes of this filesystem
SYNOPSIS

#include <oskit/fs/filesystem.h>
oskit_error_t oskit_filesystem statfs(oskit filesystem t f, [out] oskit_statfs_t *xout_stats);

DIRECTION

client OS — filesystem library

DESCRIPTION

This method returns the attributes of this filesystem. out_statsis a pointer to an oskit_statfs_t
structure defined as follows:

struct oskit_statfs {

oskit u32_t bsize; /* file system block size */
oskitud2t frsize; /* fundamental file system block size */
oskitu32t blocks; /* total blocks in fs in units of frsize */
oskitu32_t Dbfree; /* free blocks in fs */
oskitu32_t bavail; /* free blocks avail to non-superuser */
oskitu32t files; /* total file nodes in file system */
oskitu32.t ffree; /* free file nodes in fs */
oskitu32t favail; /* free file nodes avail to non-superuser */
oskitu32t fsid; /* file system id */
oskitu32t flag; /* mount flags */
oskit.u32_t namemax; /* max bytes in a file name */
};
PARAMETERS

f: The filesystem whose attributes are desired.
out_stats: The attributes of the specified filesystem.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

130 CHAPTER 7. OSKIT FILE SYSTEM FRAMEWORK

7.3.2 sync: Synchronize in-core filesystem data with permanent storage
SYNOPSIS

#include <oskit/fs/filesystem.h>
oskit_error_t oskit_filesystem_sync(oskit_filesystem_t *f, oskit_bool_t wait);

DIRECTION

client OS — filesystem library

DESCRIPTION
This method writes all of this filesystem’s data back to permanent storage. If wait is TRUE, then
the call does not return until all pending data has been completely written.

PARAMETERS

f: The filesystem to sync.
wait: TRUE if the call should wait for completion.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

7.3.3 getroot: Return a reference to the root directory of this filesystem
SYNOPSIS

#include <oskit/fs/filesystem.h>
oskit_error_t oskit_filesystem_getroot(oskit_filesystem t *f, [out] oskit_dir_t s*out_dir);

DIRECTION

client OS — filesystem library

DESCRIPTION
This method returns a reference to the root directory of this filesystem. out_dir is a pointer to
the oskit_dir COM interface for the root directory.

PARAMETERS

f: The filesystem whose root directory is desired.

out_dir: The oskit_dir COM interface for the root directory.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

7.3.4 remount: Update the mount flags of this filesystem
SYNOPSIS

#include <oskit/fs/filesystem.h>
oskit_error_t oskit_filesystem_remount(oskit filesystem t *f, oskit_u32_t flags);

7.3. OSKIT_FILESYSTEM: FILE SYSTEM INTERFACE

DIRECTION

client OS — filesystem library

DESCRIPTION
This method changes the mount flags associated with this filesystem. For example, this method
might be used to change a filesystem from read-only to read-write, or vice versa.

PARAMETERS

f: The filesystem whose flags are to be changed.

flags: The new mount flags value.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

7.3.5 unmount: Forcibly unmount this filesystem
SYNOPSIS

#include <oskit/fs/filesystem.h>
oskit_error_t oskit_filesystem _unmount(oskit filesystem t *f);

DIRECTION

client OS — filesystem library

DESCRIPTION

This method forcibly unmounts this filesystem. Ordinarily, a filesystem is unmounted when the
last reference to it is released; in contrast, this method forces an unmount regardless of external
references to the filesystem, and is consequently unsafe. Subsequent attempts to use references
to the filesystem or to use references to files within the filesystem may yield undefined results.

PARAMETERS

f: The filesystem to be forcibly unmounted.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

7.3.6 lookupi: Lookup a file by inode number
SYNOPSIS

#include <oskit/fs/filesystem.h>

oskit_error_t oskit_filesystem lookupi(oskit filesystem t xf, oskit_ino_t ino, [out]
oskit_file_t **xout_file);

DIRECTION

client OS — filesystem library

131

132 CHAPTER 7. OSKIT FILE SYSTEM FRAMEWORK

DESCRIPTION

This method looks up a file given its inode number. If the inode number is invalid, the behavior
is undefined.

PARAMETERS

f: The filesystem to find the inode in.
ino: The inode number of the file to find.
out_file: Upon success, will point to a oskit_file_t for the file.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

7.4. OSKITFILE: FILE INTERFACE 133

7.4 oskit file: File Interface

The oskit_file COM interface defines an interface for operating on a file. The interface does not imply
any per-open state; per-open methods are defined by the oskit_openfile COM interface.

The oskit_file COM interface inherits from the oskit_posixio COM interface, and has the following
additional methods:

sync: Write this file’s data and metadata to permanent storage.
datasync: Write this file’s data to permanent storage.
access: Check accessibility of this file.
readlink: Read the contents of this symbolic link.
open: Create an open instance of this file.
getfs: Get the filesystem in which this file resides.
Additionally, an oskit_file object may export a oskit_absio COM interface; this may be determined
by querying the object.
7.4.1 sync: Write this file’s data and metadata to permanent storage
SYNOPSIS

#include <oskit/fs/file.h>
oskit_error_t oskit_file_sync(oskit_file_t *f, oskit_bool_t wait);

DIRECTION

client OS — filesystem library

DESCRIPTION
This method synchronizes the in-core copy of this file’s data and metadata with the on-disk copy.
If wait is TRUE, then the call does not return until all pending data has been completely written.
PARAMETERS

f: The file to sync.
wait: TRUE if the call should wait for completion.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

7.4.2 datasync: Write this file’s data to permanent storage
SYNOPSIS

#include <oskit/fs/file.h>
oskit_error_t oskit_file_datasync(oskit_file t xf, oskit_bool_t wait);

DIRECTION

client OS — filesystem library

134 CHAPTER 7. OSKIT FILE SYSTEM FRAMEWORK

DESCRIPTION

This method synchronizes the in-core copy of this file’s data with the on-disk copy. The file
metadata need not be sychronized by this method. If wait is TRUE, then the call does not return
until all pending data has been completely written.

PARAMETERS

f: The file to sync.
wait: TRUE if the call should wait for completion.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

7.4.3 access: Check accessibility of this file
SYNOPSIS

#include <oskit/fs/file.h>
oskit_error_t oskit_file_access(oskit_file t *f, oskit_amode_t mask);

DIRECTION

client OS — filesystem library

DESCRIPTION

This method checks whether the form of access specified by mask would be granted. mask may be
any combination of 0SKITR_OK (read access), 0SKIT_W_OK (write access), or 0SKIT_X_0K (execute
access). If the access would not be granted, then this method will return the error that would be
returned if the actual access were attempted.

PARAMETERS

f: The file whose accessibility is to be checked.

mask: The access mask.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

7.4.4 readlink: Read the contents of this symbolic link
SYNOPSIS

#include <oskit/fs/dir.h>

oskit_error_t oskit_file_readlink(oskit_file_t *f, char xbuf, oskit_u32_t len, [out] oskit_u32_t
*out_actual);

DIRECTION

client OS — filesystem library

7.4. OSKITFILE: FILE INTERFACE 135

DESCRIPTION

If this file is a symbolic link, then this method reads the contents of the symbolic link into buf.
No more than len bytes will be read. out_actual will be set to the actual number of bytes read.

PARAMETERS

f: The symbolic link file.
buf: The buffer into which the contents are to be copied.
len: The maximum number of bytes to read.

out_actual: The actual bytes read from the symlink.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

If the file is not a symbolic link, then 0SKIT_E_NOTIMPL is returned.

7.4.5 open: Create an open instance of this file
SYNOPSIS

#include <oskit/fs/file.h>
#include <oskit/fs/openfile.h>

oskit_error_t oskit_file_open(oskit_file_t xf oskit_oflags_t flags, [out] oskit_openfile_t
**out_openfile);

DIRECTION

client OS — filesystem library

DESCRIPTION

This method returns an oskit_openfile COM interface for an open instance of this file. flags
specifies the file open flags, as defined in <oskit/fs/file.h>. If 0SKIT_0_TRUNC is specified, then
the file will be truncated to zero length.

This method may only be used on regular files and directories. Directories may not be opened
with OSKIT_O_WRONLY, OSKIT_O_RDWR or OSKIT_O_TRUNC.

This method may return success but set *out_openfile to NULL, indicating that the requested
operation is allowed but the filesystem does not support per-open state; the client operating
system must provide this functionality.

PARAMETERS

f: The file to open.
flags: The open flags.
out_openfile: The oskit_openfile COM interface.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

136 CHAPTER 7. OSKIT FILE SYSTEM FRAMEWORK

7.4.6 getfs: Get the filesystem in which this file resides
SYNOPSIS

#include <oskit/fs/file.h>
oskit_error_t oskit_file_getfs(oskit file t *f, [out] oskit filesystem t **outfs);

DIRECTION

client OS — filesystem library

DESCRIPTION

Returns the oskit_filesystem COM interface for the filesystem in which this file resides.

PARAMETERS

f: The file whose filesystem is desired.
out_fs: The filesystem in which the file resides.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

7.5. OSKITDIR: DIRECTORY INTERFACE 137

7.5 oskit_dir: Directory Interface

The oskit_dir COM interface defines an interface for operating on a directory. The interface does not imply
any per-open state; per-open methods are defined by the oskit_openfile COM interface.

The oskit_dir COM interface inherits from the oskit_file COM interface, and has the following
additional methods:

lookup: Lookup a file in this directory.

create: Create a regular file in this directory.
link: Link a file into this directory.

unlink: Unlink a file from this directory.
rename: Rename a file from this directory.
mkdir: Create a directory in this directory.
rmdir: Remove a directory from this directory.
getdirentries: Read entries from this directory.
mknod: Create a special file in this directory.
symlink: Create a symlink in this directory.
reparent: Create a virtual directory from this directory.

Additionally, an oskit_dir object may export a oskit_absio COM interface; this may be determined
by querying the object.

All name parameters to directory methods must be a single component, ie an entry in one of the specified
directories. With the exception of rename, name parameters always refer to entries in the target directory
itself.

7.5.1 lookup: Look up a file in this directory
SYNOPSIS

#include <oskit/fs/dir.h>
oskit_error_t oskit_dir_lookup(oskit_dir_t *d, const char *name, [out] oskit_file_t

*xout_file);
DIRECTION

client OS — filesystem library

DESCRIPTION

This method returns the oskit_file COM interface for the file named by name in this directory.
The name may only be a single component; multi-component lookups are not supported. If the
file is a symbolic link, then out_file will reference the symbolic link itself.

PARAMETERS

d: The directory to search.
name: The name of the file.

out_file: The oskit_file COM interface for the file.

138 CHAPTER 7. OSKIT FILE SYSTEM FRAMEWORK

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

7.5.2 create: Create a regular file in this directory
SYNOPSIS

#include <oskit/fs/dir.h>

oskit_error_t oskit_dir_create(oskit_dir_t xd, const char *name, oskit_bool_t excl,
oskit mode_t mode, [out] oskit_file_t **out_file);

DIRECTION

client OS — filesystem library

DESCRIPTION

This method is the same as oskit_dir_lookup, except that if the file does not exist, then a
regular file will be created with the specified name and mode.

If a file with name already exists, and excl is TRUE, then 0SKIT_EEXIST will be returned.

The name may only be a single component; multi-component lookups are not supported.

PARAMETERS

d: The directory to search.

name: The name of the file.

excl: TRUE if an error should be returned if the file exists
mode: The file mode to use if creating a new file.
out_file: The oskit_file COM interface for the file.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

7.5.3 1link: Link a file into this directory
SYNOPSIS

#include <oskit/fs/dir.h>
oskit_error_t oskit_dir_link(oskit_dir_t *d, const char *name, oskit_file_t xfile);

DIRECTION

client OS — filesystem library

DESCRIPTION

This method adds an entry for file into this directory, using name for the new directory entry.
Typically, this is only supported if file resides in the same filesystem as d.

file may not be a symbolic link.

The name may only be a single component; multi-component lookups are not supported.

7.5. OSKITDIR: DIRECTORY INTERFACE

PARAMETERS

d: The directory to search.
name: The name for the new link.

file: The file to be linked.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

7.5.4 unlink: Unlink a file from this directory
SYNOPSIS

#include <oskit/fs/dir.h>

oskit_error_t oskit_dir_unlink(oskit dir t *d, const char *name);

DIRECTION

client OS — filesystem library

DESCRIPTION

This method removes the directory entry for name from d.

The name may only be a single component; multi-component lookups are not supported.

PARAMETERS

d: The directory to search.

name: The name of the file to be unlinked.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

7.5.5 rename: Rename a file from this directory
SYNOPSIS

#include <oskit/fs/dir.h>

oskit_error_t oskit_dir_rename(oskit_dir_t *old_dir, const char *old_name, oskit_dir_t

*new_dir, const char *new_name);

DIRECTION

client OS — filesystem library

139

140 CHAPTER 7. OSKIT FILE SYSTEM FRAMEWORK

DESCRIPTION

This method atomically links the file named by o1d_name in o1d_dir into new_dir, using new_name
for the new directory entry, and unlinks o1d_name from old_dir.

If a file named new_name already exists in new_dir, then it is first removed. In this case, the source
and target files must either both be directories or both be non-directories, and if the target file
is a directory, it must be empty.

Typically, this is only supported if new_dir resides in the same filesystem as old_dir.

The 01d name and new_name may each only be a single component; multi-component lookups are
not, supported.
PARAMETERS

old_dir: This directory.
old_-name: The name of the file to be renamed.
new_dir: The target directory.

new-name: The name for the new directory entry.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

7.5.6 mkdir: Create a subdirectory in this directory
SYNOPSIS

#include <oskit/fs/dir.h>
oskit_error_t oskit_dir_mkdir(oskit_dir_t *d, const char *name, oskit mode_t mode);

DIRECTION

client OS — filesystem library

DESCRIPTION

This method creates a new subdirectory in this directory, with the specified name and mode.

The name may only be a single component; multi-component lookups are not supported.

PARAMETERS

dir: The directory in which to create the subdirectory.
name: The name of the new subdirectory.
mode: The mode for the new subdirectory.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

7.5.7 rmdir: Remove a subdirectory from this directory
SYNOPSIS

#include <oskit/fs/dir.h>
oskit_error_t oskit_dir_rmdir(oskit_dir_t *d, const char *name);

7.5. OSKITDIR: DIRECTORY INTERFACE 141

DIRECTION

client OS — filesystem library

DESCRIPTION

This method removes the subdirectory named name from this directory. Typically, this is only
supported if the subdirectory is empty.

The name may only be a single component; multi-component lookups are not supported.

PARAMETERS

dir: The directory in which the subdirectory resides.

name: The name of the subdirectory.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

7.5.8 getdirentries: Read one or more entries from this directory
SYNOPSIS

#include <oskit/fs/dir.h>

oskit_error_t oskit_dir_getdirentries(oskit_dir_t *d, oskit_u32_t *xinout_ofs, oskit_u32_t
nentries, [out] oskit_dirents_t *out_dirents);

DIRECTION

client OS — filesystem library

DESCRIPTION

This method reads one or more entries from this directory. On entry, inout_ofs contains the
offset of the first entry to be read. Before returning, this method updates the value at inout_ofs
to contain the offset of the next entry after the last entry returned in out_dirents. The returned
value of inout_ofs is opaque; it should only be used in subsequent calls to this method.

This method will return at least nentries entries if there are at least that many entries remaining
in the directory; however, this method may return more entries.

The client operating system must free the contents of out_dirents when they are no longer
needed.

out_dirents is a pointer to an oskit_dirents_t structure defined as follows:

struct oskit_dirent {
char *name; /* entry name */
oskit_inot ino; /* entry inode */
b
struct oskit_dirents {
struct oskit_dirent *dirents; /* array of entries */
oskit u32_t count; /* number of entries */

b

142 CHAPTER 7. OSKIT FILE SYSTEM FRAMEWORK

PARAMETERS

d: The directory to read.

inout_ofs: On entry, the offset of the first entry to read. On exit, the offset of the next entry to
read.

nentries: The minimum desired number of entries.

out_dirents: The directory entries.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

7.5.9 mknod: Create a special file node in this directory
SYNOPSIS

#include <oskit/fs/dir.h>

oskit_error_t oskit_dir_mknod(oskit_dir_t *d, const char *name, oskit_mode_t mode,
oskit_dev_t dev);
DIRECTION

client OS — filesystem library

DESCRIPTION

This method creates a device special file in this directory, with the specified name and file mode,
and with the specified device number dev. The device number is opaque to the filesystem library.

The name may only be a single component; multi-component lookups are not supported.

PARAMETERS

d: The directory in which to create the node
name: The name of the new node.
mode: The mode for the new node.

dev: The device number for the new node.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

7.5.10 symlink: Create a symbolic link in this directory
SYNOPSIS

#include <oskit/fs/dir.h>

oskit_error_t oskit_dir_symlink(oskit dir_ t *d, const char *link_name, char *dest_name);

DIRECTION

client OS — filesystem library

7.5. OSKITDIR: DIRECTORY INTERFACE

DESCRIPTION

This method creates a symbolic link in this directory, named 1ink name, with contents dest_name.

The link name may only be a single component; multi-component lookups are not supported.

PARAMETERS

d: The directory in which to create the symlink.
link_name: The name of the new symlink.

dest_name: The contents of the new symlink.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

7.5.11 reparent: Create a virtual directory from this directory
SYNOPSIS

#include <oskit/fs/dir.h>

oskit_error_t oskit_dir_reparent(oskit_dir_t *d, oskit_dir_t *parent, [out] oskit_dir_t
**out_dir);

DIRECTION

client OS — filesystem library

DESCRIPTION

This method creates a virtual directory out_dir which refers to the same underlying directory
as d, but whose logical parent directory is parent. If parent is NULL, then the logical parent
directory of out_dir will be itself.

b

Lookups of the parent directory entry (’..”) in the virtual directory will return a reference to the
logical parent directory.

This method may be used to provide equivalent functionality to the Unix chroot operation.

PARAMETERS

d: The directory
parent: The logical parent directory

out_dir: The oskit_dir COM interface for the virtual directory

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

143

144 CHAPTER 7. OSKIT FILE SYSTEM FRAMEWORK

7.6 oskit openfile: Open File Interface

The oskit_openfile COM interface defines an interface for operating on an open instance of a file.
The oskit_openfile COM interface inherits from the oskit_stream COM interface, and has the follow-
ing additional method:

getfile: Get the underlying file object to which this open file refers.

Additionally, an oskit_openfile object may export a oskit_absio COM interface; this may be deter-
mined by querying the object.

7.6.1 getfile: Get the underlying file object to which this open file refers
SYNOPSIS

#include <oskit/fs/openfile.h>
oskit_error_t oskit_openfile_getfile(oskit_openfile_t *f, [out] oskit_file_t **out_file);

DIRECTION

client OS — filesystem library

DESCRIPTION
This method returns the oskit_file COM interface for the underlying file object to which this
open file refers.

PARAMETERS

f: The open file whose underlying file is desired.
out_file: The oskit_file COM interface for the underlying file.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

7.7. DEPENDENCIES ON THE CLIENT OPERATING SYSTEM 145

7.7 Dependencies on the Client Operating System

This section describes the interfaces which must be provided by the client operating system to the filesystem
library.
These interfaces consist of:

oskit_get_call_context: Obtain information about client context.
fs_delay: Wait for a period of time to elapse.
fs_vprintf: Generate formatted output to stdout.
fs_vsprintf: Generate formatted output to a string.
fs_panic: Perform any cleanup and exit.

fs_gettime: Obtain the current time.

fs_tsleep: Wait for a wakeup on a channel or a timeout.
fs_wakeup: Awaken any threads waiting on a channel.
fsmalloc: Allocate memory.

fs_realloc: Resize a chunk of allocated memory.
fs_free: Free memory.

Default implementations of the fs_x functions are provided in 1liboskit_fs.

7.7.1 oskit_get_call_context: Get the caller’s context
SYNOPSIS

#include <oskit/com.h>
oskit_error_t oskit_get_call_context(oskit_guid_t *iid, [out] void **out_if);

DIRECTION

filesystem library — client OS

DESCRIPTION

This function returns the requested COM interface for the current caller.

Typically, this is used to obtain the oskit_principal object for the current client of the filesystem
library.
PARAMETERS

#td: The desired COM interface identifier.
out_if: The COM interface.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

146 CHAPTER 7. OSKIT FILE SYSTEM FRAMEWORK

7.7.2 fs_delay: Wait for a period of time to elapse
SYNOPSIS

#include <oskit/fs/fs.h>
void fs_delay(oskit_u32_t n);

DIRECTION

filesystem library — client OS

DESCRIPTION

Wait for n microseconds to elapse.

PARAMETERS

n: The number of microseconds to delay.

7.7.3 fs_vprintf: Generate formatted output to stdout
SYNOPSIS

#include <oskit/fs/fs.h>
void fs_vprintf(char xfmt, _oskit va list ap);

DIRECTION

filesystem library — client OS

DESCRIPTION

This function generates formatted output to stdout. The client operating system defines what
is meant by stdout; the output may be displayed on the console, directed to a log, returned to
the current client, etc.

PARAMETERS

fmt: The format for the output.
ap: The list of arguments for the output.

7.7.4 fs vsprintf: Generate formatted output to a string
SYNOPSIS

#include <oskit/fs/fs.h>
void fs_vsprintf(char *s, char *fmt, _oskit_va_list ap);

DIRECTION

filesystem library — client OS

DESCRIPTION

This function generates formatted output to a string.

7.7. DEPENDENCIES ON THE CLIENT OPERATING SYSTEM

PARAMETERS

s: The string into which to copy the output.
fmt: The format for the output.
ap: The list of arguments for the output.

7.7.5 fs_panic: Cleanup and exit
SYNOPSIS

#include <oskit/fs/fs.h>
void fs_panic(void);

DIRECTION

filesystem library — client OS

DESCRIPTION

This function cleans up and exits. If this function returns rather than exiting, the filesystem

library may be very unhappy.

7.7.6 fs_gettime: Get the current time
SYNOPSIS

#include <oskit/fs/fs.h>

oskit_error_t fs_gettime([out] oskit_timespec_t *out_tsp);

DIRECTION

filesystem library — client OS

DESCRIPTION

This function returns the current time. out_tsp is a pointer to an oskit_timespec_t structure,

defined as follows:

struct oskit_timespec {
oskit_timet tv._sec; /* seconds */
oskit_s32t tv.nsec; /* and nanoseconds */

h

PARAMETERS

out_tsp: The current time.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

147

148 CHAPTER 7. OSKIT FILE SYSTEM FRAMEWORK

7.7.7 fs_tsleep: Wait for a wakeup on a channel or for a timeout
SYNOPSIS

#include <oskit/fs/fs.h>

oskit_error_t fS_tsleep(void *chan, oskit_u32_t pri, char *wmesg, oskit_ u32_t timo);

DIRECTION

filesystem library — client OS

DESCRIPTION

This function waits for a wakeup to occur on sleep channel chan or until timo microseconds have
elapsed. Upon waking up, the thread is assigned priority pri. If timo is zero, then this function
waits until a wakeup occurs.

A sleep channel is simply an identifier for an event; typically, chan will be the address of some
variable used by the filesystem library.

PARAMETERS

chan: The sleep channel.
pri: The priority upon wakeup.
wmesg: A description of the sleep state.

timo: The timeout for the sleep.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

7.7.8 fs_wakeup: Wakeup any threads waiting on this channel
SYNOPSIS

#include <oskit/fs/fs.h>
void fs_wakeup(void *chan);

DIRECTION

filesystem library — client OS

DESCRIPTION

This function awakens any threads waiting on this sleep channel.

A sleep channel is simply an identifier for an event; typically, chan will be the address of some
variable used by the filesystem library.

PARAMETERS

chan: The sleep channel.

7.7. DEPENDENCIES ON THE CLIENT OPERATING SYSTEM 149

7.7.9 fsmalloc: Allocate memory from the heap
SYNOPSIS

#include <oskit/fs/fs.h>

void xfs_malloc(oskit u32_t size);

DIRECTION

filesystem library — client OS

DESCRIPTION

This function returns a pointer to a chunk of contiguous memory of at least size bytes. The
client operating system need not provide any alignment guarantees for the chunk of memory.

PARAMETERS

size: The desired number of bytes.

RETURNS

Returns a pointer to the chunk of memory, or NULL on error.

7.7.10 fs_realloc: Resize a chunk of allocated memory
SYNOPSIS

#include <oskit/fs/fs.h>

void *fs_realloc(void *curaddr, oskit_u32_t newsize);

DIRECTION

filesystem library — client OS

DESCRIPTION

This function resizes the chunk of allocated memory referenced by curaddr to be at least newsize
bytes, and returns a pointer to the new chunk. If successful, the old chunk is freed.

The client operating system need not provide any alignment guarantees for the new chunk of
memory.

PARAMETERS

curaddr: The address of the old chunk.

newsize: The new size in bytes.

RETURNS

Returns a pointer to the new chunk of memory, or NULL on error.

150 CHAPTER 7. OSKIT FILE SYSTEM FRAMEWORK

7.7.11 fs_free: Free a chunk of allocated memory
SYNOPSIS

#include <oskit/fs/fs.h>
void fs_free(void xaddr);

DIRECTION

filesystem library — client OS

DESCRIPTION

This function frees a chunk of allocated memory referenced by addr. addr must be an address
returned previously by a call to fs_malloc or fs_realloc.

PARAMETERS

addr: The address of the chunk.

Chapter 8

OSKit Networking Framework

8.1 Introduction

The OSKit networking framework encompasses a collection of COM interfaces used by the client operating
system to invoke the networking libraries. The individual networking libraries supply additional interfaces to
the client operating system for initialization, and may supply additional interfaces for supporting extended
features unique to particular networking protocol implementations.

At this point, we have only one interface, the oskit_socket interface, defined. Additional interfaces for
configuration, routing, etc., are future work.

151

152 CHAPTER 8. OSKIT NETWORKING FRAMEWORK

8.2 oskit_socket: Socket Interface

The oskit_socket COM interface defines an interface which capture the semantics of a socket as defined in
the corresponding POSIX/CAE standards. The oskit_socket COM interface inherits from oskit_posixio.
It can be queried for an oskit_stream interface. This query will always be successful, but the resulting
oskit_stream instance might not support all methods. Generally, at least read and write will be supported.
The oskit_socket COM interface provides in addition to the oskit_posixio COM interface the following
methods:

accept: accept a connection on a socket
bind: bind a name to a socket
connect: initiate a connection on a socket
shutdown: shut down part of a full-duplex connection
listen: listen for connections on a socket
getsockname: get socket name
getpeername: get name of connected peer
getsockopt: get options on sockets
setsockopt: set options on sockets
sendto: send a message from a socket
recvfrom: receive a message from a socket
sendmsg: send a message from a socket
recvmsg: receive a message from a socket
Note that these methods are not minimal, but correspond very closely to the traditional BSD interfaces.

Note: the following paragraphs have a certain likelihood to change. The main reason for this is
the obviously undesirable connection between the way socket factories and the socket interface
interact. On a more positive note, everything right now is so close to the BSD interfaces that
the reader familiar with those shouldn’t have any problems understanding these.

8.2.1 oskit_socket_factory_t: socket factories
SYNOPSIS

#include <oskit/net/socket.h>

oskit_error_t oskit_socket_factory_create(oskit_socket_factory_t *factory, oskit_u32_t
domain, oskit_u32_t type, oskit_ud2_t protocol, [out] oskit_socket_t **newsocket);

DESCRIPTION

Socket instances are created by socket factories.

A socket factory is an instance of the oskit_socket factory COM interface. Implementa-
tions of this interface will be provided by the networking stack(s) included in the OSKit. This
interface implements a single method corresponding to the socket(2) call in addition to the
oskit_iunknown interface.

Each instance of socket has a type and a protocol associated with it. This type and protocol
is given to the socket by its factory, and cannot be changed during the lifetime of that socket
instance.

8.2. 0SKIT_SOCKET: SOCKET INTERFACE 153

PARAMETERS

factory: The socket factory used to create this socket.

domain: The domain parameter specifies a communications domain within which communica-

tion will take place; this selects the protocol family which should be used. Some common
formats are

OSKIT_PF_LOCAL Host-internal protocols

OSKIT_PF_INET DARPA Internet protocols

0SKIT_PF_ISO ISO protocols

OSKIT PF_CCITT ITU-T protocols, like X.25

OSKIT_PF_NS Xerox Network Systems protocols

OSKIT_PF_INET is the only format for which the OSKit currently contains an implementation.

type: The socket will have the indicated type, which specifies the semantics of communication.
Currently defined types are

OSKIT_SOCK_STREAM stream socket,
OSKIT_SOCK_DGRAM datagram socket
OSKIT_SOCK_RAW raw-protocol interface
OSKIT_SOCK_RDM reliably-delivered message

OSKIT_SOCK_SEQPACKET sequenced packet stream

An OSKIT_SOCK_STREAM type provides sequenced, reliable, two-way connection based byte
streams. An out-of-band data transmission mechanism may be supported. An 0SKIT_SOCK_DGRAM
socket supports datagrams (connectionless, unreliable messages of a fixed (typically small)
maximum length). An 0SKIT_SOCK_SEQPACKET socket may provide a sequenced, reliable,
two-way connection-based data transmission path for datagrams of fixed maximum length.
OSKIT_SOCK_RAW sockets provide access to internal network protocols and interfaces.

protocol: The protocol specifies a particular protocol to be used with the socket. Normally only
a single protocol exists to support a particular socket type within a given protocol family.
However, it is possible that many protocols may exist, in which case a particular protocol
must be specified. The protocol number to use is particular to the communication domain
in which communication is to take place.

Protocols for the 0SKIT_PF_INET protocol family are defined in oskit/c/netinet/in.h.

newsocket: The new oskit_socket_t instance that was created.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

8.2.2 accept: accept a connection on a socket
SYNOPSIS

#include <oskit/net/socket.h>

oskit_error_t oskit_socket_accept(oskit_socket_t *s, [out] struct oskit_sockaddr *name,
[in/out] oskit_size_t *anamelen, [out] struct oskit_socket **newopenso);

DESCRIPTION

The accept method extracts the first connection request on the queue of pending connections,
creates a new socket with the same properties of s and returns it. The socket must have been
bound to an address with bind and it must be listening for connections after a listen.

If no pending connections are present on the queue, accept blocks the caller until a connection
is present.

154 CHAPTER 8. OSKIT NETWORKING FRAMEWORK

PARAMETERS
s: The socket from which connections are to accepted.

name: Filled with the address of the connecting entity as known to the communication layer.

anamelen: Initially, the amount of space pointed to by name, on return it will contain the
amount actually used.

newopenso: Newly created socket.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

8.2.3 Dbind: bind a name to a socket
SYNOPSIS

#include <oskit/net/socket.h>

oskit_error_t oskit_socket_bind(oskit_socket_t *s, const struct oskit_sockaddr *name,
oskit_size_t namelen);

DESCRIPTION

bind assigns a name to an unnamed socket. When a socket is created, it exists in a name space
(address family) but has no name assigned. bind requests that name be assigned to the socket.

PARAMETERS

s: The socket to which a name is to be bound.
name: The name to which the socket is to be bound.

namelen: The length of name in bytes.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

8.2.4 connect: initiate a connection on a socket
SYNOPSIS

#include <oskit/net/socket.h>

oskit_error_t oskit_socket_connect(oskit_socket_t *s, const struct oskit_sockaddr *name,
oskit_size_t namelen);

DESCRIPTION

If s is of type OSKIT_SOCK_DGRAM, this call specifies the peer with which the socket is to be
associated; this address is that to which datagrams are to be sent, and the only address from
which datagrams are to be received. If the socket is of type 0SKIT_SOCK_STREAM, this call attempts
to make a connection to another socket. The other socket is specified by name, which is an
address in the communications space of the socket. Each communications space interprets the
name parameter in its own way. Generally, stream sockets may successfully connect only once;
datagram sockets may use connect multiple times to change their association. Datagram sockets
may dissolve the association by connecting to an invalid address, such as a null address.

8.2. 0SKIT_SOCKET: SOCKET INTERFACE 155

PARAMETERS

s: The socket from which the connection is to be initiated.
name: The address of the entity to which the connection is to be established.

namelen: The length of name in bytes.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

8.2.5 shutdown: shut down part of a full-duplex connection
SYNOPSIS

#include <oskit/met/socket.h>
oskit_error_t oskit_socket_shutdown(oskit_socket_t *s, oskit_u32_t how);

DESCRIPTION

The shutdown call causes all or part of a full-duplex connection on the socket s to be shut down.

PARAMETERS
s: The socket which is to be shut down.

how: Specifies what is to be disallowed:

how = 0 receives
how = 1 sends
how = 2 sends and receives

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

8.2.6 listen: listen for connections on a socket
SYNOPSIS

#include <oskit/met/socket.h>
oskit_error_t oskit_socket _listen(oskit_socket_t s, oskit_u32_t backlog);

DESCRIPTION

A willingness to accept incoming connections and a queue limit for incoming connections are
specified with listen, and then the connections are accepted with accept. The listen call
applies only to sockets of type 0SKIT_SOCK_STREAM or 0SKIT_SOCK_SEQPACKET.

The backlog parameter defines the maximum length the queue of pending connections may grow
to. If a connection request arrives with the queue full the client may receive an error with
an indication of connection refused, or, if the underlying protocol supports retransmission, the
request may be ignored so that retries may succeed.

PARAMETERS

s: The socket where connections will be accepted.

backlog: Maximum number of pending connections.

156 CHAPTER 8. OSKIT NETWORKING FRAMEWORK

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

8.2.7 getsockname: get socket name
SYNOPSIS

#include <oskit/net/socket.h>

oskit_error_t oskit_socket_getsockname(oskit_socket_t *s, [out] struct oskit_sockaddr
*asa, [in/out] oskit_size_t *anamelen);

DESCRIPTION

getsockname returns the current name for the specified socket.

PARAMETERS

s: The socket whose name is to be determined.
name: Contains the name of the socket upon return.

anamelen: Initially, the amount of space pointed to by name, on return it will contain the
amount actually used, i.e., the actual size of the name.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

8.2.8 getpeername: get name of connected peer
SYNOPSIS

#include <oskit/net/socket.h>

oskit_error_t oskit_socket_getpeername(oskit_socket_t *s, [out] struct oskit_sockaddr
*asa, [in/out] oskit_size_t *anamelen);

DESCRIPTION

getpeername returns the name of the peer connected to socket s.

PARAMETERS

s: The socket connected to the peer whose name is to be returned.
name: Contains the peer’s name upon return.

anamelen: Initially, the amount of space pointed to by name, on return it will contain the
amount actually used. The name is truncated if the buffer provided is too small.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

8.2. 0SKIT_SOCKET: SOCKET INTERFACE 157

8.2.9 getsockopt, setsockopt: get and set options on sockets
SYNOPSIS

#include <oskit/net/socket.h>

oskit_error_t oskit_socket_getsockopt(oskit_socket_t *s, oskit u32_t level, oskit u32_t
name, [out] void *wal, [in/out] oskit_size_t *walsize);

oskit_error_t oskit_socket_setsockopt(oskit_socket_t *s, oskit u32_t level, oskit u32_t
name, const void *val, oskit_size_t valsize);

DESCRIPTION

getsockopt and setsockopt manipulate the options associated with a socket. Options may exist
at multiple protocol levels.

PARAMETERS

s: The socket whose options are to be queried or set.

level: 'When manipulating socket options the level at which the option resides and the name of
the option must be specified. To manipulate options at the socket level, level is specified
as OSKIT_SOL_SOCKET. To manipulate options at any other level the protocol number of the
appropriate protocol controlling the option is supplied. For example, to indicate that an
option is to be interpreted by the TCP protocol, level should be set to IPPROTO_TCP.

name: name and any specified options are passed uninterpreted to the appropriate protocol

module for interpretation. Definitions for socket level options are described below. Options
at other protocol levels vary in format and name.
Most socket-level options utilize an int parameter for val. For setsockopt, the param-
eter should be non-zero to enable a boolean option, or zero if the option is to be dis-
abled. OSKIT_SO_LINGER uses a struct oskit_linger parameter, which specifies the de-
sired state of the option and the linger interval (see below). 0SKIT_SO_SNDTIMEO and
OSKIT_SO_RCVTIMEOD use a struct timeval parameter, defined in <oskit/c/sys/time.h>
The following options are recognized at the socket level. Except as noted, each may be
examined with getsockopt and set with setsockopt.

OSKIT_SO_DEBUG enables recording of debugging information

OSKIT_SO_REUSEADDR enables local address reuse

OSKIT_SO_REUSEPORT enables duplicate address and port bindings

OSKIT_SO_KEEPALIVE enables keep connections alive

OSKIT_SO_DONTROUTE enables routing bypass for outgoing messages

OSKIT_SO_LINGER linger on close if data present

OSKIT_SO_BROADCAST enables permission to transmit broadcast messages

OSKIT_SO_OOBINLINE enables reception of out-of-band data in band

0SKIT_SO_SNDBUF set buffer size for output

0SKIT_SO_RCVBUF set, buffer size for input

OSKIT_SO_SNDLOWAT set minimum count for output

OSKIT_SO_RCVLOWAT set minimum count for input

0SKIT_SO_SNDTIMEO set timeout value for output

0SKIT_SO_RCVTIMEO set timeout value for input

0SKIT_SO_TYPE get the type of the socket (get only)

OSKIT_SO_ERROR get and clear error on the socket (get only)
OSKIT_SO_DEBUG enables debugging in the underlying protocol modules. 0SKIT_SO_REUSEADDR
indicates that the rules used in validating addresses supplied in bind should allow reuse of lo-
cal addresses. 0SKIT_SO_REUSEPORT allows completely duplicate bindings by multiple clients
if they all set 0SKIT_SO_REUSEPORT before binding the port. This option permits multiple
instances of a program to each receive UDP /IP multicast or broadcast datagrams destined

158 CHAPTER 8. OSKIT NETWORKING FRAMEWORK

for the bound port. 0SKIT_SO_KEEPALIVE enables the periodic transmission of messages on
a connected socket. Should the connected party fail to respond to these messages, the con-
nection is considered broken and clients using the socket are notified when attempting to
send data. OSKIT_SO_DONTROUTE indicates that outgoing messages should bypass the stan-
dard routing facilities. Instead, messages are directed to the appropriate network interface
according to the network portion of the destination address.

OSKIT_SO_LINGER controls the action taken when unsent messages are queued on a socket and
the socket is released. If the socket promises reliable delivery of data and 0SKIT_SO_LINGER
is set, the system will block on the last release attempt until it is able to transmit the
data or until it decides it is unable to deliver the information (a timeout period, termed the
linger interval, is specified in the setsockopt call when 0SKIT_SO_LINGER is requested. If
OSKIT_SO_LINGER is disabled, the last release will succeed immediately.

The option 0SKIT_SO_BROADCAST requests permission to send broadcast datagrams on the
socket. Broadcast was a privileged operation in earlier versions of the system. With pro-
tocols that support out-of-band data, the 0SKIT_SO_00BINLINE option requests that out-of-
band data be placed in the normal data input queue as received; it will then be accessible
with recv or read calls without the 0SKIT_MSG_00B flag. Some protocols always behave as
if this option were set.

OSKIT_SO_SNDBUF and OSKIT_SO_RCVBUF are options to adjust the normal buffer sizes al-
located for output and input buffers, respectively. The buffer size may be increased for
high-volume connections, or may be decreased to limit the possible backlog of incoming
data. An absolute limit may be places on these values.

OSKIT_SO_SNDLOWAT is an option to set the minimum count for output operations. Most
output operations process all of the data supplied by the call, delivering data to the protocol
for transmission and blocking as necessary for flow control. Nonblocking output operations
will process as much data as permitted subject to flow control without blocking, but will
process no data if flow control does not allow the smaller of the low water mark value or
the entire request to be processed.

The default value for 0SKIT_SO_SNDLOWAT is set to a convenient size for network efficiency,
often 1024.

OSKIT_SO_RCVLOWAT is an option to set the minimum count for input operations. In gen-
eral, receive calls will block until any (non-zero) amount of data is received, then return
with the smaller of the amount available or the amount requested. The default value for
OSKIT_SO_RCVLOWAT is 1. If OSKIT_SO_RCVLOWAT is set to a larger value, blocking receive
calls normally wait until they have received the smaller of the low water mark value or the
requested amount. Receive calls may still return less than the low water mark if an error
occurs, a signal is caught, or the type of data next in the receive queue is different than that
returned.

OSKIT_SO_SNDTIMEOD is an option to set a timeout value for output operations. It accepts
a struct timeval parameter with the number of seconds and microseconds used to limit
waits for output operations to complete. If a send operation has blocked for this much time,
it returns with a partial count or with the error 0SKIT_EWOULDBLOCK if no data were sent.

This timer is restarted each time additional data are delivered to the protocol, implying
that the limit applies to output portions ranging in size from the low water mark to the
high water mark for output.

0SKIT_SO_RCVTIMED is an option to set a timeout value for input operations. It accepts a
struct timeval parameter with the number of seconds and microseconds used to limit waits
for input operations to complete.

This timer is restarted each time additional data are received by the protocol, and thus
the limit is in effect an inactivity timer. If a receive operation has been blocked for this
much time without receiving additional data, it returns with a short count or with the error
OSKIT_EWOULDBLOCK if no data were received.

8.2. 0SKIT_SOCKET: SOCKET INTERFACE 159

Finally, 0SKIT_SO_TYPE and 0SKIT_SO_ERROR are options used only with getsockopt. 0SKIT_SO_TYPE
returns the type of the socket, such as O0SKIT_SOCK_STREAM. OSKIT_SO_ERROR returns any
pending error on the socket and clears the error status. It may be used to check for asyn-
chronous errors on connected datagram sockets or for other asynchronous errors.

val, valsize: The parameters val and wvalsize are used to access option values for setsockopt.
For getsockopt they identify a buffer in which the value for the requested option(s) are to
be returned. For getsockopt, valsize initially contains the size of the buffer pointed to by
val, and modified on return to indicate the actual size of the value returned. If no option
value is to be supplied or returned, val may be NULL.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

8.2.10 recvfrom, recvmsg: receive a message from a socket
SYNOPSIS

#include <oskit/net/socket.h>

oskit_error_t oskit_socket_recvfrom (oskit_socket_t s, [out] void *buf, oskit_size_t
len, oskit_u32_t flags, [out] struct oskit_sockaddr *from, [in/out] oskit_size_t *fromlen, [out]
oskit_size_t *retval);

oskit_error_t oskit_socket_recvmsg(oskit_socket t *s, [in/out] struct oskit_msghdr
*msg, oskit_u32_t flags, [out] oskit_size_t *retval);

DESCRIPTION

recvfrom and recvmsg are used to receive messages from a socket, and may be used to receive
data on a socket whether or not it is connection-oriented.

Note: The recv library function can be implemented using recvfrom with a nil from parameter.

If no messages are available at the socket, the receive call waits for a message to arrive. The
receive calls normally return any data available, up to the requested amount, rather than waiting
for receipt of the full amount equested; this behavior is affected by the socket-level options
OSKIT_SO_RCVLOWAT and OSKIT_SO_RCVTIMEOQ described in getsockopt.

PARAMETERS

s: The socket from the message is to be received.
buf: Buffer in which the message is to be copied.
len: Length of the buffer provided.

flags: The flags argument is formed by or’ing one or more of the values:

0SKIT_MSG_00B process out-of-band data

OSKIT_MSG_PEEK peek at incoming message

OSKITMSG_WAITALL wait for full request or error
The 0SKIT_MSG_00B flag requests receipt of out-of-band data that would not be received in
the normal data stream. Some protocols place expedited data at the head of the normal
data queue, and thus this flag cannot be used with such protocols. The 0SKIT_MSG_PEEK
flag causes the receive operation to return data from the beginning of the receive queue
without removing that data from the queue. Thus, a subsequent receive call will return the
same data. The O0SKIT_MSG_WAITALL flag requests that the operation block until the full
request is satisfied. However, the call may still return less data than requested if an error or
disconnect occurs, or the next data to be received is of a different type than that returned.

160 CHAPTER 8. OSKIT NETWORKING FRAMEWORK

from: If from is non-nil, and the socket is not connection-oriented, the source address of the
message is filled in.

fromlen: Initialized to the size of the buffer associated with from, and modified on return to
indicate the actual size of the address stored there.

msg: The recvmsg method uses a struct oskit msghdr structure to minimize the number of
directly supplied parameters.
struct oskit_msghdr {

oskit_addr_t msg name; /* optional address */
oskitu32_.t msg namelen; /* size of address */
struct oskit_iovec *msg_iov; /* scatter/gather array */
oskitu32.t msg_iovlen; /* # elements in msg_iov */
oskit_addr_t msg_control; /* ancillary data, see below */
oskitu32t msg_controllen; /* ancillary data buffer len */
oskitu32.t msg_flags; /* flags on received message */

b

Here msg_name and msg_namelen specify the destination address if the socket is uncon-
nected; msg_name may be given as a null pointer if no names are desired or required.
msg-iov and msg-iovlen describe scatter gather locations.

msg-control, which has length msg_controllen, points to a buffer for other protocol control
related messages or other miscellaneous ancillary data.

The msg_flags field is set on return according to the message received. 0SKIT MSG_EOR
indicates end-of-record; the data returned completed a record (generally used with sock-
ets of type OSKIT_SOCK_SEQPACKET). OSKIT_MSG_TRUNC indicates that the trailing portion
of a datagram was discarded because the datagram was larger than the buffer supplied.
OSKIT_CMSG_TRUNC indicates that some control data were discarded due to lack of space
in the buffer for ancillary data. 0SKIT_MSG_00B is returned to indicate that expedited or
out-of-band data were received.

retval: Contains the number of characters received, i.e., the total length of the message upon
return. If a message is too long to fit in the supplied buffer, excess bytes may be discarded
depending on the type of socket the message is received from.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

8.2.11 sendto, sendmsg: send a message from a socket
SYNOPSIS

#include <oskit/net/socket.h>

oskit_error_t oskit_socket_sendto(oskit_socket t *s, const wvoid *buf, oskit_size_t
len, oskit_u32_t flags, const struct oskit_sockaddr *to, oskit_size_t tolen, [out] oskit_size._t
xretval);

oskit_error_t oskit_socket_sendmsg(oskit_socket_t s, const struct oskit_msghdr *msg,
oskit u32_t flags, [out] oskit_size_t *retval);

DESCRIPTION

sendto, sendmsg are used to transmit a message to another socket. The C library send may
be implemented by passing a NULL to parameter. It may be used only when the socket is in a
connected state, while sendto and sendmsg may generally be used at any time.

Send will block if no messages space is available at the socket to hold the message to be trans-
mitted.

8.2. 0SKIT_SOCKET: SOCKET INTERFACE

PARAMETERS

s: The socket from which the message is to be sent.
buf:

len: len gives the length of the message. If the message is too long to pass atomically through
the underlying protocol, the error 0SKIT_EMSGSIZE is returned, and the message is not
transmitted.

flags: The flags parameter may include one or more of the following:

0SKIT_MSG_00B process out-of-band data
OSKIT_MSG_PEEK peek at incoming message
OSKIT_MSG_DONTROUTE bypass routing, use direct interface
OSKIT_MSG_EOR data completes record
OSKIT_MSG_EOF data completes transaction

The flag 0SKIT_MSG_00B is used to send “out-of-band” data on sockets that support this
notion (e.g. 0SKIT_SOCK_STREAM); the underlying protocol must also support “out-of-band”
data. OSKIT_MSG_EOR is used to indicate a record mark for protocols which support the
concept. 0SKIT_MSG_EOF requests that the sender side of a socket be shut down, and that an
appropriate indication be sent at the end of the specified data; this flag is only implemented
for 0SKIT_SOCK_STREAM sockets in the 0SKIT_PF_INET protocol family.

to, tolen: The address of the target is given by to with tolen specifying its size.

msg: See recvmsg for a description of the oskit_msghdr structure.

retval: Upon return *retval contains the number of characters sent.

RETURNS

Returns 0 on success. No indication of failure to deliver is implicit in a send. Locally detected
errors are indicated by an error code specified in <oskit/error.h>.

161

162 CHAPTER 8. OSKIT NETWORKING FRAMEWORK

Part 111

Function Libraries

163

Chapter 9

Minimal C Library: liboskit c.a

9.1 Introduction

The OSKit’s minimal C library is a subset of a standard ANSI/POSIX C library designed specifically for
use in kernels or other restricted environments in which a “full-blown” C library cannot be used. The
minimal C library provides many simple standard functions such as string, memory, and formatted output
functions: functions that are often useful in kernels as well as application programs, but because ordinary
application-oriented C libraries are unusable in kernels, must usually be reimplemented or manually “pasted”
into the kernel sources with appropriate modifications to make them usable in the kernel environment. The
versions of these functions provided by the OSKit minimal C library, like the other components of the OSKit,
are designed to be as generic and context-independent as possible, so that they can be used in arbitrary
environments without the developer having to resort to the traditional manual cut-and-paste methods. This
cleaner strategy brings with it the well-known advantages of careful code reuse: the kernel itself becomes
smaller and simpler due to fewer extraneous “utility” functions hanging around in the sources; it is easier
to maintain both the kernel, for the above reason, and the standard utility functions it uses, because there
is only one copy of each to maintain; finally, the kernel can easily adopt new, improved implementations of
common performance-critical functions as they become available, simply by linking against a new version of
the minimal C library (e.g., new versions of memcpy or bzero optimized for particular architectures or newer
family members of a given architecture).

In general, the minimal C library provides only functions specified in the ANSI C or POSIX.1 standards,
and only a subset thereof. Furthermore, the provided implementations of these functions are designed to be
as independent as possible from each other and from the environment in which they run, allowing arbitrary
subsets of these functions to be used when needed without pulling in any more functionality than necessary
and without requiring the OS developer to provide significant support infrastructure. For example, all of
the “simple” functions which merely perform some computation on or manipulation of supplied data, such
as the string instructions, are guaranteed to be completely independent of each other.

The functions that are inherently environment-dependent in some way, such as printf, which assumes
the existence of some kind of “standard output” or “console,” are implemented in terms of other clearly
specified, environment-dependent functions. Thus, in order to use the minimal C library’s implementation
of printf, the OS developer must provide appropriate console putchar and console putbytes routines to
be used to write characters to whatever acts as the “standard output” in the current environment. All such
dependencies between C library functions are explicitly stated in this document, so that it is always clear
what additional functions the developer must supply in order to make use of a set of functions provided by
the minimal C library.

Since almost all of the functions and definitions provided by the OSKit minimal C library implement
well-known, well-defined ANSI and POSIX C library interfaces which are amply documented elsewhere, we
do not attempt to describe the purpose and behavior of each function in this chapter. Instead, only the
peculiarities relevant to the minimal C library, such as implementation interdependencies and side effects,
are described here.

Note that many files and functions in the minimal C library are derived or taken directly from other

165

166 CHAPTER 9. MINIMAL C LIBRARY: LIBOSKIT.C.A

source code bases, particularly Mach and BSD. Specific attributions are made in the source files themselves.

9.2 posix Interface

Some of the functions provided in the minimal C library depend on lower level I/O routines in the POSIX
library (see Section 13) to provide mappings to the appropriate OSKit COM interfaces. For example, fopen
in the C library will chain to open in the POSIX library, which in turn will chain to the appropriate oskit_dir
and oskit_file COM operations. Certain initialization routines in the POSIX library may need to be called;
refer to Section 13.3 for details.

9.3 Unsupported Features

The following features in many C libraries are deliberately unsupported by the minimal C library, for reasons
described below, and will remain unsupported unless a compelling counterargument arises:

e File I/O: There is no support for file operations in the minimal C library. While “stream” operations
like fopen are defined in the minimal C library, these functions depend on the extended POSIX support
contained in the POSIX library (see Section 13) to provide the necessary low level file operations such
as open, read, and write. Programs that do not use any of the stream operations need not link with
POSIX library.

e Locales: Typical programs that use the minimal C library, particularly kernels, are generally not the
kinds of programs that need extensive internationalization support from the C library functions they
use. In practice, the string-related minimal C library functions are typically used for printing diagnostic
messages and allowing the user to select boot time parameters such as the root partition; for these
purposes, simplicity and compactness are generally more important than multilingual flexibility. If a
particular (rare) kernel does want full internationalization support in the C library functions it uses,
and is prepared to pay the price in size and complexity, then it can instead use the full internationalized
implementations from standard application-oriented C libraries, rather than the simple ones provided
by the minimal C library.

e Multibyte characters: These are not supported for basically the same reasons as for locales.

e I/0O buffering: Although the OSKit minimal C library provides high-level I/O functions such as
fprintf, fputc, fread, etc., these functions do no buffering, and instead simply translate directly into
calls to low-level I/O routines (e.g., read and write). We chose this strategy because typical programs
that use the minimal C library only want to use high-level I/O functions for the convenience they
provide (particularly formatted I/O), not for the performance benefits of buffering. Full I/O buffering
generally comes with a great deal of C library code size and complexity, and add many additional
dependencies to the environment (e.g., memory allocation for buffers, detection of line disciplines).
Furthermore, the mere act of buffering I/O implies a major assumption about the environment and
the use of these functions: in particular, it assumes that the underlying low-level I/O operations
have high per-invocation overhead and that the high-level I/O operations are called at fine enough
granularity to make this overhead a problem in practice. This assumption is often invalid for clients
of the minimal C library, which generally use I/O functions only sporadically if at all, rather than
intensively as many user-level applications do; and in any case, one of the primary goals of the minimal
C library is to avoid such assumptions in the first place. For these reasons, we felt that I/O buffering
is neither necessary nor appropriate for the minimal C library to perform.

e Floating-point math: In general, most kernels and other programs likely to use the minimal C library
do not perform much, if any, floating point arithmetic; in many cases they never even access the FPU
other than to save and restore its state on context switches. For this reason, all of the floating-point
math functions that are a standard part of most C libraries are omitted from the minimal C library.

There is limited support for printing floating point numbers, however. If this feature is desired,
doprnt.c can be compiled with ~-DDOPRNT _FLOAT to enable the use of the %f format specifier.

9.4. HEADER FILES 167

9.4 Header Files

When the OSKit is installed using make install, a set of standard ANSI/POSIX-defined header files,
containing definitions and function prototypes for the minimal C library, are installed in the selected include
directory under the subdirectory oskit/c/. For example, the version of the ANSI C header file string.h
provided with the minimal C library is installed as prefiz/include/oskit/c/string.h. These header files
are installed in a subdirectory rather than in the top level include directory so that if the OSKit is installed
in a standard place shared by other packages and/or system files, such as /usr or /usr/local, the minimal
C library’s header files will not conflict with header files provided by normal application-oriented C libraries,
nor will applications “accidentally” use the minimal C library’s header files when they really want the normal
C library’s header files.

There are two main ways a kernel or other program can explicitly use the OSKit minimal C library’s
header files. The first is by including the oskit/c/ prefix directly in all relevant #include statements; e.g.,
‘#include <oskit/c/string.h>’instead of ‘#include <string.h>’. However, since this method effectively
makes the client code somewhat specific to the OSKit minimal C library by hard-coding OSKit-specific
pathnames into the #include statements, this method should generally only be used if for some reason the
code in question is extremely dependent on the OSKit minimal C library in particular, and it would never
make sense for it to include corresponding header files from a different C library.

For typical code using the minimal C library, which simply needs “a printf” or “a strcpy,” the preferred
method of including the library’s header files is to code the #include lines without the oskit/c/ prefix,
just as in application code using an ordinary C library, and then add an appropriate -I (include directory)
directive to the compiler command line so that the oskit/c/ directory will be scanned automatically for
these header files before the top-level include directory and other include directories in the system are
searched. Typically this -I directive can be added to the CFLAGS variable in the Makefile used to build the
program in question. In fact, the OSKit itself uses this method to allow code in other toolkit components and
in the minimal C library itself to make use of definitions and functions provided by the minimal C library.
(Of course, these dependencies are clearly documented, so that if you want to use other OSKit components
but not the minimal C library, or only part of the minimal C library, it is possible to do so cleanly.)

Except when otherwise noted, all of the definitions and functions described in this section are very
simple, have few dependencies, and behave as in ordinary C libraries. Functions that are not self-contained
and interact with the surrounding environment in non-trivial ways (e.g., the memory allocation functions)
are described in more detail in later sections.

9.4.1 a.out.h: semi-standard a.out file format definitions
DESCRIPTION

This header file simply cross-includes the header file oskit/exec/a.out.h, which is part of
the executable interpreter library (see Section 24.1.2) and provides a minimal set of definitions
describing a.out-format executable and object files. Although this header file is not standard
ANSI or POSIX (thank goodness!), it is a fairly strong Unix tradition, and is especially relevant
to operating system code, and therefore is provided as part of the OSKit.

9.4.2 alloca.h: explicit stack-based memory allocation
DESCRIPTION

This header file defines the alloca pseudo-function, which allows C code to dynamically allocate
memory on the calling function’s stack frame, which will be freed automatically when the function
returns. This header is not ANSI or POSIX but is a fairly well-established tradition. The
implementation of this function currently depends on being compiled with gcc.

168 CHAPTER 9. MINIMAL C LIBRARY: LIBOSKIT.C.A

9.4.3 assert.h: program diagnostics facility
DESCRIPTION

This header file provides a standard assert macro as described in the C standard. All uses of
the assert macro are compiled out (they generate no code) if the preprocessor symbol NDEBUG
is defined before this header file is included.

9.4.4 ctype.h: character handling functions
DESCRIPTION

This header file provides implementations of the following standard character handling functions:

isascii: Tests if a character is in the range 0—127. This is not supplied in ISO C but exists on
many systems.

isalnum: Tests if a character is alphanumeric.

isalpha: Tests if a character is alphabetic.

iscntrl: Tests if a character is a control character.

isdigit: Tests if a character is a decimal digit.

isgraph: Tests if a character is a printable non-space character.

islower: Tests if a character is a lowercase letter.

isprint: Tests if a character is a printable character, including space.

ispunct: Tests if a character is a punctuation mark.

isspace: Tests if a character is a whitespace character of any kind.

isupper: Tests if a character is a uppercase letter.

isxdigit: Tests if a character is a hexadecimal digit.

toascii: Converts an integer into a 7-bit ASCII character.

tolower: Converts a character to lowercase.

toupper: Converts a character to uppercase.

The implementations of these functions provided by the minimal C library are directly-coded

inline functions, and do not reference any global data structures such as character type arrays.

They do not support locales (see Section 9.3), and only recognize the basic 7-bit ASCII character
set (all characters above 126 are considered to be control characters).

9.4.5 errno.h: error numbers
DESCRIPTION

This file declares the global errno variable, and defines symbolic constants for all the errno
values defined in the ISO/ANSI C, POSIX.1, and UNIX standards. They are provided mainly
for the convenience of clients that can benefit from standardized error codes and do not already
have their own error handling scheme and error code namespace. The symbols defined in this
header file have the same values as the corresponding symbols defined in oskit/error.h (see
4.6.2), which are the error codes used through the OSKit’s COM interfaces; this way, error codes
from arbitrary OSKit components can be used directly as errno values at least by programs that
use the minimal C library.

The main disadvantage of using COM error codes as errno values is that, since they don’t
start from around 0 like typical Unix errno values, it’s impossible to provide a traditional Unix-
style sys_errlist table for them. However, they are fully compatible with the POSIX-blessed

9.4.

HEADER FILES

strerror and perror routines, and in any case the minimal C library is not intended to support
“legacy” applications directly - for that purpose, a “real” C library would be more appropri-
ate, and such a C library would probably use more traditional errno values, doing appropriate
translation when interacting with COM interfaces.

9.4.6 fcntl.h: POSIX low-level file control

DESCRIPTION

This header file defines prototypes for the low-level POSIX functions creat and open, and pro-
vides symbolic constants for the POSIX open mode flags (0_*). Neither creat nor open are
defined in the minimal C library, but instead are defined in the POSIX library (see Section 13).

The open mode constants defined by this header are identical to and interchangeable with the
corresponding constants defined in oskit/fs/file.h for the oskit_file COM interface (see
7.4. These definitions are provided so that clients may standardize on a single set of defintions,
which are the same as those used by the COM components. For example, the FreeBSD C library
includes this header file, thus providing compatibility between the the two libraries and the
disk-based file systems.

9.4.7 float.h: constants describing floating-point types

DESCRIPTION

This header file provides the standard set of symbols required by the ISO C standard describing
various characteristics of the float, double, and long double types. There is nothing special
about the OSKit’s definition of these symbols; see the ANSI/ISO C or Single UNIX standard for
detailed information about this header file.

9.4.8 1limits.h: architecture-specific limits

DESCRIPTION

This header file defines the following standard symbols describing architecture-specific limits of
basic numeric types:

CHARBIT: Number of bytes in a char.

CHAR MAX: Maximum value of a char.

CHAR MIN: Minimum value of a char.

SCHARMAX: Maximum value of a signed char.
SCHARMIN: Minimum value of a signed char.
UCHARMAX: Maximum value of a unsigned char.
SHRT MAX: Maximum value of a short.

SHRT MIN: Minimum value of a short.

USHRT MAX: Maximum value of a unsigned short.
INT MAX: Maximum value of a int.

INT_MIN: Minimum value of a int.

UINTMAX: Maximum value of a unsigned int.
LONGMAX: Maximum value of a long.

LONGMIN: Minimum value of a long.

169

170 CHAPTER 9. MINIMAL C LIBRARY: LIBOSKIT.C.A

ULONG_MAX: Maximum value of a unsigned long.
SSIZE MAX: Maximum value of a size_t.
The minimal C library’s 1imits.h does not define any of the POSIX symbols describing operating

system-specific limits, such as maximum number of open files, since the minimal C library has
know way of knowing how it will be used and thus what these values should be.

9.4.9 malloc.h: memory allocator definitions
DESCRIPTION

This header file defines common types and functions used by the minimal C library’s default
memory allocation functions. This header file is not a standard Posix or X/Open CAE header
file; instead its purpose is to expose the implementation of the malloc facility so that the client
can fully control it and use it in arbitrary contexts.

The malloc package implements the following standard allocation routines (also defined in
stdlib.h).

malloc: Allocate a chunk of memory in the caller’s heap.
mustmalloc: Like malloc, but calls panic if the allocation fails.
memalign: Allocate a chunk of aligned memory.

calloc: Allocate a zero-filled chunk of memory.

mustcalloc: Like calloc, but calls panic if the allocation fails.

realloc: Changes the allocated size of a chunk of memory while preserving the contents of that
memory.

free: Releases a chunk of memory.

The base C library also provides additional routines that allocate chunks of memory that are
naturally aligned. The user must keep track of the size of each allocated chunk and free the
memory with sfree rather than the ordinary free.

smalloc: Allocate a chunk of user-managed memory in the caller’s heap.
smemalign: Allocate an aligned chunk of user-managed memory.
scalloc: Currently not implemented.

srealloc: Currently not implemented.

sfree: Free a user-managed chunk of memory previously allocated by an s* allocation.

The following are specific to the LMM implementation. They take an additional flag to allow
requests for specific types of memory.

mallocf: Allocate a chunk of user-managed memory in the caller’s heap.
memalignf: Allocate an aligned chunk of user-managed memory.
smallocf: Allocate a chunk of user-managed memory in the caller’s heap.

smemalignf: Allocate an aligned chunk of user-managed memory.
The following functions are frequently overridden by the client OS:

morecore: Called by malloc and realloc varients when an attempt to allocate memory from
the LMM fails. The default version does nothing.

mem_lock: Called to ensure exclusive access to the underlying LMM. The default version does
nothing.

mem unlock: Called when exclusive access is no longer needed. The default version does nothing,.

See Section 9.5 for details on these functions.

9.4. HEADER FILES

9.4.10 math.h: floating-point math functions and constants
DESCRIPTION

This header file provides function prototypes for the math functions conventionally found in 1ibm,
the standard C math library. Although these functions are not part of the minimal C library, an
implementation of the math functions is available in the FreeBSD math library; see Chapter 15
for details. This header file also defines various floating-point constants, such as the value of
m, as described in the Unix CAE specification. Since these functions and their implementations
are fully standard, they are not described in further detail here; refer to the ISO C and Unix
standards for more information.

9.4.11 netdb.h: definitions for network database operations
DESCRIPTION

This header file defines structures and prototypes for Internet domain name service (DNS) oper-
ations, such as finding the IP address for a host name and vice versa.

9.4.12 setjmp.h: nonlocal jumps
DESCRIPTION

This header provides definitions for the minimal setjmp/longjmp facility provided in the minimal
C library. This facility differs from standard ones in two ways:

o Floating-point state is not saved and restored, since in many kernel environments it is
important that the kernel itself not make use of floating point registers.

e Signal state is not saved and restored, since the minimal C library has no concept of signals.
In summary, this header file defines the following symbols:

jmp_buf: An array type describing a buffer for setjmp to save state in.
setjmp: Function to record the current stack and register state.
longjmp: Function to return to a previously saved state.

9.4.13 signal.h: signal handling
DESCRIPTION

The minimal C library has no support for signals, and thus does not implement any of the
functions prototyped in this header file. The header file is here for client OSes that wish to
support POSIX signal semantics.

9.4.14 stdarg.h: variable arguments
DESCRIPTION

This header provides definitions for accessing variable argument lists. It simply chains to x86-
specific definitions.

va_list: Type used to declare local state variable used in traversing the variable argument list.
va_start: Initializes the va_list state variable. Must be called before va_arg or va_end.

va_arg: This macro returns the value of the next argument in the variable argument list, and
advances the va_list state variable.

va_end: This macro is called after all the arguments have been read.

171

172 CHAPTER 9. MINIMAL C LIBRARY: LIBOSKIT.C.A

9.4.15 stddef.h: common definitions
DESCRIPTION

This header file defines the symbol NULL and the type size_t if they haven’t been defined already.
It also defines wchar_t and the offsetof macro.

9.4.16 stdio.h: standard input/output
DESCRIPTION

This header provides definitions for the standard input and output facilities provided by the
minimal C library. Many of these routines simply chain to the low-level I/O routines in the
POSIX library, and do no buffering.

putchar: Output a character to stdout.

puts: Output a string to a stream.

printf: Formatted output to stdout.

vprintf: Formatted output to stdout with a stdarg.h va_list argument.

sprintf: Formatted output to a string buffer.

snprintf: Formatted output of up to len characters into a string buffer.

vsprintf: Formatted output to a string buffer with a stdarg.h va_list argument.

vsnprintf: Formatted output of up to len characters into a string buffer with a stdarg.h
va_list argument.

getchar: Input a character from stdin.

gets: Input a string from stdin.

fgets: Input a string from a stream.

fopen: Open a stream.

fclose: Close a stream.

fread: Read bytes from a stream.

furite: Write bytes to a stream.

fputc: Output a character to a stream.

fputs: Output a string to a stream.

fgetc: Input a character from a stream.
fprintf: Formatted output to a stream.
viprintf: Formatted output to a stream with a stdarg.h va_list argument.
fscanf: Formatted input from a stream.
fseek: Reposition a stream.

feof: Check for end-of-file in an input stream.
ftell: Return the current position in a stream.
rewind: Reset a stream to the beginning.
hexdump: Print a buffer in hexdump style.
putc: Macro-expanded to fputc.

9.4. HEADER FILES 173

9.4.17 stdlib.h: standard library functions
DESCRIPTION

This header file defines the symbol NULL and the type size_t if they haven’t been defined already,
and provides prototypes for the following functions in the minimal C library:

atol: Convert an ASCII decimal number into a long.

strtol: Convert an ASCII number into a long.

strtoul: Convert an ASCII number into an unsigned long.

strtod: Convert ASCII string to double.

malloc: Allocate a chunk of memory in the caller’s heap.

mustmalloc: Like malloc, but calls panic if the allocation fails.

calloc: Allocate a zero-filled chunk of memory.

mustcalloc: Like calloc, but calls panic if the allocation fails.

realloc: Changes the allocated size of a chunk of memory while preserving the contents of that
memory.

free: Releases a chunk of memory.
exit: Cause normal program termination; see Section 9.8.1.
abort: Cause abnormal program termination; see Section 9.8.2.

panic: Cause abnormal termination and print a message. Not a standard C function; see
Section 9.8.3.

atexit: Register a function to be called on exit.

getenv: Search for a string in the environment.

Prototypes for the following functions are also provided, but they are not implemented in the
minimal C library. See the FreeBSD C library in Section 14.

abs: Compute the absolute value of an integer.

atoi: Convert an ASCII decimal number into an int.

atof: Convert ASCII string to double.

gsort: Sort an array of objects.

rand: Compute a pseudo-random integer. Not thread safe; uses static data.

srand: Seed the pseudo-random number generator. Not thread safe; uses static data.

9.4.18 string.h: string handling functions
DESCRIPTION

This header file defines the symbol NULL if it hasn’t been defined already, and provides prototypes
for the following functions in the minimal C library:

memcpy: Copy data from one location in memory to another. Our implementation behaves
correctly when source and destination overlap.

memmove: Like memcpy but is guaranteed to behave correctly when source and destination over-
lap.

memset: Set the contents of a block of memory to a uniform value.
strlen: Find the length of a null-terminated string.

strcpy: Copy a string to another location in memory.

174

CHAPTER 9. MINIMAL C LIBRARY: LIBOSKIT.C.A

strncpy: Copy a string, up to a specified maximum length.

strdup: Return a copy of a string in newly-allocated memory. Depends on malloc, Section 9.5.2.
strcat: Concatenate a second string onto the end of a first.

strncat: Concatenate two strings, up to a specified maximum length.
strcmp: Compare two strings.

strncmp: Compare two strings, up to a specified maximum length.

strchr: Find the first occurrence of a character in a string.

strrchr: Find the last occurrence of a character in a string.

strstr: Find the first occurrence of a substring in a larger string.

strtok: Scan for tokens in a string. Not thread safe; uses static data.
strpbrk: Locate the first occurrence in a string of one of several characters.
strspn: Find the length of an initial span of characters in a given set.
strcspn: Measure a span of characters not in a given set.

strerror: Returns a pointer to a message string for an error number.
The following deprecated functions are provided for compatibility with existing code:

bcopy: Copy data from one location in memory to another.
bzero: Clear the contents of a memory block to zero.
index: Find the first occurrence of a character in a string.

rindex: Find the last occurrence of a character in a string.

9.4.19 strings.h: string handling functions (deprecated)

DESCRIPTION

For compatibility with existing software, a header file called strings.h is provided which acts
as a synonym for string.h (Section 9.4.18).

9.4.20 sys/gmon.h: GNU profiling support definitions

DESCRIPTION

GNU profiling support definitions.

9.4.21 sys/ioctl.h: I/O control definitions

DESCRIPTION

Format definitions for ’ioct]’ commands. From BSD4.4.

9.4. HEADER FILES 175

9.4.22 sys/mman.h: memory management and mapping definitions
DESCRIPTION

This file includes constant definitions and function prototypes for memory management opera-
tions.

mmap: Map a file into a region of memory.
mprotect: Change the protections associated with an mmaped region.

munmap: Unmap a file from memory.

None of these routines are implemented in the minimal C library.

The defined constant values are the same as traditional BSD, though the values of PROT_READ
and PROT_EXEC are reversed.

9.4.23 sys/reboot.h: reboot definitions (deprecated)
DESCRIPTION

Definitions the arguments to the reboot system call.

9.4.24 sys/signal.h: signal handling (deprecated)
DESCRIPTION

This header simply includes the base C library signal.h.

9.4.25 sys/stat.h: file operations
DESCRIPTION

This header includes constant definitions and function prototypes for file operations.

chmod: Change the access mode of a file.

fchmod: Change the access mode of a file descriptor.

stat: Get statistics on a named file.

lstat: Get statistics on a named file without following symbolic links.
fstat: Get statistics on an open file by file descriptor.

mkdir: Create a directory.

mkfifo: Create a fifo.

mknod: Create a special file.

umask: Get/set creation mode mask.

None of these routines are implemented in the minimal C library. Refer to the POSIX library in
Section 13.

9.4.26 sys/termios.h: terminal handling functions and definitions (deprecated)
DESCRIPTION

This header simply includes the base C library termio.h.

176 CHAPTER 9. MINIMAL C LIBRARY: LIBOSKIT.C.A

9.4.27 sys/time.h: timing functions
DESCRIPTION

This header includes constant definitions and function prototypes for timing and related functions,
none of which are implemented in the minimal C library. Refer to the POsIX library (Section 13)
and the FreeBSD C library (Section 14) for implementation of these functions.

9.4.28 sys/wait.h: a POSIX wait specification
DESCRIPTION

Note that the minimal C library has no support for processes, and thus doesn’t implement any
of the functions prototyped in this header file. The header file is here in case client OSes wish to
support POSIX wait semantics.

9.4.29 sys/types.h: general POSIX types
DESCRIPTION

General POSIX types.

9.4.30 termios.h: terminal handling functions and definitions
DESCRIPTION

The minimal C library does not fully support termios. Some of the termio stuff is implemented
elsewhere to support OSKit devices.

9.4.31 wunistd.h: POSIX standard symbolic constants
DESCRIPTION

This file contains the required symbolic constants for a POSIX system. These include the symbolic
access and seek constants:

R_0K: Test for read permission.

W_0K: Test for write permission.

X_0K: Test for execute permission.

F_OK: Test for file existence.

SEEK_SET: Set file offset to value.

SEEK_CUR: Set file offset to current plus value.

SEEK_END: Set file offset to EOF plus value.

This file defines no POSIX compile-time or execution-time constants. Additionally defined are the
constants:

STDIN_FILENO: File descriptor for stdin.

STDOUT_FILENO: File descriptor for stdout.

STDERR_FILENO: File descriptor for stderr.

prototypes for standard POSIX functions:

_exit: Terminate a process.

9.4.

HEADER FILES 177

access: Check file accessibility.

close: Close a file.

lseek: Reposition read/write file offset.
read: Read from a file.

unlink: Remove directory entries.
write: Write to a file.

Of the above routines, only _exit is considered part of the minimal C library. The remaining
functions are part of the extended POSIX environment. Refer to Section 13 for details.

9.4.32 utime.h: file times

DESCRIPTION

This file defines the utimbuf structure, as well as the prototype for the POSIX function utime,
which sets the access and modification times of a named file. This function is not implemented
in the minimal C library. Refer to Section 13 for details.

9.4.33 sys/utsname.h: system identification

DESCRIPTION

This file defines the utsname structure, as well as the prototype for the POSIX function uname,
which returns a series of null terminated strings of information identifying the current system.
This function is not implemented in the minimal C library. Refer to Section 13 for details.

178 CHAPTER 9. MINIMAL C LIBRARY: LIBOSKIT.C.A

9.5 Memory Allocation

All of the default memory allocation functions in the minimal C library are built on top of the OSKit LMM,
described in Chapter 16.

There are three families of memory allocation routines available in the minimal C library. First is the
standard malloc, realloc, calloc, and free. These work as in any standard C library.

The second family, smalloc, smemalign, and sfree, assume that the caller will keep track of the size of
allocated memory blocks. Chunks allocated with smalloc-style functions must be freed with sfree rather
than the normal free. These functions are not part of the POSIX standard, but are much more memory
efficient when allocating many power-of-two-size chunks naturally aligned to their size (e.g., when allocating
naturally-aligned pages or superpages). The normal memalign function attaches a prefix to each allocated
block to keep track of the block’s size, and the presence of this prefix makes it impossible to allocate naturally-
aligned, natural-sized blocks successively in memory; only every other block can be used, greatly increasing
fragmentation and effectively halving usable memory. (Note that this fragmentation property is not peculiar
to the OSKit’s implementation of memalign; most versions of memalign produce have this effect.)

The third family, mallocf, memalignf, smallocf, and smemalignf, allow LMM flags to be passed to
the more common allocation routines. These are useful for allocating memory of a specific type (see 16.2).
Memory allocated with these routines should be freed with free or sfree as appropriate.

All of the memory management functions, if they are unable to allocate a block out of the LMM pool,
call the morecore function and then retry the allocation if morecore returns non-zero. The default behavior
for this function is simply to return 0, signifying that no more memory is available. In environments in
which a dynamically growable heap is available, you can override the morecore function to grow the heap
as appropriate.

All of the memory allocation functions make calls to mem_lock and mem_unlock to protect access to the
LMM pool under all of these services. The default implementation of these synchronization functions in
the minimal C library is to do nothing. However, when the C library is initialized (see Section 9.7.1 or
Section 14.7.1), a query for the lock manager will be made (See Section 4.12) to determine if there is a de-
fault implementation of locks available, and will use that implementation to guarantee thread/SMP safety.
The absence of a lock manager implementation implies a single threaded environment, and thus locks are
unnecessary. Additionally, they can be overridden with functions that acquire and release a lock of some kind
appropriate to the environment in order to make the allocation functions thread- or SMP-safe. Also, note
that if you link in liboskit kern before liboskit_c, the kernel support library provides its own default
implementation of mem_lock and mem_unlock, which call base_critical_enter and base_critical_leave
respectively; this provides simple and robust, though probably far from optimal, memory allocation protec-
tion for kernel code running on the bare hardware.

9.5.1 malloc_lmm: LMM pool used by the default memory allocation functions
SYNOPSIS

#include <oskit/c/malloc.h>
extern 1lmm t malloc_lmm;

DESCRIPTION

The LMM pool used by all default memory allocation functions either directly or indirectly.

In the base environemnt, this LMM is initialized at boot time to contain all the physical memory
available in the system (see Section 10.11). “Available memory” means all that is not used by
base environment data structures or by the OS kernel image itself.

9.5.2 malloc: allocate uninitialized memory
SYNOPSIS

#include <oskit/c/malloc.h>

9.5. MEMORY ALLOCATION 179

void *malloc(size_t size);

DESCRIPTION

Standard issue malloc function. Calls mallocf with flags value zero to allocate the memory.

PARAMETERS

size: Size in bytes of desired allocation.

RETURNS

Returns a pointer to the allocated memory or zero if none.

9.5.3 mustmalloc: allocate uninitialized memory and panic on failure
SYNOPSIS

#include <oskit/c/malloc.h>
void *xmustmalloc(size_t size);

DESCRIPTION

Calls malloc to allocate memory, asserting that the return is non-zero; i.e., mustmalloc will
panic if no memory is available.

Note that if NDEBUG is defined, assert will do nothing and this routine is identical to malloc.

PARAMETERS

size: Size in bytes of desired allocation.

RETURNS

Returns a pointer to the allocated memory if it returns at all.

9.5.4 memalign: allocate aligned uninitialized memory
SYNOPSIS

#include <oskit/c/malloc.h>
void xmemalign(size_t alignment, size_t size);

DESCRIPTION

Allocate uninitialized memory with the specified byte alignment; e.g., an alignment value of 32
will return a block aligned on a 32-byte boundary. Calls memalignf with flags value zero to
allocate the memory.

Note that the alignment is not the same as used by the underlying LMM routines. The alignment
parameter in LMM calls is the number of low-order bits that should be zero in the returned
pointer.

PARAMETERS

alignment: Desired byte-alignment of the returned block.

size: Size in bytes of desired allocation.

180 CHAPTER 9. MINIMAL C LIBRARY: LIBOSKIT.C.A

RETURNS

Returns a pointer to the allocated memory or zero if none.

9.5.5 calloc: allocate cleared memory
SYNOPSIS

#include <oskit/c/malloc.h>
void *calloc(size_t nelt, size_t eltsize);

DESCRIPTION

Standard issue calloc function. Calls malloc to allocate the memory and memset to clear it.

PARAMETERS

nelt: Number of elements being allocated.

eltsize: Size of each element.

RETURNS

Returns a pointer to the allocated memory or zero if none.

9.5.6 mustcalloc: allocate cleared memory and panic on failure
SYNOPSIS

#include <oskit/c/malloc.h>
void *mustcalloc(size_t nelt, size_t eltsize);

DESCRIPTION

Calls calloc to allocate memory, asserting that the return is non-zero; i.e., mustcalloc will
panic if no memory is available.

Note that if NDEBUG is defined, assert will do nothing and this routine is identical to calloc.

PARAMETERS

nelt: Number of elements being allocated.

eltsize: Size of each element.

RETURNS

Returns a pointer to the allocated memory if it returns at all.

9.5.7 realloc: change the size of an existing memory block
SYNOPSIS

#include <oskit/c/malloc.h>

void *realloc(void *buf, size_t new_size);

9.5. MEMORY ALLOCATION

DESCRIPTION

Standard issue realloc function. Calls malloc if bufis zero, otherwise calls Imm_alloc to allocate
an entirely new block of memory, uses memcpy to copy the old block, and 1mm_frees that block
when done.

May call morecore if the initial attempt to allocate memory fails.

PARAMETERS

buf: Pointer to memory to be enlarged.

new_size: Desired size of resulting block.

RETURNS

Returns a pointer to the allocated memory or zero if none.

9.5.8 free: release an allocated memory block
SYNOPSIS

#include <oskit/c/malloc.h>
void free(void *buf);

DESCRIPTION

Standard issue free function. Calls 1Imm_free to release the memory.

Note that free must only be called with memory allocated by one of: malloc, realloc, calloc,
mustmalloc, mustcalloc, mallocf, memalign, or memalignf.
PARAMETERS

buf: Pointer to memory to be freed.

9.5.9 smalloc: allocated uninitialized memory with explicit size
SYNOPSIS

#include <oskit/c/malloc.h>
void *smalloc(size_t size);

DESCRIPTION

Identical to malloc except that the user must keep track of the size of the allocated chunk and
pass that size to sfree when releasing the chunk.

Calls smalloct with flags value zero to allocate the memory.

PARAMETERS

size: Size in bytes of desired allocation.

RETURNS

Returns a pointer to the allocated memory or zero if none.

181

182 CHAPTER 9. MINIMAL C LIBRARY: LIBOSKIT.C.A

9.5.10 smemalign: allocate alighed memory with explicit size
SYNOPSIS

#include <oskit/c/malloc.h>

void *smemalign(size_t alignment, size_t size);

DESCRIPTION

Identical to memalign except that the user must keep track of the size of the allocated chunk and
pass that size to sfree when releasing the chunk.

Allocates uninitialized memory with the specified byte alignment; e.g., an alignment value of 32
will return a block aligned on a 32-byte boundary. Calls smemalignf with flags value zero to
allocate the memory.

Note that the alignment is not the same as used by the underlying LMM routines. The alignment
parameter in LMM calls is the number of low-order bits that should be zero in the returned
pointer.

PARAMETERS

alignment: Desired byte-alignment of the returned block.

size: Size in bytes of desired allocation.

RETURNS

Returns a pointer to the allocated memory or zero if none.

9.5.11 sfree: release a memory block with explicit size
SYNOPSIS

#include <oskit/c/malloc.h>

void sfree(void xbuf, size_t size);

DESCRIPTION

Frees a block of memory with the indicated size. Calls 1mm_free to release the memory.

Note that sfree must only be called with memory allocated by one of: smalloc, smallocf,
smemalign, or smemalignf and that the size given must match that used on allocation.
PARAMETERS

buf: Pointer to memory to be freed.

size: Size of memory block being freed.

9.5.12 mallocf: allocate uninitialized memory with explicit LMM flags
SYNOPSIS

#include <oskit/c/malloc.h>

void *mallocf(size_t size, unsigned int flags);

9.5. MEMORY ALLOCATION 183

DESCRIPTION

Allocates uninitialized memory from malloc_1mm. The interface is similar to malloc but with an
additional flags parameter which is passed to 1lmm_alloc.

For kernels running in the base environment on an x86, meaningful values for flags are as described
in Section 10.11.1.

PARAMETERS

size: Size in bytes of desired allocation.

flags: Flags to pass to lmm_alloc.

RETURNS

Returns a pointer to the allocated memory or zero if none.

9.5.13 memalignf: allocate aligned uninitialized memory with explict LMM flags
SYNOPSIS

#include <oskit/c/malloc.h>

void *memalignf(size_t alignment, size_t size, unsigned int flags);

DESCRIPTION

Allocate uninitialized memory with the specified byte alignment; e.g., an alignment value of 32
will return a block aligned on a 32-byte boundary. The interface is similar to malloc but with
an additional flags parameter which is passed to 1lmm_alloc.

For kernels running in the base environment on an x86, meaningful values for flags are as described
in Section 10.11.1.

Note that the alignment is not the same as used by the underlying LMM routines. The alignment
parameter in LMM calls is the number of low-order bits that should be zero in the returned
pointer.

PARAMETERS

alignment: Desired byte-alignment of the returned block.
size: Size in bytes of desired allocation.

flags: Flags to pass to lmm_alloc.

RETURNS

Returns a pointer to the allocated memory or zero if none.

9.5.14 smallocf: allocated uninitialized memory with explicit size and LMM
flags

SYNOPSIS

#include <oskit/c/malloc.h>
void *smallocf(size_t size, unsigned int flags);

184 CHAPTER 9. MINIMAL C LIBRARY: LIBOSKIT.C.A

DESCRIPTION

Allocates uninitialized memory from malloc_1mm. The interface is similar to smalloc but with an
additional flags parameter which is passed to Imm_alloc. As with smalloc, the user must keep
track of the size of the allocated chunk and pass that size to sfree when releasing the chunk.

For kernels running in the base environment on an x86, meaningful values for flags are as described
in Section 10.11.1.

PARAMETERS

size: Size in bytes of desired allocation.

flags: Flags to pass to lmm alloc.

RETURNS

Returns a pointer to the allocated memory or zero if none.

9.5.15 smemalignf: allocate aligned memory with explicit size and LMM flags
SYNOPSIS

#include <oskit/c/malloc.h>
void *smemalignf(size_t alignment, size_t size, unsigned int flags);

DESCRIPTION

Allocate uninitialized memory with the specified byte alignment; e.g., an alignment value of 32
will return a block aligned on a 32-byte boundary. The interface is similar to smemalign but
with an additional flags parameter which is passed to lmm alloc. As with smemalign, the user
must keep track of the size of the allocated chunk and pass that size to sfree when releasing the
chunk.

For kernels running in the base environment on an x86, meaningful values for flags are as described
in Section 10.11.1.

Note that the alignment is not the same as used by the underlying LMM routines. The alignment
parameter in LMM calls is the number of low-order bits that should be zero in the returned
pointer.

PARAMETERS

alignment: Desired byte-alignment of the returned block.
size: Size in bytes of desired allocation.

flags: Flags to pass to lmm alloc.

RETURNS

Returns a pointer to the allocated memory or zero if none.

9.5.16 morecore: add memory to malloc memory pool
SYNOPSIS

#include <oskit/c/malloc.h>
int morecore(size_t size);

9.5. MEMORY ALLOCATION 185

DESCRIPTION

This routine is called directly or indirectly by any of the memory allocation routines in this
section when a call to the underlying LMM allocation routine fails. This allows a kernel to add
more memory to malloc_lmm as needed.

The default version of morecore in the minimal C library just returns zero indicating no more
memory was available. Client OSes should override this routine as necessary.

PARAMETERS

size: Size in bytes of memory that should be addeed to malloc_lmm.

RETURNS

Returns non-zero if the indicated amount of memory was added, zero otherwise.

9.5.17 mem_lock: Lock access to malloc memory pool
SYNOPSIS

#include <oskit/c/malloc.h>
void mem _lock(void);

DESCRIPTION

This routine is called from any default memory allocation routine before it attempts to access
malloc_lmm.

Coupled with mem_unlock, this provides a way to make memory allocation thread and MP safe.
In a multithreaded client OS, these functions will use the default lock implementation as provided
by the lock manager (see Section 4.12), to protect accesses to the malloc_lmm. Or, these functions
may be overridden with a suitable synchronization primitive.

Note that the kernel support library provides defaults for mem_lock and mem_unlock that call
base_critical_enter and base_critical_leave respectively. However, you’ll only get these
versions if you use the kernel support library and link it in before the minimal C library.

9.5.18 mem_unlock: Unlock access to malloc memory pool
SYNOPSIS

#include <oskit/c/malloc.h>
void mem_unlock(void);

DESCRIPTION

This routine is called from any default memory allocation routine after all accesses to malloc_lmm
are complete.

Coupled with mem_lock, this provides a way to make memory allocation thread and MP safe. In a
multithreaded client OS, these functions will use the default lock implementation as provided by
the lock manager (see Section 4.12), to protect accesses to the malloc_lmm. Or, these functions
may be overridden with a suitable synchronization primitive.

Note that the kernel support library provides defaults for mem_lock and mem unlock that call
base_critical_enter and base_critical_ leave respectively. However, you'll only get these
versions if you use the kernel support library and link it in before the minimal C library.

186 CHAPTER 9. MINIMAL C LIBRARY: LIBOSKIT.C.A

9.6 Standard I/O Functions

The versions of sprintf, vsprintf, sscanf, and vsscanf provided in the OSKit’s minimal C library are
completely self-contained; they do not pull in the code for printf, fprintf, or other “file-oriented” standard
I/0O functions. Thus, they can be used in any environment, regardless of whether some kind of console or
file I/O is available.

The routines printf, puts, putchar, getchar, etc., are all defined in terms of console_putchar,
console getchar, console puts, and console putbytes. This means that you can get working format-
ted “console” output merely by providing an appropriate implementation of the aforementioned console
functions. In the base environment, these routines are defined in the kernel library (see Section 10.13).

The standard I/O functions that actually take a FILE* argument, such as fprintf and fwrite, and
as such are fundamentally dependent on the notion of files, are implemented in terms of the low-level I/O
functions in the POSIX library (see Section 13). However, unlike in “real” C libraries, the high-level file I/O
functions provided by the minimal C library only implement the minimum of functionality to provide the
basic API: in particular, they do no buffering, so for example an fwrite translates directly to a write. This
design reduces code size and minimizes interdependencies between functions, while still providing familiar,
useful services such as formatted file I/O.

9.7. INITIALIZATION 187

9.7 Initialization

9.7.1 oskit_init_libc: Initialize the OSKit C library
SYNOPSIS

void oskit_init_libc(void);

DESCRIPTION

oskit_init_libc allows for internal initializatons to be done. This routine should be called when
the operating system is initialized, typically at the beginning of the main program.

188 CHAPTER 9. MINIMAL C LIBRARY: LIBOSKIT.C.A

9.8 Termination Functions

9.8.1 exit: terminate normally
DESCRIPTION

exit calls up to 32 functions installed via atexit in reverse order of installation before it calls
_exit.

_exit, which terminates the calling process in Unix, calls oskit_libc_exit with the exit status
code (see Section 13.4.2).

9.8.2 abort: terminate abnormally
DESCRIPTION

abort calls _exit (1).

9.8.3 panic: terminate abnormally with an error message

9.9. MISCELLANEOUS FUNCTIONS

9.9 Miscellaneous Functions

9.9.1 ntohl: convert 32-bit long word from network byte order
9.9.2 ntohs: convert 16-bit short word from network byte order
9.9.3 hexdump: print a buffer as a hexdump

SYNOPSIS

#include <oskit/c/stdio.h>

void hexdumpb(void *base, void *buf, int nbytes);
void hexdumpw (void *base, void *buf, int nwords);

DESCRIPTION

These functions print out a buffer as a hexdump. For example (the box is included):

| 00000000 837c240c 00741dc7 05007010 00000000 8.t pe.a s |
| 00000010 008b4424 0ca30470 10008b04 24a30870 ..D$...p....8..p |
| 00000020 1000eb2c c7050070 10000100 0000833c B T < |
| 00000030 2400740a c7050070 10000200 00008b44 $.t....p..... D |
¢

The first form treats the buffer as an array of bytes whereas the second treats the buffer as an
array of words. This distinction is only important on little-endian machines and only affects the
appearance of the four middle columns of hex numbers—the last column of output is identical
for both.

PARAMETERS

base: What the first column of output should start at. Passing zero will make the first column
show the offset within the buffer rather than an absolute address, which is what happens
when base equals buf.

buf: The address of what to dump.
nbytes: How many bytes to dump.

nwords: How many words to dump.

189

190 CHAPTER 9. MINIMAL C LIBRARY: LIBOSKIT.C.A

Chapter 10

Kernel Support Library:
liboskit kern.a

10.1 Introduction

The kernel support library, 1ibkern.a, supplies a variety of functions and other definitions that are primarily
of use in OS kernels. (In contrast, the other parts of the OSKit are more generic components useful in a
variety of environments including, but not limited to, OS kernels.) The kernel support library contains all
the code necessary to create a minimal working “kernel” that boots and sets up the machine for a generic
“OS-friendly” environment. For example, on the x86, the kernel support library provides code to get into
protected mode, set up default descriptor tables, etc. The library also includes a remote debugging stub,
providing convenient source-level debugging of the kernel over a serial line using GDB’s serial-line remote
debugging protocol. As always, all components of this library are optional and replaceable, so although some
pieces may be unusable in some environments, others should still work fine.

10.1.1 Machine-dependence of code and interfaces

This library contains a much higher percentage of machine-dependent code than the other libraries in the
toolkit, primarily because this library deals with heavily machine-dependent facilities such as page tables,
interrupt vector tables, trap handling, etc. The library attempts to hide some machine-dependent details
from the OS by providing generic, machine-independent interfaces to machine-dependent library code. For
example, regardless of the architecture and boot loading mechanism in use, the kernel startup code included
in the library always sets up a generic C-compatible execution environment and starts the kernel by calling the
well-known main routine, just as in ordinary C programs. However, the library makes no attempt to provide
a complete architecture-independence layer, since such a layer would have to make too many assumptions
about the OS that is using it. For example, although the library provides page table management routines,
these routines have fairly low-level, architecture-specific interfaces.

10.1.2 Generic versus Base Environment code

The functionality provided by the kernel support library is divided into two main classes: the generic support
code, and the base environment. The generic support contains simple routines and definitions that are almost
completely independent of the particular OS environment in which they are used: for example, the generic
support includes symbolic definitions for bits in processor registers and page tables, C wrapper functions to
access special-purpose processor registers, etc. The generic support code should be usable in any OS that
needs it.

The base environment code, on the other hand, is somewhat less generic in that it is designed to create,
and function in, a well-defined default or “base” kernel execution environment. Out of necessity, this code
makes more assumptions about how it is used, and therefore it is more likely that parts of it will not be
usable to a particular client OS. For example, on the x86 architecture, the base environment code sets up a

191

192

CHAPTER 10. KERNEL SUPPORT LIBRARY: LIBOSKIT KERN.A

default global descriptor table containing a “standard” set of basic, flat-model segment descriptors, as well
as a few extra slots reserved for use by the client OS. This “base GDT” is likely to be sufficient for many
kernels, but may not be usable to kernels that make more exotic uses of the processor’s GDT. In order to
allow piecemeal replacement of the base environment as necessary, the assumptions made by the code and
the intermodule dependencies are clearly documented in the sections covering the base environment code.

10.1.3 Road Map

Following is a brief summary of the main facilities provided by the library, indexed by the section numbers
of the sections describing each facility:

10.2

10.3

10.4

10.5

10.6-10.10

10.11-10.13

10.14

10.15

Machine-independent Facilities: Types and constants describing machine-dependent information
such as word size and page size. For example, types are provided which, if used properly, allow machine-
independent code to compile easily on both 32-bit and 64-bit architectures. Also, functions are provided
for various generic operations such as primitive multiprocessor synchronization and efficient bit field
manipulation.

Generic Low-level Definitions: Header files describing x86 processor data structures and
registers, as well as functions to access and manipulate them. Includes:

— Bit definitions of the contents of the flags, control, debug, and floating point registers.

— Inline functions and macros to read and write the flags, control, debug, segment registers, and
descriptor registers (IDTR, GDTR, LDTR, TR).

— Macros to read the Pentium timestamp counter (useful for fine-grained timing and benchmarking)
and the stack pointer.

— Structure definitions for architectural data structures such as far pointers, segment and gate
descriptors, task state structures, floating point save areas, and page tables, as well as generic
functions to set up these structures.

— Symbolic definitions of the processor trap vectors.
— Macros to access I/O ports using the x86’s in and out instructions.

— Assembly language support macros to smooth over the differences in target object formats, such
as ELF versus a.out.

Generic Low-level Definitions: Generic definitions for standard parts of the PC archi-
tecture, such as IRQ assignments, the programmable interrupt controller (PIC), and the keyboard
controller.

Processor Identification and Management: Functions to identify the CPU and available
features, to enter and leave protected mode, and to enable and disable paging.

Base Environment Setup: Functions that can be used individually or as a unit to set up a
basic, minimal kernel execution environment on x86 processors: e.g., a minimal GDT, IDT, TSS, and
kernel page tables.

Base Environment Setup: Functions to set up a PC’s programmable interrupt controller
(PIC) and standard IRQ vectors, to manage a PC’s low (1MB), middle (16MB) and upper memory,
and to provide simple non-interrupt-driven console support.

MultiBoot Startup: Complete startup code to allow the kernel to be booted from any
MultiBoot-compliant boot loader easily. Includes code to parse options and environment variables
passed to the kernel by the boot loader, and to find and use boot modules loaded with the kernel.

Raw BIOS Startup: Complete startup code for boot loaders and other programs that need
to be loaded directly by the BIOS at boot time. This startup code takes care of all aspects of switching
from real to protected mode and setting up a 32-bit environment, and provides mechanisms to call
back to 16-bit BIOS code by running the BIOS in either real mode or v86 mode (your choice).

10.1.

10.16

10.17

10.19

INTRODUCTION 193

DOS Startup: This startup code is similar to the BIOS startup code, but it expects to be
loaded in a 16-bit DOS environment: useful for DOS-based boot loaders, DOS extenders, or prototype
kernels that run under DOS. Again, this code fully handles mode switching and provides DOS/BIOS
callback mechanisms.

Kernel Debugging Facilities: A generic, machine-independent remote GDB stub is provided which
supports the standard serial-line GDB protocol. In addition, machine-dependent default trap handling
and fault-safe memory access code is provided to allow the debugging stub to be used “out of the box”
on x86 PCs.

Kernel Annotation Facility: Macros and functions to associate additional information with ranges
of kernel text or data. Annotations allow, for example, a kernel to mark a range of kernel text so that
a special function is invoked whenever an exception or interrupt occurs within that range. This facility
is useful for implementing rollback routines.

194 CHAPTER 10. KERNEL SUPPORT LIBRARY: LIBOSKIT KERN.A

10.2 Machine-independent Facilities

This section includes machine-independent types, constants, macros, and functions that every supported
architecture provides. These are used extensively within the OSKit itself as well as by the applications built
on the OSKit.

10.2.1 page.h: Page size definitions
SYNOPSIS

#include <oskit/machine/page.h>

DESCRIPTION

This file provides of following symbols, which define the architectural page size of the architecture
for which the OSKit is configured:

PAGE SIZE: The number of bytes on each page. It can always be assumed to be a power of two.

PAGE_SHIFT: The number of low address bits not translated by the MMU hardware. PAGE_SIZE
is always 2PAGE-SHIFT

PAGEMASK: A bit mask with the low-order PAGE_SHIFT address bits set. Always equal to
PAGESIZE—1. WARNING: Some systems (like linux) define this to be ~(PAGE_SIZE — 1),
be careful that the definitions match what the code expects!

In addition, the following macros are provided for convenience in performing page-related ma-
nipulations of addresses:

atop(addr): Converts a byte address into a page frame number, by dividing by PAGE_SIZE.

ptoa(page): Converts a page frame number into an integer (oskit_addr_t) byte address, by
multiplying by PAGE_SIZE.

round_page(addr): Returns addr rounded up to the next higher page boundary. If addr is
already on a page boundary, it is returned unchanged.

trunc_page(addr): Returns addr rounded down to the next lower page boundary. If addr is
already on a page boundary, it is returned unchanged.

page_aligned(addr): Evaluates to true (nonzero) if addr is page aligned, or false (zero) if it
isn’t.

Note that many modern architectures support multiple page sizes. On such architectures, the
page size defined in this file is the minimum architectural page size, i.e., the finest granularity
over which the MMU has control. Since there seems to be no sufficiently generic and useful way
that this header file could provide symbols indicating which “other” page sizes the architecture
supports, making good use of larger pages probably must be done in machine-dependent code.

Some operating systems on some architectures do not actually support the minimum architectural
page size in software; instead, they aggregate multiple architectural pages together into larger
“logical pages” managed by the OS software. On such operating systems, it would be inappro-
priate for general OS or application code to use the PAGE_SIZE value provided by oskit/page.h,
since this value would be smaller (more fine-grained) than the OS software actually supports,
and therefore inappropriate. However, this is purely a high-level OS issue; like other parts of the
toolkit, no one is required to use this header file if it is inappropriate in a particular situation.

This file was originally derived from Mach’s vm_param.h.

10.2. MACHINE-INDEPENDENT FACILITIES 195

10.2.2 spin_lock.h: Spin locks
SYNOPSIS

#include <oskit/machine/spinlock.h>

DESCRIPTION

This file provides the architecture-dependent definition of the spin_lock_t “spin lock” data type
and associated manipulation macros. This facility provides a basic locking mechanism which can
be used with preemptive threading or on a multi-processor.

spin_lock_t: Typedef for the spin lock data type.

spinlock_init(s): Initialize a spin lock.

spin_lock_locked(s): Check if a spin lock is locked.

spin_unlock(s): Unlock a spin lock.

spin_try_ lock(s): Attempt to lock a spin lock. Returns 0 if successful, nonzero if unsuccessful.

spin_lock(s): Busy wait until the lock is free. On return the lock has been acquired.

This header file is taken from CMU’s Mach kernel.

10.2.3 queue.h: Generic queues
SYNOPSIS

#include <oskit/queue.h>

struct queue_entry {
struct queue_entry *next; /* next element */
struct queue_entry *prev; /* previous element */

};

typedef struct queue_entry *queue_t;

typedef struct queue_entry queue_head_t;

typedef struct queue_entry queue_chain_t;

typedef struct queue_entry *queue_entry._t;

DESCRIPTION

Macros and structures for implementation of a “queue” data type. The implementation uses a
doubly-linked list and supports operations to insert and delete anywhere in the list.

queue_init(g): Initialize the given queue.

queue_first(q): Returns the first entry in the queue.

queue next(g): Returns the entry after an item in the queue.

queue_last(g): Returns the last entry in the queue.

queue_prev(g): Returns the entry before an item in the queue.

queue_end (g, ge): Tests whether a new entry is really the end of the queue.
queue_empty (¢): Tests whether a queue is empty.

queue_enter(q, elt, type, field): Insert a new element at the tail of the queue.
queue_enter _first(head, elt, type, field): Insertanew element at the head of the queue.

queue_enter_before(head, nelt, elt, type, field): Insertanew element before the indi-
cated element.

196 CHAPTER 10. KERNEL SUPPORT LIBRARY: LIBOSKIT KERN.A

queue_enter_after(head, pelt, elt, type, field): Insert a new element after the indi-
cated element.

queue_remove (head, elt, type, field): Remove an arbitrary item from the queue.

queue_remove first(head, entry, type, field): Remove and return the entry at the head
of the queue.

queue_remove_last (head, entry, type, field): Remove and return the entry at the tail of
the queue.

queue_assign(to, from, type, field): Move an element in a queue to a new piece of mem-
ory.

queue_iterate(head, elt, type, field): Iterate over each item in the queue. Generates a
for’ loop, setting elt to each item in turn (by reference).

This header file is taken from CMU’s Mach kernel.

10.2.4 debug.h: debugging support facilities
SYNOPSIS

#include <oskit/debug.h>

DESCRIPTION

This file contains simple macros and functions to assist in debugging. Many of these facilities
are intended to be used to “annotate” programs permanently or semi-permanently in ways that
reflect the code’s proper or desired behavior. These facilities typically change their behavior
depending on whether the preprocessor symbol DEBUG is defined: if it is defined, then extra code
is introduced to check invariants and such; when DEBUG is not defined, all of this debugging code
is “compiled out” so that it does not result in any size increase or efficiency loss in the resulting
compiled code.

The following macros and functions are intended to be used as permanent- or semi-permanent
annotations to be sprinkled throughout ordinary code to increase its robustness and clarify its
invariants and assumptions to human readers:

assert(cond): This is a standard assert macro, like (and compatible with) the one provided
in oskit/c/assert.h. If DEBUG is defined, this macro produces code that evaluates cond
and calls panic (see Section 9.8.3) if the result is false (zero). When an assertion fails and
causes a panic, the resulting message includes the source file name and line number of the
assertion that failed, as well as the text of the cond expression used in the assertion. If
DEBUG is not defined, this macro evaluates to nothing (an empty statement), generating no
code.
Assertions are typically used to codify assumptions made by a code sequence, e.g., about the
parameters to a function or the conditions on entry to or exit from a loop. By placing explicit
assert statements in well-chosen locations to verify that the code’s invariants indeed hold,
a thicker “safety net” is woven into the code, which tends to make bugs manifest themselves
earlier and in much more obvious ways, rather than allowing incorrect results to “trickle”
through the program’s execution for a long time, sometimes resulting in completely baffling
behavior. Assertions can also act as a form of documentation, clearly describing to human
readers the exact requirements and assumptions in a piece of code.

otsan(): If DEBUG is defined, this macro unconditionally causes a panic with the message “off
the straight and narrow!,” along with the source file name and line number, if it is ever
executed. It is intended to be placed at code locations that should never be reached if the
code is functioning properly; e.g., as the default case of a switch statement for which the
result of the conditional expression should always match one of the explicit case values. If
DEBUG is not defined, this macro evaluates to nothing.

10.2. MACHINE-INDEPENDENT FACILITIES

do_debug(stmt): If DEBUG is defined, this macro evaluates to stmt; otherwise it evaluates to

nothing. This macro is useful in situations where an #ifdef DEBUG ... #endif block would
otherwise be used over just a few lines of code or a single statement: it produces the same
effect, but is smaller and less visually intrusive.

The following macros and functions are primarily intended to be used as temporary scaffolding
during debugging, and removed from production code:

void dump_stack trace(void): This function dumps a human-readable backtrace of the cur-

rent function call stack to the console, using printf. The exact content and format of the
printed data is architecture-specific; however, the output is typically a list of instruction
pointer or program counter values, each pointing into a function on the call stack, presum-
ably to the return point after the function call to the next level. You can find out what
function these addresses reside in by running the Unix nm utility on the appropriate exe-
cutable file image, sorting the resulting symbol list if necessary, and looking up the address
in the sorted list. Alternatively, for more precise details, you can look up the exact instruc-
tion addresses in a disassembly of the executable file, e.g., by using GNU objdump with the
‘~d’ option.

here(): This macro generates code that simply prints the source file name and line number at

which the macro was used. This macro can be extremely useful when trying to nail down
the precise time or code location at which a particular bug manifests itself, or to determine
the sequence of events leading up to it. By sprinkling around calls to the here macro in
appropriate places, the program will dump regular status reports of its location every time
it hits one of these macros, effectively producing a log of “interesting” events (“interesting”
being defined according to the placement of the here macro invocations). Using the here
macro this way is equivalent to the common practice of sprinkling printf’s around and
watching the output, except it is easier because the here invocation in each place does not
have to be “tailored” to make it distinguishable from the other locations: each use of the
here macro is self-identifying.

If DEBUG is not defined, the here macro is not defined at all; this makes it obvious when
you’ve accidentally left invocations of this macro in a piece of code after it has been debugged.

debugmsg (print fargs): This macro is similar to here, except it allows a formatted message

to be printed along with the source file name and line number. prinifargs is a complete
set of arguments to be passed to the printf function, including parentheses: for example,
‘debugmsg (("foo is %d", foo));’. A newline is automatically appended to the end of
the message. This macro is generally useful as a wrapper for printf for printing temporary
run-time status messages during execution of a program being debugged.

As with here, if DEBUG is not defined, the debugmsg macro is not defined at all, in order to
make it obvious if any invocations are accidentally left in production code.

Note that only panic and dump_stack_trace are real functions; the others are simply macros.

10.2.5

SYNOPSIS

base_critical: simple critical section support

#include <oskit/base_critical.h>

void base_critical_enter(void);

void base_critical_leave(void);

197

198 CHAPTER 10. KERNEL SUPPORT LIBRARY: LIBOSKIT KERN.A

DESCRIPTION

Functions to implements a simple “global critical region.” These functions are used throughout
the OSKit to ensure proper serialization for various “touchy” but non-performance critical ac-
tivities such as panicing, rebooting, debugging, etc. This critical region can safely be entered
recursively; the only requirement is that enters match exactly with leaves.

The implementation of this module is machine-dependent, and generally disables interrupts and,
on multiprocessors, grabs a recursive spin lock.

10.3. GENERIC LOW-LEVEL DEFINITIONS 199

10.3 Generic Low-level Definitions

This section covers useful macros, definitions, and routines that are specific to the Intel x86 processor
architecture but that are independent of the interrupt control, bus structure, and other ancillary functions
traditionally associated with a “PC.” Those facilities are covered in section 10.4.

10.3.1 asm.h: assembly language support macros
SYNOPSIS

#include <oskit/x86/asm.h>

DESCRIPTION

This file contains convenience macros useful when writing x86 assembly language code in AT&T/GAS
syntax. This header file is directly derived from Mach, and similar headers are used in various
BSD kernels.

Symbol name extension: The following macros allow assembly language code to be written
that coexists with C code compiled for either ELF or a.out format. In a.out format, by conven-
tion an underscore (_) is prefixed to each public symbol referenced or defined by the C compiler;
however, the underscore prefix is not used in ELF format.

EXT(name): Evaluates to _name in a.out format, or just name in ELF. This macro is typically
used when referring to public symbols defined in C code.

LEXT(name): Evaluates to _name: in a.out format, or name: in ELF. This macro is generally
used when defining labels to be exported to C code.

SEXT(name): Evaluates to the string literal "_name" in a.out format, or "name" in ELF. This
macro can be used in GCC inline assembly code, where the code is contained in a string
constant; for example: asm("...; call "SEXT(foo)"; ...");

Alignment: The following macros relate to alignment of code and data:

TEXT_ALIGN: Evaluates to the preferred alignment of instruction entrypoints (e.g., functions or
branch targets), as a power of two. Currently evaluates to 4 (16-byte alignment) if the
symbol 1486 is defined, or 2 (4-byte alignment) otherwise.

ALIGN: A synonym for TEXT_ALIGN.

DATA ALIGN: Evaluates to the preferred minimum alignment of data structures. Currently it is
always defined as 2, although in some cases a larger value may be preferable, such as the
processor’s cache line size.

P2ALIGN(alignment): Assembly language code can use this macro to work around the fact that
the .align directive works differently in different x86 environments: sometimes .align takes
a byte count, whereas other times it takes a power of two (bit count). The P2ALIGN macro
always takes a power of two: for example, P2ALIGN (2) means 4-byte alignment. By default,
the P2ALIGN macro uses the .p2align directive supported by GAS; if a different assembler
is being used, then P2ALIGN should be redefined as either .align alignment or .align
1<<(alignment), depending on the assembler’s interpretation of .align.

XXX S_ARG, B_ARG, frame stuff, ...

XXX need to make the macros more easily overridable, using ifdefs.
XXX need to clean out old trash still in the header file

XXX IODELAY macro

200 CHAPTER 10. KERNEL SUPPORT LIBRARY: LIBOSKIT KERN.A

10.3.2 eflags.h: Processor flags register definitions
SYNOPSIS

#include <oskit/x86/eflags.h>

DESCRIPTION

XXX

This header file can be used in assembly language code as well as C. The flags defined here
correspond the the ones in the processor databooks.

EFL_CF: carry

EFL_PF: parity of low 8 bits
EFL_AF: carry out of bit 3
EFL_ZF: zero

EFL_SF: sign

EFL_TF: trace trap

EFL_IF: interrupt enable
EFL DF: direction

EFL_OF: overflow

EFL_IOPL: IO privilege level mask. All 0’s is the same as EFL_IOPL_KERNEL, while all 1’s (or
just EFL_IOPL) is the same as EFL_ IOPL_USER.

EFLNT: nested task

EFL RF: resume without tracing
EFL_VM: virtual 8086 mode

EFL_AC: alignment check

EFL_VIF: virtual interrupt flag
EFL_VIP: virtual interrupt pending
EFL_ID: CPUID instruction support

10.3.3 proc_reg.h: Processor register definitions and accessor functions
SYNOPSIS

#include <oskit/x86/procreg.h>

DESCRIPTION

XXX

This header file contains the definitions for the processor’s control registers (CR0, CR4). It also
contains macros for getting and setting the processor registers and flags. There is also a macro
for reading the processor’s cycle counter (on Pentium and above processors).

This header file is taken from CMU’s Mach kernel.

10.3.4 debug_reg.h: Debug register definitions and accessor functions
SYNOPSIS

#include <oskit/x86/debugreg.h>

10.3. GENERIC LOW-LEVEL DEFINITIONS 201

DESCRIPTION

This provides the definitions for the processor’s built-in debug registers. There are also inline
functions that allow the hardware-assisted breakpoints to be set.

DRO through DR3 are the breakpoint address registers; DR6 is the status register, and DRY7 is
the control register.

get_dr0(): Returns the value in breakpoint address register 0.
get_dr1(): Returns the value in breakpoint address register 1.
get_dr2(): Returns the value in breakpoint address register 2.
get_dr3(): Returns the value in breakpoint address register 3.
get_dr6(): Returns the value in the debug status register.
get_dr7(): Returns the value in the debug control register.
set_dr0(wal): Sets the value in breakpoint address register 0 to wval.
set_dril(wal): Sets the value in breakpoint address register 1 to wval.
set_dr2(wal): Sets the value in breakpoint address register 2 to wval.
set_dr3(wal): Sets the value in breakpoint address register 3 to wval.
set_dr6(wal): Sets the value in the debug status register to val.
set_dr7(wal): Sets the value in the debug control register to val.

set b0 (unsigned addr, unsigned len, unsigned rw): Enables breakpoint register 0. Sets
dr0 to LINEAR address addr and updates dr7 to enable it. rw must be DR7_RW_INST,
DR7_RW_WRITE, DR7_RW_IO, or DR7_RW_DATA indicating the condition to break on.
len must be DR7_.LEN_1, DR7_.LEN_2, or DR7_LEN 4, indicating how many bytes are cov-
ered by the register.

set_bl(unsigned addr, unsigned len, unsigned rw): FEnables breakpoint register 1.
set_b2(unsigned addr, unsigned len, unsigned rw): FEnables breakpoint register 2.

set_b3(unsigned addr, unsigned len, unsigned rw): Enables breakpoint register 3.

10.3.5 fp_reg.h: Floating point register definitions and accessor functions
SYNOPSIS

#include <oskit/x86/fpreg.h>

DESCRIPTION

XXX

This file contains the structure definition for saving the floating-point state and then restoring
it. It also contains definitions for the x87 control and status registers.

This header file is taken from CMU’s Mach kernel.

10.3.6 far_ptr.h: Far (segment:offset) pointers
SYNOPSIS

#include <oskit/x86/far ptr.h>

202 CHAPTER 10. KERNEL SUPPORT LIBRARY: LIBOSKIT KERN.A

DESCRIPTION

This contains struct definitions for creating “far pointers.” Far pointers on the x86 are those
that take an explicit segment in addition to the offset value.

struct far_pointer_16: 16-bit pointer structure which contains a 16-bit segment and a 16-bit
offset. The address is computed as segment jj 4 + offset.

struct far_pointer_32: 48-bit pointer which contains a 32-bit offset and a 16-bit segment
descriptor. Segmentation is used to determine what linear address is generated by these
pointers.

10.3.7 pio.h: Programmed I/O functions
SYNOPSIS

#include <oskit/x86/pio.h>

DESCRIPTION

These are macros for accessing I10-space directly on the x86. These instructions will generate
traps if executed in user-mode without permissions (either IOPL in the eflags register or access
via the io-bitmap in the tss).

iodelay(): A macro used to delay the processor for a short period of time, generally to wait
until programmed io can complete. The actual amount of time is indeterminate, since
the delay is accomplished by doing an inb from a nonexistent port, which depends on the
processor and chipset. ! The nominal delay value is 1uS for most machines.

inl(port): Returns 32-bit value from port
inw(port): Returns 16-bit value from port
inb(port): Returns 8-bit value from port

inl p(port): inlfollowed immediately by iodelay
inw_p(port): inw followed immediately by iodelay
inb_p(port): inb followed immediately by iodelay
outl(port, wval): Send 32-bit val out port.
outw(port, val): Send 16-bit val out port.
outb(port, wal): Send 8-bit val out port.

outl p(port): outlfollowed immediately by iodelay
outw_p(port): outw followed immediately by iodelay
outb_p(port): outb followed immediately by iodelay

The above macros have versions that begin with ¢76_, which are defined to be the same. It may
be desirable to use the i16_ versions in 16-bit code in place of the normal macros for clarity.

This header file is taken from CMU’s Mach kernel.

10.3.8 seg.h: Segment descriptor data structure definitions and constants
SYNOPSIS

#include <oskit/x86/seg.h>

IThe port used is 0x80, which was the page register for DMA channel 0 on the PC and PC/XT (A16-A19). The PC/AT
and newer computers use port 0x87 for A16-A23 instead.

10.3. GENERIC LOW-LEVEL DEFINITIONS 203

DESCRIPTION

XXX

struct x86_desc: Normal segment descriptors.

struct x86_gate: Trap, interrupt, and call gates.

struct pseudo_descriptor: Used to load the IDT and GDT (and LDT).
sel_idx(sel): Converts the selector into an index in the descriptor table.
ISPL(s): Returns the selector’s privilege level.

USERMODE(s, f):

KERNELMODE (s, f):

fill descriptor(struct x86_desc *desc, unsigned base, unsigned limit, unsigned char access, unsigne
Fill a segment descriptor.

fill descriptor_base(struct x86_desc *desc, unsigned base): Set the base addressin a
segment, descriptor.

fill descriptor_limit(struct x86_desc *desc, unsigned limit): Set the limit in a seg-
ment descriptor.

fill gate(struct x86_gate *gate, unsigned offset, unsigned short selector, unsigned char access, un
Fill an x86 gate descriptor.

This header file is based on a file in CMU’s Mach kernel.

10.3.9 gate_init.h: Gate descriptor initialization support
SYNOPSIS

#include <oskit/x86/gate_init.h>

DESCRIPTION

This file contains the C structures and assembly-language macro definitions used to build x86
gate descriptor tables suitable for use by gate_init (see Section 10.5.10).

struct gate_init_entry: C structure describing a gate descriptor.

GATE_INITTAB BEGIN(name): Starts assembly-language definition of a gate descriptor table.
GATE ENTRY(n, entry, type): Initializes an element of a gate descriptor table.
GATE_INITTAB_END: Defines the end of a gate descriptor table.

The assembly-language macros are designed to be used while writing trap entrypoint routines.
See oskit/libkern/x86/base_trap_inittab.S for example code that uses this facility.

10.3.10 trap.h: Processor trap vectors
SYNOPSIS

#include <oskit/x86/trap.h>

204

CHAPTER 10. KERNEL SUPPORT LIBRARY: LIBOSKIT KERN.A

DESCRIPTION

XXX

This contains the definitions for the trap numbers returned by the processor when something
goes ‘wrong’. These can be used to determine the cause of the trap.

T_DIVIDE_ERROR:

T_DEBUG:

T_NMI: non-maskable interrupt
T_INT3:

T_OVERFLOW: overflow test
T_OUT_OF_BOUNDS: bounds check
T_INVALID_OPCODE:

T_NO_FPU:

T_DOUBLE_FAULT:

T_FPU_FAULT:

T_INVALID_TSS:

T_SEGMENT NOT_PRESENT:
T_STACK_FAULT:

T_GENERAL _PROTECTION:

T_PAGE FAULT: T_PF_PROT: protection violation; T_.PF_WRITE: write access; T_PF_USER:

from user state

T_FLOATING_POINT_ERROR:
T_ALIGNMENT_CHECK:
T_MACHINE_CHECK:

This header file is taken from CMU’s Mach kernel.

10.3.11

paging.h: Page translation data structures and constants

DESCRIPTION

XXX
This header file is derived from Mach’s intel/pmap.h.

10.3.12

SYNOPSIS

tss.h: Processor task save state structure definition

#include <oskit/x86/tss.h>

struct x86_tss {

int
int
int
int
int
int
int

back_link; /* previous task’s segment, if nested */
esp0; /* initial stack pointer ... */

ss0; /* and segment for ring O */

espl; /* initial stack pointer ... */

ssl; /* and segment for ring 1 */

esp2; /* initial stack pointer ... */

ss2; /* and segment for ring 2 */

GENERIC LOW-LEVEL DEFINITIONS

10.3. [xzdl

int cr3; /x*
int eip; /*
int eflags;
int eax; /x*
int ecx; /x*
int edx; /x*
int ebx; /*
int esp; /*
int ebp; /*
int esi; /x*
int edi; /x*
int es; /*
int cs; /*
int ss; /%
int ds; /*
int fs; /*
int gs; /*
int

unsigned short trace_trap; /* trap on switch to task */
unsigned short io_bit_map_offset; /* offset to I0 perm bitmap */

};

CR3 - page table physical address */
eip */
/* eflags */
eax */
ecx */
edx */
ebx */
current stack pointer (ring 3) */
ebp */
esi */
edi */
es */
cs */
current stack segment (ring 3) */
ds */
fs */
gs */

1dt; /* local descriptor table segment */

DESCRIPTION

XXX
XXX only the 32-bit version

This contains the definition of a 32-bit tss. The tss used by the 80286 is incompatible with this.

This header file is taken from CMU’s Mach kernel.

205

206 CHAPTER 10. KERNEL SUPPORT LIBRARY: LIBOSKIT KERN.A

10.4 Generic Low-level Definitions

XXX
This section covers useful macros, definitions, and routines for “PC”-specific features.

10.4.1 irqg-list.h: Standard hardware interrupt assignments
SYNOPSIS

#include <oskit/x86/pc/irqlist.h>

DESCRIPTION

XXX

Many of the interrupt vectors have pre-defined uses. The rest of them can be assigned to ISA,
PCI, or other devices. This file contains the ‘defined’ interrupt usages.

10.4.2 pic.h: Programmable Interrupt Controller definitions
SYNOPSIS

#include <oskit/x86/pc/pic.h>

DESCRIPTION

XXX

This contains definitions for the 8259(A) Programmable Interrupt Controller (PIC). In addition
to numerous constants, it also contains the prototypes for several functions and macros.

pic_init(unsigned char master_base, unsigned char slave_base): MASTER_PIC_BASE
and SLAVES_PIC_BASE are also defined, and may be passed in as parameters.

pic_disable_irq(unsigned char irq):
pic_enable irq(unsigned char irq):
pic_test_irq(unsigned char irq):
pic_enable_all:

pic_disable_all:

pic_ack(irq):

10.4.3 keyboard.h: PC keyboard definitions
SYNOPSIS

#include <oskit/x86/pc/keyboard.h>

DESCRIPTION

XXX

This header file contains the register definitions for the PC keyboard. The port addresses are
defined, along with the status and control bits. This would be used by a keyboard device driver,
or someone manipulating they keyboard directly. (ie, to turn on and off the keyboard LEDs).

This header file is taken from CMU’s Mach kernel.

10.4. GENERIC LOW-LEVEL DEFINITIONS 207

10.4.4 rtc.h: NVRAM Register locations
SYNOPSIS

#include <oskit/x86/pc/rtc.h>

DESCRIPTION
This file is taken from FreeBSD (XXX cite?) and contains definitions for the standard NVRAM,
or Real Time Clock, register locations.
rtcin(unsigned char addr): Returns the 8-bit value from location addr.

rtcout (unsigned char addr, unsigned char val): Writes val to location addr.

208 CHAPTER 10. KERNEL SUPPORT LIBRARY: LIBOSKIT KERN.A

10.5 Processor Identification and Management

10.5.1 cpu_info: CPU identification data structure
SYNOPSIS

#include <oskit/x86/cpuid.h>
struct cpu_info {

unsigned stepping : 4; /* Stepping ID */
unsigned model : 4; /* Model */
unsigned family : 4; /* Family */
unsigned type : 2; /* Processor type */
unsigned feature flags; /* Features supported */
char vendor_id[12]; /* Vendor ID string */
unsigned char cache_config[16]; /* Cache information */
b
DESCRIPTION

This structure is used to hold identification information about x86 processors, such as information
returned by the CPUID instruction. The cpuid toolkit function, described below, fills in an
instance of this structure with information about the current processor.

Note that it is expected that the cpu_info structure will continue to grow in the future as new
x86-architecture processors are released, so client code should not depend on this structure in
ways that will break if the structure’s size changes.

The family field describes the processor family:

CPU_FAMILY 386: A 386-class processor.

CPU_FAMILY_486: A 486-class processor.

CPU_FAMILY PENTIUM: A Pentium-class (“586”) processor.
CPU_FAMILY PENTIUM_PRO: A Pentium Pro-class (“686”) processor.

The type field is one of the following;:

CPU_TYPE_ORIGINAL: Original OEM processor.
CPU_TYPE OVERDRIVE: OverDrive upgrade processor.
CPU_TYPE DUAL: Dual processor.

The feature flags field is a bit field containing the following bits:

CPUF_ON_CHIP_FPU: Set if the CPU has a built-in floating point unit.

CPUF_VM86_EXT: Set if the virtual 8086 mode extensions are supported, i.e., the VIF and VIP
flags register bits, and the VME and PVI bits in CR4.

CPUF_I0_BKPTS: Set if I/O breakpoints are supported, i.e., the DR7_.RW_.I0 mode defined in
x86/debug_reg.h.

CPUF_4MB PAGES: Set if 4MB superpages are supported, i.e., the INTEL PDE_SUPERPAGE page
directory entry bit defined in x86/paging.h.

CPUF_TS_COUNTER: Set if the on-chip timestamp counter and the RDTSC instruction are available.

CPUF_PENTIUMMSR: Set if the Pentium model specific registers are available.

CPUF_PAGE_ADDR_EXT: Set if the Pentium Pro’s page addressing extensions (36-bit physical ad-
dresses and 2MB pages) are available.

CPUF_MACHINE_CHECK_EXCP: Set if the processor supports the Machine Check exception (vector
18, or T_MACHINE CHECK in x86/trap.h).

10.5.

PROCESSOR IDENTIFICATION AND MANAGEMENT 209

CPUF_CMPXCHG8B: Set if the processor supports the CHPXCHG8B instruction (also known as “double-
compare-and-swap”).

CPUF_LOCAL_APIC: Set if the processor has a built-in local APIC (Advanced Programmable In-
terrupt Controller), for symmetric multiprocessor support.

CPUF_MEM _RANGE REGS: Set if the processor supports the memory type range registers.

CPUF_PAGE_GLOBAL_EXT: Set if the processor supports the global global paging extensions, i.e.,
the INTEL_PDE_GLOBAL page table entry bit defined in x86/paging.h.

CPUF_MACHINE_CHECK_ARCH: Set if the processor supports Intel’s machine check architecture and
the MCG_CAP model-specific register.

CPUF_CMOVCC: Set if the processor supports the CMOVcc instructions.
The cpuid.h header file also contains symbolic definitions for other constants such as the cache

configuration descriptor values; see the header file and the Intel documentation for details on
these.

10.5.2 cpuid: identify the current CPU

SYNOPSIS

#include <oskit/x86/cpuid.h>

void cpuid([out] struct cpu_info *out_info);

DESCRIPTION

This function identifies the CPU on which it is running using Intel’s recommended CPU identi-
fication procedure, and fills in the supplied structure with the information found.

Note that since the cpuid function is 32-bit code, it wouldn’t run on anything less than an 80386
in the first place; therefore it doesn’t bother to check for earlier processors.

PARAMETERS

out_info: The CPU information structure to fill in.

10.5.3 cpu_info_format: output a cpu_info structure in ASCII form

SYNOPSIS

#include <oskit/x86/cpuid.h>

void cpu_info_format(struct cpu_info *info, void (*formatter)(void *data, const char
*fmt, ...), void *data);

DESCRIPTION

This function takes the information in a cpu_info structure and formats it as human-readable
text. The formatter should be a pointer to a printf-like function to be called to format the
output data. The formatter function may be called multiple times to output all the relevant
information.

210 CHAPTER 10. KERNEL SUPPORT LIBRARY: LIBOSKIT KERN.A

PARAMETERS

info: The filled-in CPU information structure to output.

formatter: The printf-style formatted output function to call. It will be called with the opaque
data pointer provided, a standard C format string (fmt), and optionally a set of data items
to format.

data: An opaque pointer which is simply passed on to the formatter function.

10.5.4 cpu_info min: return the minimum feature set of two CPU information
structures

SYNOPSIS

#include <oskit/x86/cpuid.h>

void cpu_info_min(struct cpu_info *idl, struct cpu_info *id2);

DESCRIPTION

Determine the minimum (least-common-denominator) feature set of the two provided structures
and return that. The new feature set is returned in id1.

Typically used on SMP systems to determine the basic feature set common across all processors
in the system regardless of type.

PARAMETERS

id1, id2: The CPU information structures to compare.

10.5.5 cpu_info_dump: pretty-print a CPU information structure to the console
SYNOPSIS

#include <oskit/x86/cpuid.h>

void cpu_info_dump(struct cpu_info *info);

DESCRIPTION

This function is merely a convenient front-end to cpu_info_format; it simply formats the CPU
information and outputs it to the console using printf.

10.5.6 i16_enter_pmode: enter protected mode
SYNOPSIS

#include <oskit/x86/pmode.h>

void i16_enter_pmode(int prot_cs);

10.5. PROCESSOR IDENTIFICATION AND MANAGEMENT
DESCRIPTION

This 16-bit function switches the processor into protected mode by turning on the Protection
Enable (PE) bit in CR0. The instruction that sets the PE bit is followed immediately by a jump
instruction to flush the prefetch buffer, as recommended by Intel documentation.

The function also initializes the CS register with the appropriate new protected-mode code seg-
ment, whose selector is specified in the prot_cs parameter. The prot_cs must evaluate to a con-
stant, as it is used as an immediate operand in an inline assembly language code fragment.

This routine does not perform any of the other steps in Intel’s recommended mode switching
procedure, such as setting up the GDT or reinitializing the data segment registers; these steps
must be performed separately. The overall mode switching sequence is necessarily much more
dependent on various OS-specific factors such as the layout of the GDT; therefore the OSKit
does not, attempt to provide a “generic” function to perform the entire switch. Instead, the full
switching sequence is provided as part of the base environment setup code; see Section 10.10 for
more details.

10.5.7 i16_leave_pmode: leave protected mode

SYNOPSIS

#include <oskit/x86/pmode.h>
void i16_leave_pmode(int real_cs);

DESCRIPTION

This 16-bit function switches the processor out of protected mode and back into real mode by
turning off the Protection Enable (PE) bit in CRO. The instruction that clears the PE bit is
followed immediately by a jump instruction to flush the prefetch buffer, as recommended by
Intel documentation. At the same time, this function also initializes the CS register with the
appropriate real-mode code segment, specified by the real_cs parameter.

This routine does not perform any of the other steps in Intel’s recommended mode switching
procedure, such as reinitializing the data segment registers; these steps must be performed sep-
arately. See Section 10.10 for information on the full mode switch implementation provided by
the base environment.

10.5.8 paging enable: enable page translation

SYNOPSIS

#include <oskit/x86/paging.h>
void paging_enable(oskit_addr_t pdir);

DESCRIPTION

Loads the processor page directory using pdir and turns on paging.

The caller must already have created and initialized an appropriate initial page directory as
described in Intel documentation. The OSKit provides convenient facilities that can be used to
create x86 page directories and page tables; for more information, see Section 10.9.

This function assumes that pdir equivalently maps the physical memory that contains the cur-
rently executing code, the currently loaded GDT and IDT.

211

212 CHAPTER 10. KERNEL SUPPORT LIBRARY: LIBOSKIT KERN.A

10.5.9 paging disable: disable page translation
SYNOPSIS

#include <oskit/x86/paging.h>
void paging_disable(void);

DESCRIPTION

Turns paging off and flushes the TLB.

This function assumes that the currently loaded page directory equivalently maps the physical
memory that contains the currently executing code, the currently loaded GDT and IDT.

10.5.10 gate_init: install gate descriptors
SYNOPSIS

#include <oskit/x86/gate_init.h>

void gate_init(struct x86_gate *dest, const struct gate_init_entry *src, unsigned en-
try_cs);

DESCRIPTION

Install entries in a processor descriptor table from the specified array of gate descriptors (see
Section 10.3.9). Typically used to initialize the processor IDT with trap and interrupt vectors
(see Section 10.7.4).

PARAMETERS

dest: Pointer to the x86 descriptor table to fill in.
src: Pointer to the gate_init_entry array to copy from.

entry-cs: Code segment selector to associate with all entries.

DEPENDENCIES

fill gate: 10.3.8

10.6. BASE ENVIRONMENT 213

10.6 Base Environment

The base environment code for the x86 architecture is designed to assist the OS developer in dealing with
much of the “x86 grunge” that OS developers typically would rather not worry about. The OSKit provides
easy-to-use primitives to set up and maintain various common flavors of x86 kernel environments without
unnecessarily constraining the OS implementation. The base environment support on the x86 architecture
is divided into the three main categories: segmentation, paging, and trap handling. The base environment
support code in each category is largely orthogonal and easily separable, although it is also designed to work
well together.

10.6.1 Memory Model

The x86 architecture supports a very complex virtual memory model involving both segmentation and
paging; one of the goals of the OSKit’s base environment support for the x86 is to smooth over some of this
complexity, hiding the details that the OS doesn’t want to deal with while still allowing the OS full freedom
to use the processor’s virtual memory mechanisms as it sees fit. This section describes the memory models
supported and assumed by the base environment.

First, here is a summary of several important terms that are used heavily used in the following text; for
full details on virtual, linear, and physical addresses on the x86 architecture, see the appropriate processor
manuals.

e Physical addresses are the actual addresses seen on external I/O and memory busses, after segmentation
and paging transformations have been applied.

e Linear addresses are absolute 32-bit addresses within the x86’s paged address space, after segmen-
tation has been applied but before page translation. The virtual addresses of simple “paging-only”
architectures such as Mips correspond to linear addresses on the x86.

o Virtual addresses are the logical addresses used by program code to access memory. To read an
instruction or access a data item, the processor first converts the virtual address into a linear address
using the segmentation mechanism, then translates the linear address to a physical address using

paging.

e Kernel virtual addresses are the virtual addresses normally used by kernel code to access its own func-
tions and data structures: in other words, addresses accessed through the kernel’s segment descriptors.

The OSKit provides a standard mechanism, defined in base_vm.h (see Section 10.6.2), which is used
throughout the base environment to maintain considerable independence from the memory model in effect.
These facilities allow the base environment support code to avoid various assumptions about the relationships
between kernel virtual addresses, linear addresses, and physical addresses. Client OS code can use these
facilities as well if desired.

Of course, it is impractical for the base environment code to avoid assumptions about the memory
model completely. In particular, the code assumes that, for “relevant” code and data (e.g., the functions
implementing the base environment and the data structures they manipulate), kernel virtual addresses can
be converted to and from linear or physical addresses by adding or subtracting an offset stored in a global
variable. However, the code does not assume that these offsets are always the same (the client OS is
allowed to change them dynamically), or that all available physical memory is mapped into the kernel’s
virtual address space, or that all linear memory is accessible through the kernel’s data segment descriptors.
Detailed information about the memory model assumptions made by particular parts of the base environment
support are documented in the appropriate API sections.

If the OSKit’s startup code is being used to start the OS, then the specific memory model in effect
initially depends on the startup environment, described in later the appropriate sections. For example, for
kernels booted from a MultiBoot boot loader, in the initial memory environment virtual addresses, linear
addresses, and physical addresses are all exactly equal (the offsets are zero). On the other hand, for kernels
loaded from DOS, linear addresses and physical addresses will still be equal but kernel virtual addresses will
be at some offset depending on where in physical memory the kernel was loaded. Regardless of the initial
memory setup, the client OS is free to change the memory model later as necessary.

214 CHAPTER 10. KERNEL SUPPORT LIBRARY: LIBOSKIT KERN.A

XXX example memory maps
XXX explain how to change memory models at run-time

10.6.2 Dbase_vm.h: definitions for the base virtual memory environment
SYNOPSIS

#include <oskit/machine/base_vm.h>

DESCRIPTION

This header file provides generic virtual memory-related definitions commonly used throughout
the base environment, which apply to both segmentation and paging. In particular, this file
defines a set of macros and global variables which allow the rest of the base environment code in
the toolkit (and the client OS, if it chooses) to maintain independence from the memory model in
effect. These facilities allow code to avoid various assumptions about the relationships between
kernel virtual addresses, linear addresses, and physical addresses.

The following variable and associated macros are provided to convert between linear and kernel
virtual addresses.

linear base va: This global variable defines the address in kernel virtual memory that cor-
responds to address 0 in linear memory. It is used by the following conversion macros;
therefore, changing this variable changes the behavior of the associated macros.

lintokv(la): This macro converts linear address la into a kernel virtual address and returns
the result as an oskit_addr_t.

kvtolin(wa): For example, the segmentation initialization code uses kvtolin() to calculate
the linear addresses of segmentation structures to be used in segment descriptor or pseudo-
descriptor structures provided to the processor.

Similarly, the following variable and associated macros convert between physical and kernel virtual
addresses. (Conversions between linear and physical addresses can be done by combining the two
sets of macros.)

physmem va: This global variable defines the address in kernel virtual memory that corresponds
to address 0 in physical memory. It is used by the following conversion macros; therefore,
changing this variable changes the behavior of the associated macros.

phystokv(pa): This macro converts physical address pa into a kernel virtual address and returns
the result as an oskit_addr_t. The macro makes the assumption that the specified physical
address can be converted to a kernel virtual address this way: in OS kernels that do not
direct-map all physical memory into the kernel’s virtual address space, the caller must
ensure that the supplied pa refers to a physical address that is mapped. For example, the
primitive page table management code provided by the OSKit’s base environment uses this
macro to access page table entries given the physical address of the page table; therefore,
these functions can only be used if page tables are allocated from physical pages that are
direct-mapped into the kernel’s address space.

kvtophys(va): This macro converts kernel virtual address va into a physical address and returns
the result as an oskit_addr_t. The macro assumes that the virtual address can be converted
directly to a physical address this way; the caller must ensure that this is the case. For
example, some operating systems only direct-map the kernel’s code and statically allocated
data; in such kernels, va should only refer to statically-allocated variables or data structures.
This is generally sufficient for the OSKit’s base environment code, which mostly operates on
statically-allocated data structures; however, the OS must of course take its chosen memory
model into consideration if it uses these macros as well.

10.6.

BASE ENVIRONMENT

XXX real_cs

Note that there is nothing in this header file that defines or relates to “user-mode” address spaces.
This is because the base environment code in the OSKit is not concerned with user mode in any
way; in fact, it doesn’t even care whether or not the OS kernel implements user address spaces at
all. For example, boot loaders or unprotected real-time kernels built using the OSKit probably
do not need any notion of user mode at all.

10.6.3 base_cpu_setup: initialize and activate the base CPU environment

SYNOPSIS

#include <oskit/machine/base_cpu.h>
void base_cpu_setup(void);

DESCRIPTION

This function provides a single entrypoint to initialize and activate all of the processor struc-
tures necessary for ordinary execution. This includes identifying the CPU, and initializing and
activating the base GDT, IDT, and TSS, and reloading all segment registers as recommended by
Intel. The call returns with the CS segment set to KERNEL_CS (the default kernel code segment;
see 10.7.1 for details), DS, ES, and SS set to KERNEL DS (the default kernel data segment), and FS
and GS set to 0. After the base_cpu_setup call completes, a full working kernel environment is
in place: segment registers can be loaded, interrupts and traps can be fielded by the OS, privilege
level changes can occur, etc.

This function does not initialize or activate the processor’s paging mechanism, since unlike the
other mechanisms, paging is optional on the x86 and not needed in some environments (e.g., boot
loaders or embedded kernels).

The base_cpu_setup function is actually just a simple wrapper that calls base_cpu_init followed
by base_cpu_load.

Note that it is permissible to call this function (and/or the more primitive functions it is built
on) more than once. This is particularly useful when reconfiguring the kernel memory map. For
example, a typical MultiBoot (or other 32-bit) kernel generally starts out with paging disabled, so
it must run in the low range of linear /physical memory. However, after enabling page translation,
the OS may later want to relocate itself to run at a higher address in linear memory so that
application programs can use the low part (e.g., v86-mode programs). An easy way to do this with
the OSKit is to call base_cpu_setup once at the very beginning, to initialize the basic unpaged
kernel environment, and then later, after paging is enabled and appropriate mappings have been
established in high linear address space, modify the linear base_va variable (Section 10.6.2) to
reflect the kernel’s new linear address base, and finally call base_cpu_setup again to reinitialize
and reload the processor tables according to the new memory map.

DEPENDENCIES

base_cpu_init: 10.6.4
base_cpu_load: 10.6.5

10.6.4 Dbase_cpu_init: initialize the base environment data structures

SYNOPSIS

#include <oskit/machine/base_cpu.h>
void base_cpu_init(void);

215

216 CHAPTER 10. KERNEL SUPPORT LIBRARY: LIBOSKIT KERN.A

DESCRIPTION

This function initializes all of the critical data structures used by the base environment, including
base_cpuid, base_idt, base_gdt, and base_tss, but does not actually activate them or otherwise
modify the processor’s execution state. The base_cpu_load function must be called later to
initialize the processor with these structures. Separate initialization and activation functions are
provided to allow the OS to customize the processor data structures if necessary before activating

them.
DEPENDENCIES
cpuid: 10.5.2

base_trap_init: 10.8.2
base gdt_init: 10.7.2

base_tss_init: 10.7.7

10.6.5 Dbase_cpu_load: activate the base processor execution environment
SYNOPSIS

#include <oskit/machine/base_cpu.h>

void base_cpu_load(void);

DESCRIPTION

This function loads the critical base environment data structures (in particular, the GDT, IDT,
and TSS) into the processor, and reinitializes all segment registers from the new GDT as recom-
mended in Intel processor documentation. The structures must already have been set up by a
call to base_cpu_init and/or custom initialization code in the client OS.

This function returns with the CS segment set to KERNEL_CS (the default kernel code segment; see
Section 10.7.1 for details), DS, ES, and SS set to KERNEL DS (the default kernel data segment), and
FS and GS set to 0. After the base_cpu_load call completes, a full working kernel environment is
in place: segment registers can be loaded, interrupts and traps can be fielded by the OS, privilege
level changes can occur, etc.

DEPENDENCIES

base_gdt_load: 10.7.3
base_idt_load: 10.7.5
base_tss_load: 10.7.8

10.6.6 base_cpuid: global variable describing the processor
SYNOPSIS

#include <oskit/machine/base_cpu.h>

extern struct cpu_info base_cpuid;

10.6. BASE ENVIRONMENT 217

DESCRIPTION

This is a global variable that is filled in by base_cpu_init with information about the processor
on which base_cpu_init was called. (Alternatively, it can also be initialized manually by the
OS simply by calling cpuid (&base_cpuid)). This structure is used by other parts of the kernel
support library to determine whether or not certain processor features are available, such as 4MB
superpages. See 10.5.1 for details on the contents of this structure.

Note that in a multiprocessor system, this variable will reflect the boot processor. This is generally
not a problem, since most SMPs use identical processors, or at least processors in the same
generation, so that they appear equivalent to OS software. (For example, it is very unlikely that
you’d find an SMP that mixes 486 and Pentium processors), However, if this ever turns out to
be a problem, the OS can always override the cpuid or base_cpu_init function, or just modify
the contents of the base_cpuid variable after calling base_cpu_init so that it reflects the least
common denominator of all the processors.

10.6.7 Dbase_stack.h: default kernel stack
SYNOPSIS

#include <oskit/machine/base_stack.h>

DESCRIPTION
Definitions related to the default kernel stack.

BASE_STACK_SIZE: Preprocessor constant defining the size in bytes of the default kernel stack.

base_stack_start: C external variable declaration for the low-address end of the stack. On the
x86, this is the end toward which the stack grows.

base_stack._end: C external variable declaration for the high-address end of the stack (base_stack_start
+ BASE_STACK_SIZE). On the x86, this is the end where the stack begins.

This header file can be used in assembly language code as well as C.

218 CHAPTER 10. KERNEL SUPPORT LIBRARY: LIBOSKIT KERN.A

10.7 Base Environment: Segmentation Support

Although most modern operating systems use a simple “flat” address space model, the x86 enforces a
segmentation model which cannot be disabled directly; instead, it must be set up to emulate a flat address
space model if that is what the OS desires. The base environment code provides functionality to set up a
simple flat-model processor environment suitable for many types of kernels, both “micro” and “macro.” For
example, it provides a default global descriptor table (GDT) containing various flat-model segments for the
kernel’s use, as well as a default task state segment (TSS).

Furthermore, even though this base environment is often sufficient, the client OS is not limited to using
it exactly as provided by default: the client kernel is given the flexibility to tweak various parameters,
such as virtual and linear memory layout, as well as the freedom to operate completely outside of the base
environment when necessary. For example, although the base environment provides a default TSS, the OS
is free to create its own TSS structures and use them when running applications that need special facilities
such as v86 mode or I/O ports. Alternatively, the OS could use the default processor data structures only
during startup, and switch to its own complete, customized set after initialization.

The base environment code in the OSKit generally assumes that it is running in a simple flat model, in
which only one code segment and one data segment are used for all kernel code and data, respectively, and
that the code and data segments are synonymous (they each map to the same range of linear addresses).
The OS is free to make more exotic uses of segmentation if it so desires, as long as the OSKit code is run in
a consistent environment.

XXX diagram of function call tree?

The base segmentation environment provided by the OSKit is described in more detail in the following
APT sections.

10.7.1 Dbase_gdt: default global descriptor table for the base environment
SYNOPSIS

#include <oskit/x86/basegdt.h>
extern struct x86_desc base_gdt[GDTSZ];

DESCRIPTION

This variable is used in the base environment as the default global descriptor table. The de-
fault base_gdt definition contains GDTSZ selector slots, including the Intel-reserved, permanently
unused slot 0.

The following symbols are defined in base_gdt.h to be segment selectors for the descriptors in the
base GDT. These selectors can be converted to indices into the GDT descriptor array base_gdt
by dividing by 8 (the processor reserves the low three bits of all selectors for other information).

BASE_TSS: A selector for the base task state segment (base_tss). The BASE_TSS segment de-
scriptor is initialized by base_gdt_init, but the base_tss structure itself is initialized by
base_tss_init and loaded into the processor by base_tss_load; see Section 10.7.6 for more
details.

KERNEL_CS: This is the default kernel code segment selector. It is initialized by base_gdt_init
to be a flat-model, 4GB, readable, ring 0 code segment; base_gdt_load loads this segment
into the CS register while reinitializing the processor’s segment registers.

KERNEL.DS: This is the default kernel data segment selector. It is initialized by base_gdt_init
to be a flat-model, 4GB, writable, ring 0 data segment; base_gdt_load loads this segment
into the DS, ES, and SS registers while reinitializing the processor’s segment registers.

KERNEL_16_CS: This selector is identical to KERNEL_CS except that it is a 16-bit code segment
(the processor defaults to 16-bit operand and addressing modes rather than 32-bit while
running code in this segment), and it has a 64KB limit rather than 4GB. This selector is
used when switching between real and protected mode, to provide an intermediate 16-bit

10.7. BASE ENVIRONMENT: SEGMENTATION SUPPORT 219

protected mode execution context. It is unused in kernels that never execute in real mode
(e.g., typical MultiBoot kernels).

KERNEL_16_DS: This selector is a data segment synonym for KERNEL_16_CS; it is generally only
used when switching from protected mode back to real mode. It is used to ensure that
the segment registers contain sensible real-mode values before performing the switch, as
recommended in Intel literature.

LINEAR CS: This selector is set up to be a ring 0 code segment that directly maps the entire
linear address space: in other words, it has an offset of zero and a 4GB limit. In some
environments, where kernel virtual addresses are the same as linear addresses, this selector
is a synonym for KERNEL_CS.

LINEAR DS: This is a data segment otherwise identical to LINEAR _CS.

USER_CS: This selector is left unused and uninitialized by the OSKit; nominally, it is intended
to be used as a code segment for unprivileged user-level code.

USERDS: This selector is left unused and uninitialized by the OSKit; nominally, it is intended
to be used as a data segment for unprivileged user-level code.

If the client OS wants to make use of the base GDT but needs more selector slots for its own
purposes, it can define its own instance of the base_gdt variable so that it has room for more
than GDTSZ elements; base_gdt_init will initialize only the first “standard” segment descriptors,
leaving the rest for the client OS’s use.

On multiprocessor systems, the client OS may want each processor to have its own GDT. In this
case, the OS can create a separate clone of the base GDT for each additional processor besides
the boot processor, and leave the boot processor using the base GDT. Alternatively, the OS could
use the base GDT only during initialization, and switch all processors to custom GDTs later;
this approach provides the most flexibility to the OS, since the custom GDTs can be arranged
in whatever way is most convenient.

10.7.2 base_gdt_init: initialize the base GDT to default values
SYNOPSIS

#include <oskit/x86/basegdt.h>
void base_gdt_init(void); void i16_base_gdt_init(void);

DESCRIPTION

This function initializes the standard descriptors in the base GDT as described in Section 10.7.1.

For all of the standard descriptors except LINEAR_CS and LINEARDS, the kvtolin macro is
used to compute the linear address to plug into the offset field of the descriptor: for BASE_TSS,
this is kvtolin(&base_tss); for the kernel code and data segments, it is kvtolin(0) (i.e., the
linear address corresponding to the beginning of kernel virtual address space). LINEAR.CS and
LINEARDS are always given an offset of 0.

A 16-bit version of this function, 116 _base_gdt_init, is also provided so that the GDT can be
initialized properly before the processor has been switched to protected mode. (Switching to
protected mode on the x86 according to Intel’s recommended procedure requires a functional
GDT to be already initialized and activated.)

DEPENDENCIES

fill descriptor: 10.3.8
kvtolin: 10.6.2
base_gdt: 10.7.1
base_tss: 10.7.6

220 CHAPTER 10. KERNEL SUPPORT LIBRARY: LIBOSKIT KERN.A

10.7.3 Dbase_gdt_load: load the base GDT into the CPU
SYNOPSIS

void base_gdt_load(void); void i16_base_gdt_load(void);

DESCRIPTION

This function loads the base GDT into the processor’s GDTR, and then reinitializes all segment
registers from the descriptors in the newly loaded GDT. It returns with the CS segment set to
KERNEL_CS (the default kernel code segment; see Section 10.7.1 for details), DS, ES, and SS set
to KERNEL DS (the default kernel data segment), and FS and GS set to 0.

DEPENDENCIES

kvtolin: 10.6.2
base_gdt: 10.7.1

10.7.4 base_idt: default interrupt descriptor table
SYNOPSIS

#include <oskit/x86/base_idt.h>
extern struct x86_desc base_idt[IDTSZ];

DESCRIPTION

This global variable is used in the base environment as the default interrupt descriptor table.
The default definition of base_idt in the library contains the architecturally-defined maximum
of 256 interrupt vectors (IDTSZ).?

The base_idt.h header file does not define any symbols representing interrupt vector num-
bers. The lowest 32 vectors are the processor trap vectors defined by Intel; since these are not
specific to the base environment, they are defined in the generic header file x86/trap.h (see
Section 10.3.10). Standard hardware interrupt vectors are PC-specific, and therefore are de-
fined separately in x86/pc/irq_list.h (see Section 10.4.1). For the same reason, there is no
base_idt_init function, only separate functions to initialize the trap vectors in the base IDT
(base_trap_init, Section 10.8.2), and hardware interrupt vectors in the IDT (base_irq-init,
Section 10.12.3).

10.7.5 base_idt_load: load the base IDT into the current processor
SYNOPSIS

#include <oskit/x86/base_idt.h>
void base_idt_load(void);

2Rationale: Although simple x86 PC kernels often only use the 32 processor trap vectors plus 16 interrupt vectors,
which set of vectors are used for hardware interrupts tends to differ greatly between kernels. Some kernels also want to use
well-known vectors for efficient system call emulation, such as 0x21 for DOS or 0x80 for Linux. Some bootstrap mechanisms,
such as VCPI on DOS, must determine at run-time the set of vectors used for hardware interrupts, and therefore potentially
need all 256 vectors to be available. Finally, making use of the enhanced interrupt facilities on Intel SMP Standard-compliant
multiprocessors generally requires use of higher vector numbers, since vector numbers are tied to interrupt priorities. For all
these reasons, we felt the default IDT should be of the maximum size, even though much of it is usually wasted.

10.7. BASE ENVIRONMENT: SEGMENTATION SUPPORT 221

DESCRIPTION

This function loads the base_idt into the processor, so that subsequent traps and hardware
interrupts will vector through it. It uses the kvtolin macro to compute the proper linear address
of the IDT to be loaded into the processor.

DEPENDENCIES

kvtolin: 10.6.2
base_idt: 10.7.4

10.7.6 base_tss: default task state segment
SYNOPSIS

#include <oskit/x86/base_tss.h>
extern struct x86_tss base_tss;

DESCRIPTION

The base_tss variable provides a default task state segment that the OS can use for privilege level
switching if it does not otherwise use the x86’s task switching mechanisms. The x86 architecture
requires every protected-mode OS to have at least one TSS even if no task switching is done;
however, many x86 kernels do not use the processor’s task switching features because it is faster
to context switch manually. Even if special TSS segments are used sometimes (e.g., to take
advantage of the I/O bitmap feature when running MS-DOS programs), the OS can still use a
common TSS for all tasks that do not need to use these special features; this is the strategy taken
by the Mach kernel, for example. The base_tss provided by the toolkit serves in this role as a
generic “default” TSS.

The base_tss is a minimal TSS, in that it contains no I/O bitmap or interrupt redirection map.
XXX The toolkit also supports an alternate default TSS with a full I/O permission bitmap, but
it isn’t fully integrated or documented yet.

10.7.7 base_tss_init: initialize the base task state segment
SYNOPSIS

#include <oskit/x86/base_tss.h>
void base_tss_init(void);

DESCRIPTION

The base_tss_init function initializes the base_tss to a valid minimal state. It sets the I/O
permission bitmap offset to point past the end of the TSS, so that it will be interpreted by the
processor as empty (no permissions for any I/O ports). It also initializes the ring 0 stack segment
selector (ss0) to KERNEL DS, and the ring 0 stack pointer (esp0) to the current stack pointer
value at the time of the function call, to provide a minimal working context for trap handling.
Once the OS kernel sets up a “real” kernel stack, it should reinitialize base_tss.esp0 to point
to that.

DEPENDENCIES

base_tss: 10.7.6

222 CHAPTER 10. KERNEL SUPPORT LIBRARY: LIBOSKIT KERN.A

10.7.8 base_tss_load: load the base TSS into the current processor
SYNOPSIS

#include <oskit/x86/base_tss.h>
void base_tss_load(void);

DESCRIPTION
This function activates the base_tss in the processor using the LTR instruction, after clear the
busy bit in the BASE_TSS segment descriptor to ensure that a spurious trap isn’t generated.
DEPENDENCIES

base_gdt: 10.7.1

10.8. BASE ENVIRONMENT: TRAP HANDLING 223

10.8 Base Environment: Trap Handling

The first 32 vectors in the IDT are used to handle processor exceptions (“traps”). In the base OSKit envi-
ronment, these vectors are initialized from the base_trap_inittab array (10.8.3) using the base_trap_init
function (10.8.2). By default, each exception vector in the processor IDT is set to point to a common
assembly language stub that saves a standard trap frame (10.8.1), and calls a designated high-level han-
dler specified in the base_trap_handlers table (10.8.4). Initially, all the entries in this table point to
base_trap_default_handler (10.8.5). Custom trap handlers can be installed by changing the appropriate
entry in the table. The default action for all traps can be changed by overriding base_trap_default_handler.

This affords client OSes with a variety of choices for modifying the behavior of trap handling. By using
the base trap environment unchanged (i.e., the client OS is not expecting or handling traps), all traps will
produce a trap dump and panic. This behavior is sufficient for most simple OSKit applications. By setting
entries base_trap_handlers, the client can provide its own C language trap handlers while still using the
default trap_state structure. The OSKit remote GDB debugging package (10.17.5) does this. Finally, the
client OS can override base_trap_inittab to allow for different high-level handlers for every exception type
and/or to permit the use of a different trap state format.

10.8.1 trap_state: saved state format used by the default trap handler
SYNOPSIS

#include <oskit/x86/base_trap.h>

struct trap_state

{

/* Saved segment registers x/
unsigned int gs;

unsigned int fs;

unsigned int es;

unsigned int ds;

/* PUSHA register state frame */

unsigned int edi;
unsigned int esi;
unsigned int ebp;
unsigned int cr2; /* we save cr2 over esp for page faults */
unsigned int ebx;
unsigned int edx;
unsigned int ecx;
unsigned int eax;

/* Processor trap number, 0-31. x*/
unsigned int trapno;

/* Error code pushed by the processor, 0 if none. */
unsigned int err;

/* Processor state frame */

unsigned int eip;
unsigned int cs;
unsigned int eflags;
unsigned int esp;
unsigned int ss;

/* Virtual 8086 segment registers */

224 CHAPTER 10. KERNEL SUPPORT LIBRARY: LIBOSKIT KERN.A

unsigned int v86_es;
unsigned int v86_ds;
unsigned int v86_Tfs;
unsigned int v86_gs;
s

DESCRIPTION

This structure defines the saved state frame pushed on the stack by the default trap entrypoints
provided by the base environment (see Section 10.8.3). It is also used by the trap_dump rou-
tine, which is used in the default environment to dump the saved register state and panic if an
unexpected trap occurs; and by gdb_trap, the default trap handler for remote GDB debugging.

This client OS is not obligated to use this structure as the saved state frame for traps it handles;
if this structure is not used, then the OS must also override (or not use) the dependent routines
mentioned above.

The structure elements from err down corresponds to the basic trap frames pushed on the stack
by the x86 processor. (For traps in which the processor does not push an error code, the default
trap entrypoint code sets err to zero.) The structure elements from esp down are only pushed
by traps from lower privilege (rings 1-3), and the structure elements from v86_es down are only
pushed by traps from v86 mode.

The rest of the state frame is pushed manually by the default trap entrypoint code. The saved
integer register state is organized in a format compatible with the processor’s PUSHA instruction.
However, in the slot that would otherwise hold the pushed ESP (which is useless since it is the trap
handler’s stack pointer rather than the trapping code’s stack pointer), the default trap handler
saves the CR2 register (page fault linear address) during page faults.

This trap state structure is borrowed from Mach.

10.8.2 Dbase_trap_init: initialize the processor trap vectors in the base IDT
SYNOPSIS

#include <oskit/x86/base_trap.h>
void base_trap_init(void);

DESCRIPTION
This function initializes the processor trap vectors in the base IDT to the default trap entrypoints
defined in base_trap_inittab.

DEPENDENCIES

gate_init: 10.5.10
base_idt: 10.7.4
base_trap_inittab: 10.8.3

10.8.3 Dbase_trap_inittab: initialization table for the default trap entrypoints
SYNOPSIS

#include <oskit/x86/base_trap.h>
extern struct gate_init_entry base_trap_inittab[];

10.8. BASE ENVIRONMENT: TRAP HANDLING 225

DESCRIPTION

This gate initialization table (see Section 10.3.9) encapsulates the base environment’s default
trap entrypoint code. This module provides IDT entrypoints for all of the processor-defined
trap vectors; each entrypoint pushes a standard state frame on the stack (see Section 10.8.1),
and then calls the C function pointed to by the corresponding entry in base_trap handlers
array (see Section 10.8.4). Through these entrypoints, the OSKit provides the client OS with a
convenient, uniform method of handling all processor traps in ordinary high-level C code.

If a trap occurs and the trap entrypoint code finds that the corresponding entry in base_trap handlers
is null, or if it points to a handler routine but the handler returns a nonzero value indicating
failure, the entrypoint code calls trap_dump_panic (see Section 10.8.7) to dump the register state
to the console and panic the kernel. This behavior is typically appropriate in kernels that do
not expect traps to occur during proper operation (e.g., boot loaders or embedded operating
systems), where a trap probably indicates a serious software bug.

On the other hand, if a trap handler is present and returns success (zero), the entrypoint code
restores the saved state and resumes execution of the trapping code. The trap handler may
change the contents of the trap_state structure passed by the entrypoint code; in this case, final
contents of the structure on return from the trap handler will be the state restored.

All of the IDT entries initialized by the base_trap_inittab are trap gates rather than interrupt
gates; therefore, if hardware interrupts are enabled when a trap occurs, then interrupts will still
be enabled during the trap handler unless the trap handler explicitly disables them. If the OS
wants interrupts to be disabled during trap handling, it can change the processor trap vectors
in the IDT (vectors 0-31) into interrupt gates, or it can simply use its own trap entrypoint code
instead.

DEPENDENCIES

struct trap_state: 10.8.1
base_trap_handlers: 10.8.4
trap_dump_panic: 10.8.7

10.8.4 base_trap_handlers: Array of handler routines for hardware traps
SYNOPSIS

#include <oskit/x86/base_trap.h>
void (xbase_trap_handlers[BASE_.TRAP_COUNT]) (struct trap_state *ts);

DESCRIPTION

Contains a function pointer for every hardware trap vector. By default, all entries in this table
point to base_trap_default_handler, which will simply dump the register state to the console
and panic. The client OS can set entries in this table to point to its own trap handler function(s),
or to alternative trap handlers supplied by the OSKit, such as the remote GDB debugging trap
handler, gdb_trap (see Section 10.17.5).

PARAMETERS

state: A pointer to the trap state structure to dump.

RETURNS

The trap handler returns zero (success) to resume execution, or nonzero (failure) to cause the
entrypoint code to dump the register state and panic the kernel.

226 CHAPTER 10. KERNEL SUPPORT LIBRARY: LIBOSKIT KERN.A

10.8.5 base_trap_default_handler: default trap handler for unexpected traps
SYNOPSIS

#include <oskit/x86/pc/base_trap.h>
void base_trap_default_handler(struct trap_state *state);

DESCRIPTION

This routine is the default handler for all traps in the base environment. It simply displays
displays the trap state information and then calls panic.

It is expected that the client OS will override entries in the base_trap_handlers array for traps
it cares about. Alternatively, the client OS may override the base_trap_default_handler en-
trypoint entirely.

PARAMETERS

state: A pointer to the processor state at the time of the interrupt.

DEPENDENCIES

struct trap_state: 10.8.1

10.8.6 trap_dump: dump a saved trap state structure
SYNOPSIS

#include <oskit/x86/base_trap.h>
void trap_dump(const struct trap_state *state);

DESCRIPTION

This function dumps the contents of the specified trap state frame to the console using the printf
function, in a simple human-readable form. The function is smart enough to determine whether
the trap occurred from supervisor mode, user mode, or v86 mode, and interpret the saved state
accordingly. For example, for traps from rings 1-3 or from v86 mode, the the original stack
pointer is part of the saved state frame; however, for traps from ring 0, the original stack pointer
is simply the end of the stack frame pushed by the processor, since no stack switch occurs in this
case.

In addition, for traps from ring 0, this routine also provides a hex dump of the top of the kernel
stack as it appeared when the trap occurred; this stack dump can aid in tracking down the cause
of a kernel bug. trap_dump does not attempt to dump the stack for traps from user or v86 mode,
because there seems to be no sufficiently generic way for it to access the appropriate user stack;
in addition, in this case the trap might have been caused by a user-stack-related exception, in
which case attempting to dump the user stack could lead to a recursive trap.

PARAMETERS

state: A pointer to the trap state structure to dump.

DEPENDENCIES

struct trap_state: 10.8.1
printf: 9.6

10.8. BASE ENVIRONMENT: TRAP HANDLING

10.8.7 trap_dump panic: dump a saved trap state structure
SYNOPSIS

#include <oskit/x86/base_trap.h>
void trap_dump_panic(const struct trap_state *state);

DESCRIPTION

This function simply calls trap_dump (Section 10.8.6) to dump the specified trap state frame, and
then calls panic (Section 9.8.3). It is invoked by the default trap entrypoint code (Section 10.8.3)
if a trap occurs when there is no interrupt handler, or if there is an interrupt handler but it returns
a failure indication.

PARAMETERS

state: A pointer to the trap state structure to dump.

DEPENDENCIES

trap_dump: 10.8.6
panic: 9.8.3

227

228 CHAPTER 10. KERNEL SUPPORT LIBRARY: LIBOSKIT KERN.A

10.9 Base Environment: Page Translation

XXX diagram of function call tree?

XXX Although a “base” x86 paging environment is defined, it is not automatically initialized by base_cpu_init,
and paging is not activated by base_cpu_load. This is because unlike segmentation, paging is an optional
feature on the x86 architecture, and many simple “kernels” such as boot loaders would prefer to ignore it
completely. Therefore, client kernels that do want the base paging environment must call the functions to
initialize and activate it manually, after the basic CPU segmentation environment is set up.

XXX describe assumptions made about use of page tables, e.g. 4MB pages whenever possible, always
modify /unmap _exactly_ the region that was mapped.

XXX assumes that mappings are only changed or unmapped with the same size and offset as the original
mapping.

XXX does not attempt to support page table sharing in any way, since this code has no clue about the
relationship between address spaces; it only knows about page directories and page tables.

10.9.1 Dbase_paging init: create minimal kernel page tables and enable paging
SYNOPSIS

#include <oskit/x86/base_paging.h>
void base_paging_init(void);

DESCRIPTION

This function can be used to set up a minimal paging environment. It first allocates and clears
an initial page directory using ptab_alloc (see Section 10.9.7), sets base_pdir_pa to point to it
(see Section 10.9.2), then direct-maps all known physical memory into this address space starting
at linear address 0, allocating additional page tables as needed. Finally, this function enables the
processor’s paging mechanism, using the base page directory as the initial page directory.

The global variable phys_mem max (see Section 10.11.2) is assumed to indicate the top of physical
memory; all memory from 0 up to at least this address is mapped. The function actually rounds
phys_mem max up to the next 4MB superpage boundary, so that on Pentium and higher processors,
all physical memory can be mapped using 4MB superpages even if known physical memory does
not end exactly on a 4MB boundary. Note that phys_mem max does not necessarily need to reflect
all physical memory in the machine; for example, it is perfectly reasonable for the client OS to
set, it to some artificially lower value so that only that part of physical memory is direct-mapped.
On Pentium and higher processors, this function sets the PSE (page size extensions) bit in CR4
in addition to the PG (paging) bit, so that the 4MB page mappings used to map physical memory
will work properly.

DEPENDENCIES

base_pdir_pa: 10.9.2
ptab_alloc: 10.9.7
pdir map_range: 10.9.11
base_cpuid: 10.6.6
paging.enable: 10.5.8

10.9.2 Dbase_pdir_pa: initial kernel page directory
SYNOPSIS

#include <oskit/x86/base paging.h>
extern oskit_addr_t base_pdir_pa;

10.9. BASE ENVIRONMENT: PAGE TRANSLATION

DESCRIPTION

This variable is initialized by base_paging init (see Section 10.9.1) to contain the physical
address of the base page directory. This is the value that should be loaded into the processor’s
page directory base register (CR3) in order to run in the linear address space defined by this page
directory. (The base page directory is automatically activated in this way during initialization;
the client OS only needs to load the CR3 register itself if it wants to switch among multiple linear
address spaces.) The pdir_find_pde function (Section 10.9.3) and other related functions can be
used to manipulate the page directory and its associated page tables.

Initially, the base page directory and its page tables directly map physical memory starting at
linear address 0. The client OS is free to change the mappings after initialization, for example by
adding new mappings outside of the physical address range, or by relocating the physical memory
mappings to a different location in the linear address space as described in Section 10.6.3.

Most “real” operating systems will need to create other, separate page directories and associated
page tables to represent different address spaces or protection domains. However, the base page
directory may still be useful, e.g., as a template for initializing the common kernel portion of
other page directories, or as a “kernel-only” address space for use by kernel tasks, etc.

229

10.9.3 pdir_find pde: find an entry in a page directory given a linear address

SYNOPSIS

#include <oskit/x86/base paging.h>
pd_entry_t *pdir_find_pde(oskit_addr_t pdir_pa, oskit_addr_t la);

DESCRIPTION

This primitive macro uses the appropriate bits in linear address la (bits 22-31) to look up a
particular entry in the specified page directory. Note that this function takes the physical address
of a page directory, but returns a kernel virtual address (i.e., an ordinary pointer to the selected
page directory entry).

PARAMETERS

pdir_pa: Physical address of the page directory.

la: Linear address to be used to select a page directory entry.

RETURNS

Returns a pointer to the selected page directory entry.

DEPENDENCIES

phystokv: 10.6.2

10.9.4 ptab_find pte: find an entry in a page table given a linear address
SYNOPSIS

#include <oskit/x86/base paging.h>
pd_entry_t *ptab_find_pte(oskit_addr_t ptab_pa, oskit_addr_t la);

230 CHAPTER 10. KERNEL SUPPORT LIBRARY: LIBOSKIT KERN.A

DESCRIPTION

This macro uses the appropriate bits in la (bits 12-21) to look up a particular entry in the
specified page table. This macro is just like pdir_find pde, except that it selects an entry based
on the page table index bits in the linear address rather than the page directory index bits (bits
22-31). Note that this function takes the physical address of a page table, but returns a kernel
virtual address (an ordinary pointer).

PARAMETERS

ptab_pa: Physical address of the page table.

la: Linear address to be used to select a page table entry.

RETURNS

Returns a pointer to the selected page table entry.

DEPENDENCIES

phystokv: 10.6.2

10.9.5 pdir_find pte: look up a page table entry from a page directory
SYNOPSIS

#include <oskit/x86/base paging.h>
pt_entry_t *pdir_find_pte(oskit_addr_t pdir_pa, oskit_addr_t la);

DESCRIPTION

This function is a combination of pdir find pde and ptab_find pte: it descends through both
levels of the x86 page table hierarchy and finds the page table entry for the specified linear
address.

This function assumes that if the page directory entry selected by bits 22-31 of la is valid (the
INTEL_PDE_VALID bit is set), then that entry actually refers to a page table, and is not a 4MB
page mapping. The caller must ensure that this is the case.

PARAMETERS

pdir_pa: Physical address of the page directory.

la: Linear address to use to select the appropriate page directory and page table entries.

RETURNS

Returns a pointer to the selected page table entry, or NULL if there is no page table for this
linear address.

DEPENDENCIES

pdir_find pde: 10.9.3
ptab_find pte: 10.9.4

10.9.

BASE ENVIRONMENT: PAGE TRANSLATION

10.9.6 pdir_get_pte: retrieve the contents of a page table entry

SYNOPSIS

#include <oskit/x86/base_paging.h>
pt_entry_t pdir_get_pte(oskit_addr_t pdir_pa, oskit_addr_t la);

DESCRIPTION

This function is a simple extension of pdir_find pte: instead of returning the address of the
selected page table entry, it returns the contents of the page table entry: i.e., the physical page
frame in bits 12-31 and the associated INTEL PTE * flags in bits 0-11. If there is no page table
in the page directory for the specified linear address, then this function returns 0, the same as if
there was a page table but the selected page table entry was zero (invalid).

As with pdir_find pte, this function assumes that if the page directory entry selected by bits
22-31 of la is valid (the INTEL_PDE_VALID bit is set), then that entry actually refers to a page
table, and is not a 4MB page mapping.

PARAMETERS

pdir_pa: Physical address of the page directory.
la: Linear address to use to select the appropriate page directory and page table entries.

RETURNS

Returns the selected page table entry, or zero if there is no page table for this linear address.
Also returns zero if the selected page table entry exists but is zero.

DEPENDENCIES

pdir_find pte: 10.9.5

10.9.7 ptab_alloc: allocate a page table page and clear it to zero

SYNOPSIS

#include <oskit/x86/base_paging.h>
int ptab_alloc([out] oskit_addr_t *out_ptab_pa);

DESCRIPTION

All of the following page mapping routines call this function to allocate new page tables as
needed to create page mappings. It attempts to allocate a single page of physical memory, and if
successful, returns 0 with the physical address of that page in *out_ptab_pa. The newly allocated
page is cleared to all zeros by this function. If this function is unsuccessful, it returns nonzero.

The default implementation of this function assumes that the OSKit’s minimal C library (1ibc)
and list-based memory manager (1iblmm) are being used to manage physical memory, and al-
locates page table pages from the malloc_lmm memory pool (see Section 9.5.1). However, in
more complete OS environments, e.g., in which low physical memory conditions should trigger a
page-out rather than failing immediately, this routine can be overridden to provide the desired
behavior.

PARAMETERS

out_ptab_pa: The address of a variable of type oskit_addr_t into which this function will deposit
the physical address of the allocated page, if the allocation was successful.

231

232 CHAPTER 10. KERNEL SUPPORT LIBRARY: LIBOSKIT KERN.A

RETURNS

Returns zero if the allocation was successful, or nonzero on failure.

DEPENDENCIES

lmm alloc_page: 16.6.8
malloc_lmm: 9.5.1
memset: 9.4.18
kvtophys: 10.6.2

10.9.8 ptab_free: free a page table allocated using ptab_alloc
SYNOPSIS

#include <oskit/x86/base paging.h>
void ptab_free(oskit_addr_t ptab_pa);

DESCRIPTION

The page mapping and unmapping functions described in the following sections call this routine
to free a page table that is no longer needed; thus, this function is the partner of ptab_alloc
(see Section 10.9.7). The default implementation again assumes that the malloc_lmm memory
pool is being used to manage physical memory. If the client OS overrides ptab_alloc to use a
different allocation mechanism, it should also override ptab_free correspondingly.

PARAMETERS

ptab_pa: The physical address of the page table page to free.

DEPENDENCIES

lmm free_page: 16.6.10

10.9.9 pdir_map_page: map a 4KB page into a linear address space
SYNOPSIS

#include <oskit/x86/base paging.h>
int pdir_map_page(oskit_addr_t pdir_pa, oskit_addr_t la, pt_entry_t mapping);

DESCRIPTION

This function creates a single 4KB page mapping in the linear address space represented by
the specified page directory. If the page table covering the specified linear address does not
exist (i.e., the selected page directory entry is invalid), then a new page table is allocated using
ptab_alloc and inserted into the page directory before the actual page mapping is inserted into
the page table. Any new page tables created by this function are mapped into the page directory
with permissions INTEL_ PTE USER | INTEL PTE WRITE: full permissions are granted at the page
directory level, although the specified mapping value, which is inserted into the selected page
table entry, may restrict permissions at the individual page granularity.

This function assumes that if the page directory entry selected by bits 22-31 of la is valid (the
INTEL_PDE_VALID bit is set), then that entry actually refers to a page table, and is not a 4MB
page mapping. In other words, the caller should not attempt to create a 4KB page mapping in a

10.9. BASE ENVIRONMENT: PAGE TRANSLATION

part of the linear address space already covered by a valid 4MB superpage mapping. The caller
must first unmap the 4MB superpage mapping, then map the 4KB page (which will cause a page
table to be allocated). If the caller follows the guidelines described in Section 10.9, then this
requirement should not be a problem.

PARAMETERS

pdir_pa: Physical address of the page directory acting as the root of the linear address space in
which to make the requested page mapping.

la: Linear address at which to make the mapping. Only bits 12-31 are relevant to this function;
bits 0—-11 are ignored.

mapping: Contains the page table entry value to insert into the appropriate page table entry:
the page frame number is in bits 12-31, and the INTEL_PTE_* flags are in bits 0-11. XXX
The caller must include INTEL PTE VALID; other flags may be set according to the desired
behavior. (To unmap pages, use pdir_unmap_page instead; see Section 10.9.10)

RETURNS

If all goes well and the mapping is successful, this function returns zero. If this function needed
to allocate a new page table but the ptab_alloc function failed (returned nonzero), then this
function passes back the return value from ptab_alloc.

DEPENDENCIES

pdir_find pde: 10.9.3
ptab_find pte: 10.9.4
ptab_alloc: 10.9.7

10.9.10 pdir_unmap_page: unmap a single 4KB page mapping
SYNOPSIS

#include <oskit/x86/base paging.h>
void pdir_unmap_page(oskit_addr_t pdir_pa, oskit_addr_t la);

DESCRIPTION

This function invalidates a single 4KB page mapping in the linear address space represented
by the specified page directory. The la parameter should fall in a page previous mapped with
pdir_map_page, otherwise the result of the call is undefined. XXX Is this overly restrictive?

This function assumes that if the page directory entry selected by bits 22-31 of la is valid (the
INTEL_PDE_VALID bit is set), then that entry actually refers to a page table, and is not a 4MB page
mapping. In other words, the caller should not attempt to destroy a 4KB page mapping in a part
of the linear address space covered by a valid 4MB superpage mapping. Use pmap_unmap_range
to remove a 4MB superpage mapping.

PARAMETERS

pdir_pa: Physical address of the page directory acting as the root of the linear address space
from which the requested page mapping is to be removed.

la: Linear address contained in the page to be removed. Only bits 12-31 are relevant to this
function; bits 0-11 are ignored.

233

234 CHAPTER 10. KERNEL SUPPORT LIBRARY: LIBOSKIT KERN.A

DEPENDENCIES

pdir_find pde: 10.9.3
ptab_find pte: 10.9.4
ptab_free: 10.9.8

10.9.11 pdir_map_range: map a contiguous range of physical addresses
SYNOPSIS

#include <oskit/x86/base_paging.h>

int pdir_map_range(oskit_addr_t pdir_pa, oskit_addr_t la, oskit_addr_t pa, oskit_size_t
size, pt_entry_t mapping_bits);

DESCRIPTION

This function maps a range of linear addresses in the linear address space represented by the spec-
ified page directory onto a contiguous range of physical addresses. The linear (source) address,
physical (destination) address, and mapping size must be multiples of the 4KB architectural page
size, but other than that no restrictions are imposed on the location or size of the mapping range.
If the processor description in the global base_cpuid variable (see Section 10.6.6) indicates that
page size extensions are available, and the physical and linear addresses are properly aligned,
then this function maps as much of the range as possible using 4MB superpage mappings instead
of 4KB page mappings. Where 4KB page mappings are needed, this function allocates new page
tables as necessary using ptab_alloc. Any new page tables created by this function are mapped
into the page directory with permissions INTEL_PTE_USER | INTEL_PTE_WRITE: full permissions
are granted at the page directory level, although the mapping bits may specify more restricted
permissions for the actual page mappings.

This function assumes that no valid mappings already exist in the specified linear address range;
if any mappings do exist, this function may not work properly. If the caller follows the guidelines
described in Section 10.9, always unmapping previous mappings before creating new ones, then
this requirement should not be a problem.

PARAMETERS

pdir_pa: Physical address of the page directory acting as the root of the linear address space in
which to make the requested mapping.

la: Starting linear address at which to make the mapping. Must be page-aligned.
pa: Starting physical address to map to. Must be page-aligned.
size: Size of the linear-to-physical mapping to create. Must be page-aligned.

mapping_bits: Permission bits to OR into each page or superpage mapping entry. The caller
must include INTEL PTE_VALID; other flags may be set according to the desired behavior.
(To unmap ranges, use pdir_unmap _range instead; see Section 10.9.13)

RETURNS

If all goes well and the mapping is successful, this function returns zero. If this function needed
to allocate a new page table but the ptab_alloc function failed (returned nonzero), then this
function passes back the return value from ptab_alloc.

10.9. BASE ENVIRONMENT: PAGE TRANSLATION 235

DEPENDENCIES

pdir_find pde: 10.9.3
ptab_find pte: 10.9.4
ptab_alloc: 10.9.7
base_cpuid: 10.6.6

10.9.12 pdir_prot_range: change the permissions on a mapped memory range
SYNOPSIS

#include <oskit/x86/base_paging.h>

void pdir_prot_I‘ange(oskit_addr_t pdir_pa, oskit_addr_t la, oskit_size_t size, pt_entry_t
new_mapping-bits);

DESCRIPTION

This function can be used to modify the permissions and other attribute bits associated with a
mapping range previously created with pdir map_range. The la and size parameters must be
ezactly the same as those passed to the pdir_map_range used to create the mapping.

PARAMETERS

pdir_pa: Physical address of the page directory acting as the root of the linear address space
containing the mapping to modify.

la: Starting linear address of the mapping to modify. Must be exactly the same as the address
specified to the pdir map_range call used to create this mapping.

size: Size of the mapping to modify. Must be exactly the same as the size specified to the
pdir_map_range call used to create this mapping.

new_mapping_bits: New permission flags to insert into each page or superpage mapping entry.
The caller must include INTEL PTE_VALID; other flags may be set according to the desired
behavior. (To unmap ranges, use pdir_unmap_range; see Section 10.9.13)

DEPENDENCIES

pdir_find pde: 10.9.3
ptab_find pte: 10.9.4

10.9.13 pdir_unmap.range: remove a mapped range of linear addresses
SYNOPSIS

#include <oskit/x86/base_paging.h>
void pdir_unmap_range(oskit_addr_t pdir_pa, oskit_addr_t la, oskit_size_t size);

DESCRIPTION

This function removes a mapping range previously created using pdir_map_range. The la and
size parameters must be ezactly the same as those passed to the pdir map_range used to create
the mapping.

236 CHAPTER 10. KERNEL SUPPORT LIBRARY: LIBOSKIT KERN.A

PARAMETERS

pdir_pa: Physical address of the page directory acting as the root of the linear address space
containing the mapping to destroy.

la: Starting linear address of the mapping to destroy. Must be exactly the same as the address
specified to the pdir map_range call used to create this mapping.

size: Size of the mapping to destroy. Must be exactly the same as the size specified to the
pdir_map_range call used to create this mapping.

DEPENDENCIES

pdir_find pde: 10.9.3
ptab_find pte: 10.9.4

10.9.14 pdir_clean_range: free unused page table pages in a page directory
SYNOPSIS

#include <oskit/x86/base_paging.h>

void pdir_clean_range(oskit_addr_t pdir_pa, oskit_addr_t la, oskit_size_t size);

DESCRIPTION

This function scans the portion of the given page directory covering the given address range,
looking for associated page table pages that are unnecessary and frees them. “Unnecessary”
page table pages are those which contain only entries for which INTEL PTE_VALID is not set.
These pages are freed with ptab_free and the corresponding page directory entries marked as
invalid.

PARAMETERS

pdir_pa: Physical address of the page directory.
la: Starting linear address of the region to clean. Must be page-aligned.

size: Size (in bytes) of the region to clean. The value passed is rounded up to whole pages. Use
“0” for la and “ (oskit-addr-t)0” for size to clean the entire page directory.

DEPENDENCIES

pdir_find pde: 10.9.3
ptab_find pte: 10.9.4
ptab_free: 10.9.8

10.9.15 pdir_dump: dump the contents of a page directory and all its page tables
SYNOPSIS

#include <oskit/x86/base paging.h>
void pdir_dump(oskit_addr_t pdir_pa);

10.9. BASE ENVIRONMENT: PAGE TRANSLATION 237

DESCRIPTION

This function is primarily intended for debugging purposes: it dumps the mappings described
by the specified page directory and all associated page tables in a reasonably compact, human-
readable form, using printf. 4MB superpage as well as 4KB page mappings are handled properly,
and contiguous ranges of identical mappings referring to successive physical pages or superpages
are collapsed into a single line for display purposes. The permissions and other page direc-
tory/page table entry flags are expanded out as human-readable flag names.

PARAMETERS

pdir_pa: Physical address of the page directory describing the linear address space to dump.

DEPENDENCIES

ptab_dump: 10.9.16
printf: 9.6
phystokv: 10.6.2

10.9.16 ptab_dump: dump the contents of a page table
SYNOPSIS

#include <oskit/x86/base paging.h>
void ptab_dump(oskit_addr_t ptab_pa, oskit_addr_t base_la);

DESCRIPTION

This is primarily a helper function for pdir_dump, but it can also be used independently, to dump
the contents of an individual page table. For output purposes, the page table is assumed to reside
at base_la in “some” linear address space: in other words, this parameter provides the topmost
ten bits in the linear addresses dumped by this routine. Contiguous ranges of identical mappings
referring to successive physical pages are collapsed into a single line for display purposes. The
permissions and other page directory/page table entry flags are expanded out as human-readable
flag names.

PARAMETERS

pdir_pa: Physical address of the page table to dump.

base_la: Linear address at which this page table resides, for purposes of displaying linear source
addresses. Must be 4MB aligned.
DEPENDENCIES

printf: 9.6
phystokv: 10.6.2

238 CHAPTER 10. KERNEL SUPPORT LIBRARY: LIBOSKIT KERN.A

10.10 Base Environment: Protected-mode entry and exit

The full mode switching code is written and functional but not yet documented or integrated into the OSKit
source tree.

10.11. BASE ENVIRONMENT: PHYSICAL MEMORY MANAGEMENT 239

10.11 Base Environment: Physical Memory Management

The physical memory address space on PCs is divided into distinct regions which have certain attributes.
The lowest 1MB of physical memory is “special” in that only it can be accessed from real mode. The lowest
16MB of physical memory is special in that only it can be accessed by the built-in DMA controller. On some
PCs, there may be an additional boundary imposed by the motherboard. Memory above this boundary
(e.g., 64MB) may not be cacheable by the L2 cache. The base environment uses the OSKit LMM library 16
to accommodate these differences. Physical memory is managed by a single LMM malloc_1mm with separate
regions for each “type” of memory. Hence, LMM allocation requests can be made with appropriate flag
values to obtain memory with the desired characteristics.

10.11.1 phys_1lmm.h: Physical memory management for PCs
SYNOPSIS

#include <oskit/x86/pc/phys_lmm.h>

DESCRIPTION

There are three priority values assigned to regions of physical memory as they are made available
at boot time (via lmm_add_region). In increasing order of priority (i.e., increasing preference for
allocation):

LMM_PRI_1MB: For physical memory below 1MB.

LMM_PRI_16MB: For physical memory below 16MB.

LMM PRI HIGH: For physical memory above 16MB.

These priorities prevent the simple memory allocation interfaces from handing out the more
precious low-address memory. To enable savvy applications to explicitly allocate memory of
a given type, the following flag values are assigned at boot time and can be passed to LMM
allocation routines:

LMMF_1MB: Set on memory below 1MB; i.e., the LMM_PRI_1MB region.

LMMF_16MB: Set on memory below 16MB; i.e., the LMM_PRI_1MB and LMM_PRI_16MB regions.
Thus, if neither flag is set, memory can be allocated from any of the three regions with preference
given to LMM_PRI_HIGH, followed by LMM_PRI_16MB and LMM_PRI_1MB. If just LMMF_16MB is set,

memory can be allocated from either LMM_PRI_16MB or LMM PRI _1MB in that order. If both flags
are set, memory can only be allocated from the LMM_PRI_1MB region.

10.11.2 phys_mem max: Highest physical memory address
SYNOPSIS

#include <oskit/x86/pc/phys_lmm.h>
extern oskit_addr_t phys_mem_max;

DESCRIPTION

This variable records the highest physical memory address; i.e. the end address of the highest
free block added to malloc_1mm. This is the highest address that the kernel should ever have to
deal with.

Not all addresses between 0 and phys_mem max are necessarily available for allocation, there may
be holes in the available physical memory space.

240 CHAPTER 10. KERNEL SUPPORT LIBRARY: LIBOSKIT KERN.A

10.11.3 phys_lmm init: Initialize kernel physical memory LMM
SYNOPSIS

#include <oskit/x86/pc/phys_lmm.h>
void phys_Ilmm _init(void);

DESCRIPTION

This routine sets up malloc_lmm with three physical memory regions, one for each of the memory
types described in phys_lmm.h. No actual memory is added to those regions. You can then call
phys_lmm_add() to add memory to those regions. In the base environment, base multiboot_init_mem
handles this chore.

DEPENDENCIES

malloc_lmm: 9.5.1
lmm add_region: 16.6.2
phystokv: 10.6.2

10.11.4 phys_lmm_add: Add memory to the kernel physical memory LMM
SYNOPSIS

#include <oskit/x86/pc/phys_lmm.h>
void phys_Imm _add(oskit_addr_t min_pa, oskit_size_t size);

DESCRIPTION

Add a chunk of physical memory to the appropriate region(s) on the malloc_lmm. The provided
memory block may be arbitrarily aligned and may cross region boundaries (e.g. the 16MB
boundary); it will be shrunken and split apart as necessary. If the address of the end of the block
is greater than the current value in phys_max mem, this address is recorded.

Note that phys_1lmm_add takes a physical address, not a virtual address as the underlying LMM
routines do. This routine will perform the conversion as needed with phystokv.

PARAMETERS

min_pa: Physical address of the start of the chunk being added.
size: Size in bytes of the chunk being added.

DEPENDENCIES
malloc lmm: 9.5.1
lmm_add_free: 16.6.3
phystokv: 10.6.2
physmem max: 10.11.2

10.12. BASE ENVIRONMENT: INTERRUPT SUPPORT 241

10.12 Base Environment: Interrupt Support

In the base environment, each hardware interrupt vector in the processor IDT points to a small assembly
language stub that saves a standard trap frame (10.8.1), disables and acknowledges the hardware interrupt,
and calls a designated high-level handler routine specified in the base_irq-handlers table (10.12.2). Initially,
all the entries in this table point to base_irq default_handler (10.12.5). Custom interrupt handlers can
be installed by changing the appropriate entry in the table. The default action for all interrupts can be
changed by overriding base_irq_default_handler.

The base environment also includes support for a single “software interrupt.” A software interrupt is
delivered after all pending hardware interrupts have been processed but before returning from the interrupt
context. A software interrupt can be posted at any time with base_irq_softint_request (10.12.7) but will
only be triggered upon return from a hardware interrupt; i.e., processing of a software interrupt requested
from a non-interrupt context is deferred until a hardware interrupt occurs. The software interrupt handler
is base_irq_softint_handler (10.12.8) which can be replaced by a custom version provided by the kernel.

10.12.1 Dbase_irq.h: Hardware interrupt definitions for standard PCs
SYNOPSIS

#include <oskit/x86/pc/base_irq.h>

DESCRIPTION

BASE_IRQ_COUNT: Number of interrupt request lines.

BASE_TRQ_MASTER BASE: Default location in the IDT for programming the PIC.
BASE_TRQ_SLAVE BASE: Default location in the IDT for programming the PIC.
irq-master_base: Variable storing the current master PIC interrupt vector base.
irqg-slave base: Variable storing the current slave PIC interrupt vector base.

fill irq gate(irq.num, entry, selector, access): Fill the base_idt descriptor for the in-
dicated IRQ with an interrupt gate containing the given entry, selector and access informa-
tion.

10.12.2 Dbase_irq handlers: Array of handler routines for hardware interrupts
SYNOPSIS

#include <oskit/x86/pc/base_irq.h>
void (*base_irq_handlers [BASE_IRQ_COUNT]) (struct trap_state *ts);

DESCRIPTION

Contains a function pointer for every hardware interrupt vector. By default, all entries in this ta-
ble point to base_irq-default_handler. Custom interrupt handlers can be installed by changing
the appropriate table entry.

Interrupt handlers can freely examine and modify the processor state (10.8.1) of the interrupted
activity, e.g., to implement threads and preemption. On entry, the processor’s IDT interrupt
vector number is in ts->trapno and the hardware IRQ number that caused the interrupt is in
ts->err.

DEPENDENCIES

base_irq.default_handler: 10.12.5

242 CHAPTER 10. KERNEL SUPPORT LIBRARY: LIBOSKIT KERN.A

10.12.3 Dbase_irq_init: Initialize hardware interrupts
SYNOPSIS

#include <oskit/x86/pc/base_irq.h>

void base_irq_init(void);

DESCRIPTION

Initializes the system to properly handle hardware interrupts. It loads the appropriate entries in
the base IDT (10.7.4) with the gate descriptor information from base_irq-inittab, programs
the PICs to the standard vector base addresses (see Section 10.12.1), and disables all interrupt
request lines.

Processor interrupts must be disabled when this routine is called, they will be enabled upon
return.

DEPENDENCIES

base_idt: 10.7.4
base_irq_inittab: 10.12.4
gate_init: 10.5.10
pic_init: 10.4.2
pic.disable_all: 10.4.2
irg master_base: 10.12.1

irg_slave base: 10.12.1

10.12.4 Dbase_irqg_inittab: initialization table for default interrupt entrypoints
SYNOPSIS

#include <oskit/x86/pc/base_irq.h>

extern struct gate_init_entry base_irq_inittab([];

DESCRIPTION

This gate initialization table (10.3.9) encapsulates the base environment’s default interrupt en-
trypoint code. This module provides IDT entrypoints for all the standard PC hardware interrupt
vectors; each entrypoint pushes a standard state frame on the stack (10.8.1), disables and acknowl-
edges the hardware interrupt, and then calls the C handler function pointed to by the appropriate
entry of the base_irq handlers array (10.12.2). Upon return from the handler, the interrupt
code checks for a pending software interrupt and dispatches to base_irq_softint handler.

DEPENDENCIES

base_irq handlers: 10.12.2
base_irqmnest: 10.12.6
base_irq_softint_handler: 10.12.8

10.12. BASE ENVIRONMENT: INTERRUPT SUPPORT 243

10.12.5 Dbase_irq default_handler: default IRQ handler for unexpected inter-
rupts

SYNOPSIS

#include <oskit/x86/pc/base_irq.h>
void base_irq_default_handler(struct trap_state *state);

DESCRIPTION

This routine is the default handler for all interrupts in the base environment. It simply displays
a warning message and returns.

It is expected that the client OS will override this default behavior for all interrupts it cares
about, leaving this routine to be called only for unexpected interrupts.

PARAMETERS

state: A pointer to the processor state at the time of the interrupt.

DEPENDENCIES

struct trap_state: 10.8.1
printf: 9.6

10.12.6 Dbase_irqg nest: interrupt nesting counter and software interrupt flag
SYNOPSIS

#include <oskit/x86/pc/base_irq.h>
extern unsigned char base_irq_nest;

DESCRIPTION

Hardware interrupt nesting counter, used to ensure that the software interrupt handler isn’t
called until all outstanding hardware interrupts have been processed. In addition, this variable
also acts as the software interrupt pending flag: if the high bit is clear, a software interrupt is
pending.

10.12.7 Dbase_irq softint_request: request a software interrupt
SYNOPSIS

#include <oskit/x86/pc/base_irq.h>
void base_irq_softint_request(void);

DESCRIPTION

This routine requests a software interrupt and is typically called from a hardware interrupt
handler to schedule lower priority processing.

After requesting a software interrupt, base_irq_softint handler will be called when all hard-
ware interrupt handlers have completed processing and base_irq nest is zero. If an interrupt is
scheduled from a non-interrupt context, the handler will not be called until the next hardware
interrupt occurs and has been processed.

Only a single software interrupt may be pending at a time.

244 CHAPTER 10. KERNEL SUPPORT LIBRARY: LIBOSKIT KERN.A

DEPENDENCIES

base_irqmnest: 10.12.6

10.12.8 Dbase_irq_softint_handler: handler for software interrupts
SYNOPSIS

#include <oskit/x86/pc/base_irq.h>
void base_irq_softint_handler(struct trap_state *state);

DESCRIPTION

Software interrupt handler called by the interrupt entry/exit stub code when a software interrupt
has been requested and needs to be run. The default implementation of this routine simply
returns; to use software interrupts, the kernel must override it.

The handler is free to examine and modify the processor state in state.

PARAMETERS

state: A pointer to the processor state at the time of the interrupt.

DEPENDENCIES

struct trap_state: 10.8.1

10.13. BASE ENVIRONMENT: CONSOLE SUPPORT 245

10.13 Base Environment: Console Support

The base console environment allows “console” input and output using either the display and keyboard or
a serial line. Additionally it allows a remote kernel debugging with GDB over a serial line. Selection of the
display or serial port as console and which serial ports to use for the console and GDB are controlled by
command line options or environment variables as described in this section.

The base console environment uses a simple polled interface for serial port input and output as well as
for keyboard input. The video display output interface is a simple, dumb text terminal. See the appropriate
sections for details.

In the base interface, all input via stdin (e.g., getchar, scanf) and all output via stdout or stderr
(e.g., putchar, printf) use the console.

For simplicity, a set of vanilla console functions is provided that direct input and output to/from the
appropriate device. For example, console_putchar will invoke com_cons_putchar if the console device is a
serial port, or direct_cons_putchar if the console device is a display. Other vanilla console I/O routines
include console getchar, console puts, and console putbytes (a raw block output function that does
not append a newline). All behave as expected. These routines are provided to so that higher level I/0
code does not need to be concerned with which type of device is currenty the console. Both the minimal C
library (section 9) and the FreeBSD C library (section 14) take advantage of this redirection.

10.13.1 Dbase_console.h: definitions for base console support
SYNOPSIS

#include <oskit/x86/pc/base_console.h>

DESCRIPTION

The following variable are used in the base_console code:

serial_console: Set non-zero if a serial port is being used as the console. Default value is
zero, but may be turned on by either a command line option or the CONS_COM environment
variable.

cons_com_port: If serial_console is non-zero, this variable indicates the COM port to use for
console input and output. Default value is 1, but may be changed by setting the CONS_COM
environment variable. Possible values are 1, 2, 3 or 4.

enable_gdb: If non-zero, enables the GDB trap handler; i.e. makes remote debugging possible.
The default value is zero.

gdb_com_port: If enable_gdb is non-zero, this variable indicates the COM port to use for remote
GDB interaction. The default value is 1 (the console and remote GDB can share the same
serial port, but do not have to). Possible values are 1, 2, 3 or 4.

Refer to section 10.13.2 for more information on command line options and environment variables.
See section 10.17 for more on remote GDB.

10.13.2 ©base_console_init: Initialize the base console
SYNOPSIS

#include <oskit/x86/base_console.h>

void base_console_init(int arge, char **argv);

246 CHAPTER 10. KERNEL SUPPORT LIBRARY: LIBOSKIT KERN.A

DESCRIPTION

This function parses the multiboot command line and optionally initializes the serial lines.
Command line options recognized by the base_console code include:
-f Enables “fast” serial ports. Sets the baud rate of the console and GDB serial ports to
115200.
-h Enables a serial line console on cons_com_port.

-d Enables remote GDB on gdb_com_port.
Environment variables recognized include:
CONS_COM: Serial port number (1, 2, 3 or 4) to use as the console. Sets cons_com_port to this

value and sets serial_console non-zero.

GDB_COM: Serial port number (1, 2, 3 or 4) to use as the remote GDB interface. Sets gdb_com_port
to this value and sets enable_gdb non-zero.

BAUD: Baud rate to use for both the console and GDB serial ports. Any of the standard values
in termios.h (section 9.4.30) are valid.

PARAMETERS

arge: Count of command line arguments in argo.

argv: Vector of command line arguments.

DEPENDENCIES

getenv: 9.4.17

atoi: 9.4.17

base_cooked _termios: 10.13.3
base raw_termios: 10.13.4
strcmp: 9.4.18

printf: 9.6

base gdt_load: 10.7.3
base_critical_enter: 10.2.5
base_critical_leave: 10.2.5
com_cons_init: 10.13.8
com_cons_flush: 10.13.11
com_cons_getchar: 10.13.9
com_cons_putchar: 10.13.10
gdb_pc_com_init: 10.18.9
gdb_serial getchar: 10.18.4
gdb_serial _putchar: 10.18.5
gdb_serial puts: 10.18.6
gdb_serial_exit: 10.18.3
direct_cons_getchar: 10.13.5
direct_cons_putchar: 10.13.6

10.13. BASE ENVIRONMENT: CONSOLE SUPPORT 247

10.13.3 Dbase_cooked_termios: Default termios setting for cooked-mode console
SYNOPSIS

#include <termios.h>

extern struct termios base_cooked_termios;

DESCRIPTION
A POSIX termios structures with values suitable for a basic cooked-mode console tty. Used in
the base environment when initializing a serial-port console in com_cons_init.

DEPENDENCIES

termios.h: 9.4.30

10.13.4 Dbase_raw_termios: Default termios setting for raw-mode console
SYNOPSIS

#include <termios.h>

extern struct termios base_raw_termios;

DESCRIPTION
A POSIX termios structures with values suitable for a basic raw-mode console tty. Used in the
base environment when initializing a serial-port for remote GDB debuging in com_cons_init.
DEPENDENCIES

termios.h: 9.4.30

10.13.5 direct_cons_getchar: wait for and read a character from the keyboard
SYNOPSIS

#include <oskit/x86/pc/direct_console.h>
int direct_cons_getchar(void);

DESCRIPTION

Read a character from the PC keyboard. If none is available, this routine loops polling the
keyboard status register until a character is available.

Supports only a subset of the available key presses. In particular, only the shifted and unshifted
printable ASCII characters along with Escape, Backspace, Tab, and Carriage return. It does not
support the remaining control characters or multi-character (function) keys.

RETURNS

Returns the character read.

DEPENDENCIES

base_critical_enter: 10.2.5
base_critical_leave: 10.2.5

inb: 10.3.7

248 CHAPTER 10. KERNEL SUPPORT LIBRARY: LIBOSKIT KERN.A

10.13.6 direct_cons_putchar: write a character to the video console
SyYNOPSIS

#include <oskit/x86/pc/direct_console.h>
void direct_cons_putchar(unsigned char c);

DESCRIPTION

Outputs the indicated character on the video console. Handles “\n” (newline), “\r” (carriage
return), “\b” (backspace), and “\t” (tab) in addition to printable ASCII characters. Tabs are
expanded to spaces (with stops are every 8 columns) and lines are automatically wrapped at 80
characters. Newline implies a carriage return.

PARAMETERS

c: Character to be printed.

DEPENDENCIES
base_critical_enter: 10.2.5
base_critical leave: 10.2.5
phystokv: 10.6.2
outb_p: 10.3.7
memcpy: 9.4.18

10.13.7 direct_cons_trygetchar: read an available character from the keyboard
SYNOPSIS

#include <oskit/x86/pc/direct_console.h>
int direct_cons_trygetchar(void);

DESCRIPTION

Quick poll for an available input character. Returns a character or -1 if no character was available.

Due to the large delay between when a character is typed and when the scan code arrives at the
keyboard controller (4-5 ms), there are a variety of situations in which this routine may return
-1 even though a character has been typed:

e a valid scan code is in transit from the keyboard when called

e a key release scan code is received (from a previous key press)

a SHIFT key press is received (shift state is updated however)

e a key press for a multi-character sequence is received (e.g., CTRL or a function key)

In other words, this routine never delays in an attempt to wait for the next scan code to arrive
when one is not currently available. Hence the utility of this routine is questionable.

RETURNS

Returns a character if available, -1 otherwise.

10.13. BASE ENVIRONMENT: CONSOLE SUPPORT

DEPENDENCIES

base_critical_enter: 10.2.5
base_critical_leave: 10.2.5

inb: 10.3.7

10.13.8 com_cons_init: initialize a serial port
SYNOPSIS

#include <oskit/x86/pc/com_cons.h>
void com_cons_init(int port, struct termios *com_params);

DESCRIPTION

This routine must be called once to initialize a COM port for use by other com cons routines.
The supplied termios structure indicates the baud rate and other settings. If com_params is
zero, a default of 9600 baud, 8 bit characters, no parity, and 1 stop bit is used.

PARAMETERS

port: COM port to initialize. Must be 1, 2, 3 or 4.

com_params: Pointer to a termios structures with the tty settings to use.

DEPENDENCIES

base_critical_enter: 10.2.5
base_critical leave: 10.2.5
base_cooked_termios: 10.13.3
inb: 10.3.7

outb: 10.3.7

10.13.9 com_cons_getchar: wait for and read a character from a serial port
SYNOPSIS

#include <oskit/x86/pc/com_cons.h>
int com_cons_getchar(int port);

DESCRIPTION
Read a character from the indicated serial port. If none is available, this routine loops polling
the status register until a character is available.

PARAMETERS

port: COM port to read from. Must be 1, 2, 3 or 4.

RETURNS

Returns the character read.

249

250 CHAPTER 10. KERNEL SUPPORT LIBRARY: LIBOSKIT KERN.A

DEPENDENCIES

base_critical_enter: 10.2.5
base_critical_leave: 10.2.5

inb: 10.3.7

10.13.10 com_cons_putchar: write a character to a serial port
SYNOPSIS

#include <oskit/x86/pc/com_cons.h>
void com_cons_putchar(int port, int ch);

DESCRIPTION

Outputs the indicated character on the specified serial port.

PARAMETERS

port: COM port to write to. Must be 1, 2, 3 or 4.
ch: Character to be printed.

DEPENDENCIES

base_critical_enter: 10.2.5
base_critical leave: 10.2.5
inb: 10.3.7
outb: 10.3.7

10.13.11 com_cons_flush: delay until all output is flushed on a serial line
SYNOPSIS

#include <oskit/x86/pc/com_cons.h>
void com_cons_flush(int port);

DESCRIPTION

Waits until the transmit FIFOs are empty on the serial port specified. This is useful as it allows
the programmer to know that the message sent out has been received. This is necessary before
resetting the UART or changing settings if it is desirable for any data already “sent” to actually
be transmitted.

PARAMETERS

port: COM port to flush. Must be 1, 2, 3 or 4.

DEPENDENCIES

inb: 10.3.7

10.13. BASE ENVIRONMENT: CONSOLE SUPPORT 251

10.13.12 com_cons_enable_receive_interrupt: enable receive interrupts on a se-
rial port

SYNOPSIS

#include <oskit/x86/pc/com_cons.h>
void com_cons_enable_receive_interrupt(int port);

DESCRIPTION

Special function to enable receive character interrupts on a serial port.

Since the base COM console operates by polling, there is no need to handle serial interrupts
in order to do basic I/O. However, if you want to be notified up when a character is received,
call this function immediately after com_cons_init, and make sure the appropriate IDT entry is
initialized properly.

For example, the serial debugging code for the PC COM port uses this so that the program can

A~

be woken up when the user presses the interrupt character (C) from the remote debugger.

PARAMETERS

port: COM port to enable receive interrupts on. Must be 1, 2, 3 or 4.

DEPENDENCIES

inb: 10.3.7

252 CHAPTER 10. KERNEL SUPPORT LIBRARY: LIBOSKIT KERN.A

10.14 MultiBoot Startup

MultiBoot is a standardized interface between boot loaders and 32-bit operating systems on x86 PC plat-
forms, which attempts to solve the traditional problem that every single operating system tends to come
with its own boot loader or set of boot loaders which are completely incompatible with boot loaders written
for any other operating system. The MultiBoot standard allows any MultiBoot-compliant operating system
to be loaded from any MultiBoot-supporting boot loader. MultiBoot is also designed to provide advanced
features needed by many modern operating systems, such as direct 32-bit protected-mode startup, and sup-
port for boot modules, which are arbitrary files loaded by the boot loader into physical memory along with
the kernel and passed to the kernel on startup. These boot modules may be dynamically loadable device
drivers, application program executables, files on an initial file system, or anything else the OS may need
before it has full device access. The MultiBoot standard is already supported by several boot loaders and
operating systems, and is gradually becoming more widespread. For details on the MultiBoot standard see
Section 10.14.12.

The MultiBoot standard is separate from and largely independent of the OSKit. However, if MultiBoot
is used, the toolkit can leverage it to provide a powerful, flexible, and extremely convenient method of
booting custom operating systems that use the OSKit. The toolkit provides startup code which allows
MultiBoot-compliant OS kernels to be built easily, and which handles the details of finding and managing
physical memory on startup, interpreting the command line passed by the boot loader, finding and using
boot modules, etc. If you use the OSKit’s MultiBoot startup support, your kernel automatically inherits
a complete, full-featured 32-bit protected-mode startup environment and the ability to use various existing
boot loaders, without being constrained by the limitations of traditional OS-specific boot loaders.

10.14.1 Startup code organization

The MultiBoot startup code in the OSKit has two components. The first component is contained in the object
file multiboot. o, installed by the toolkit in the prefiz/1ib/oskit/ directory. This object file contains the
actual MultiBoot header and entrypoint; it must be linked into the kernel as the very first object file, so
that its contents will be at the very beginning of the resulting executable. (This object file takes the place of
the crt0.0 or crtl.o normally used when linking ordinary applications in a Unix-like system.) The second
component is contained in the libkern.a library; it contains the rest of the MultiBoot startup code as well
as various utility routines for the use of the client OS.

XXX diagram of MultiBoot kernel executable image

The toolkit’s MultiBoot startup code will work when using either ELF or a.out format. ELF is the format
recommended for kernel images by the MultiBoot standard; however, the a.out format is also supported
through the use of some special header information embedded in the multiboot.o code linked at the very
beginning of the kernel’s text segment. This information allows the MultiBoot boot loader to determine the
location and sizes of the kernel’s text, data, and bss sections in the kernel executable without knowing the
details of the particular a.out flavor in use (e.g., Linux, NetBSD, FreeBSD, Mach, VSTa, etc.), all of which
are otherwise mutually incompatible.

10.14.2 Startup sequence

After the MultiBoot boot loader loads the kernel executable image, it searches through the beginning of
the image for the MultiBoot header which provides important information about the OS being loaded. The
boot loader performs its activities, then shuts itself down and jumps to the OS kernel entrypoint defined in
the kernel’s MultiBoot header. In one processor register the boot loader passes to the kernel the address of
a MultiBoot information structure, containing various information passed from the boot loader to the OS,
organized in a standardized format defined by the MultiBoot specification.

In the OSKit’s MultiBoot startup code, the kernel entrypoint is a short code fragment in multiboot.o
which sets up the initial stack and performs other minimal initialization so that ordinary 32-bit C code can be
run safely.® This code fragment then calls the C function multiboot_ main, with a pointer to the MultiBoot

3This file also turns all floppy drive motors off, since if we were booted from floppy the motor is most likely still on and can
cause unnecessary wear on the floppy disk.

10.14. MULTIBOOT STARTUP 253

information structure as its argument. Normally, the multiboot main function comes from libkern.a; it
performs other high-level initialization to create a convenient, stable 32-bit environment, and then calls the
familiar main routine, which the client OS must provide.

10.14.3 Memory model

Once the OS kernel receives control in its main routine, the processor has been set up in the base environment
defined earlier in Section 10.6. The base_gdt, base_idt, and base_tss have been set up and activated, so
that segmentation operations work and traps can be handled. Paging is disabled, and all kernel code and
data segment descriptors are set up with an offset of zero, so that virtual addresses, linear addresses, and
physical addresses are all the same. The client OS is free to change this memory layout later, e.g., by enabling
paging and reorganizing the linear address space as described in Section 10.6.3.

As part of the initialization performed by multiboot main, the OSKit’s MultiBoot startup code uses
information passed to the OS by the boot loader, describing the location and amount of physical memory
available, to set up the malloc_1mm memory pool (see Section 9.5.1). This allows the OS kernel to allocate
and manage physical memory using the normal C-language memory allocation mechanisms, as well as di-
rectly using the underlying LMM memory manager library functions. The physical memory placed on the
malloc_lmm pool during initialization is guaranteed not to contain any of the data structures passed by the
boot loader which the OS may need to use, such as the command line or the boot modules; this way, the
kernel can freely allocate and use memory right from the start without worrying about accidentally “stepping
on” boot loader data that it will need to access later on. In addition, the physical memory placed on the
malloc_1mm is divided into the three separate regions defined in phys_1mm.h (see Section 10.11.1): one for
low memory below 1MB, one for “DMA” memory below 16MB, and one for all physical memory above this
line. This division allows the kernel to allocate “special” memory when needed for device access or for calls
to real-mode BIOS routines, simply by specifying the appropriate flags in the LMM allocation calls.

10.14.4 Command-line arguments

The MultiBoot specification allows an arbitrary ASCII string to be passed from the boot loader to the OS
as a “command line” for the OS to interpret as it sees fit. As passed from the boot loader to the OS, this is
a single null-terminated ASCII string. However, the default MultiBoot initialization code provided by the
OSKit performs some preprocessing of the command line before the actual OS receives control in its main
routine. In particular, it parses the single command line string into an array of individual argument strings
so that the arguments can be passed to the OS through the normal C-language argc/argv parameters to
main. In addition, any command-line arguments containing an equals sign (‘=’) are added to the environ
array rather than the argv array, effectively providing the OS with a minimal initial environment that can be
specified by the user (through the boot loader) and examined by the OS using the normal getenv mechanism
(see Section 9.4.17).

Note that this command-line preprocessing mechanism matches the kernel command-line conventions
established by Linux, although it provides more convenience and flexibility to the OS by providing this
information to the OS through standard C-language facilities, and by not restricting the “environment
variables” to be comma-separated lists of numeric constants, as Linux does. This mechanism also provides
much more flexibility than traditional BSD/Mach command-line mechanisms, in which the boot loader itself
does most, of the command-line parsing, and basically only passes a single fixed “flags” word to the OS.

10.14.5 Linking MultiBoot kernels

Since MultiBoot kernels initially run in physical memory, with paging disabled and segmentation effectively
“neutralized,” the kernel must be linked at an address within the range of physical memory present on typical
PCs. Normally the best place to link the kernel is at 0x100000, or 1IMB, which is the beginning of extended
memory just beyond the real-mode ROM BIOS. Since the processor is already in 32-bit protected mode
when the MultiBoot boot loader starts the OS, running above the 1IMB “boundary” is not a problem. By
linking at 1MB, the kernel has plenty of “room to grow,” having essentially all extended memory available
to it in one contiguous chunk.

254 CHAPTER 10. KERNEL SUPPORT LIBRARY: LIBOSKIT KERN.A

In some cases, it may be preferable to link the kernel at a lower address, below the 1MB boundary, for
example if the kernel needs to run on machines without any extended memory, or if the kernel contains code
that needs to run in real mode. This is also allowed by the MultiBoot standard. However, note that the
kernel should generally leave at least the first 0x500 bytes of physical memory untouched, since this area
contains important BIOS data structures that will be needed if the kernel ever makes calls to the BIOS, or
if it wants to glean information about the machine from this area such as hard disk configuration data.

10.14.6 multiboot.h: Definitions of MultiBoot structures and constants
SYNOPSIS

#include <oskit/x86/multiboot.h>

DESCRIPTION

This header file is not specific to the MultiBoot startup code provided by the OSKit; it merely
contains generic symbolic structure and constant definitions corresponding to the data structures
specified in the MultiBoot specification. The following C structures are defined:

struct multiboot_header: Defines the MultiBoot header structure which is located near the
beginning of all MultiBoot-compliant kernel executables.

struct multiboot_info: Defines the general information structure passed from the boot loader
to the OS when control is passed to the OS.

struct multiboot_module: One of the elements of the multiboot_info structure is an optional
array of boot modules which the boot loader may provide; each element of the boot module
array is reflected by this structure.

struct multiboot_addr_range: Another optional component of the multiboot_info structure
is a pointer to an array of address range descriptors, described by this structure, which define
the layout of physical memory on the machine. (XXX name mismatch.)

For more information on these structures and the associated constants, see the multiboot.h
header file and the MultiBoot specification.

XXX should move this to x86/pc/multiboot.h?

10.14.7 ©boot_info: MultiBoot information structure
SYNOPSIS

#include <oskit/x86/pc/basemultiboot.h>
extern struct multiboot_info bOOt_infO;

DESCRIPTION

The first thing that multiboot main does on entry from the minimal startup code in multiboot.o
is copy the MultiBoot information structure passed by the boot loader into a global variable in
the kernel’s bss segment. Copying the information structure this way allows it to be accessed
more conveniently by the kernel, and makes it unnecessary for the memory initialization code
(basemultiboot_init mem; see Section 10.14.9) to carefully “step over” the information struc-
ture when determining what physical memory is available for general use.

After the OS has received control in its main routine, it is free to examine the boot_info structure
and use it to locate other data passed by the boot loader, such as the boot modules. The client
OS must not attempt to access the original copy of the information structure passed by the boot
loader, since that copy of the structure may be overwritten as memory is dynamically allocated
and used. However, this should not be a problem, since a pointer to the original copy of the

10.14. MULTIBOOT STARTUP 255

multiboot_info structure is never even passed to the OS by the MultiBoot startup code; it is
only accessible to the OS if it overrides the multibootmain function.

10.14.8 multiboot_main: general MultiBoot initialization
SYNOPSIS

#include <oskit/x86/pc/basemultiboot.h>
void multiboot_main(oskit_addr_t boot_info_pa);

DESCRIPTION

This is the first C-language function to run, invoked by the minimal startup code fragment in
multiboot.o. The default implementation merely copies the MultiBoot information structure
passed by the boot loader into the global variable boot_info (see Section 10.14.7), and then calls
the following routines to set up the base environment and start the OS:

base cpu_setup: Initializes the base GDT, IDT, and TSS, so that the processor’s segmentation
facilities can be used and processor traps can be handled.

basemultiboot_init mem: Finds all physical memory available for general use and adds it to
the malloc_lmm so that OS code can allocate memory dynamically.

basemultiboot_init_cmdline: Performs basic preprocessingon the command line string passed
by the boot loader, splitting it up into standard C argument and environment variable lists.

main: This call is what invokes the actual OS code, using standard C-language startup conven-
tions.

exit: As per C language conventions, if the main routine ever returns, exit is called immedi-

ately, using the return value from main as the exit code.

If the client OS does not wish some or all of the above to be performed, it may override the
multiboot main function with a version that does what it needs, or, alternatively, it may instead
override the specific functions of interest called by multiboot main.

PARAMETERS

boot_info_pa: The physical address of the MultiBoot information structure as created and passed
by the boot loader.

RETURNS

This function had better never return.

DEPENDENCIES

phystokv: 10.6.2

boot_info: 10.14.7

base_cpu_setup: 10.6.3
basemultiboot_init mem: 10.14.9
basemultiboot_init_cmdline: 10.14.10

exit: 9.8.1

256 CHAPTER 10. KERNEL SUPPORT LIBRARY: LIBOSKIT KERN.A

10.14.9 Dbasemultiboot_init_mem: physical memory initialization
SYNOPSIS

#include <oskit/x86/pc/basemultiboot.h>
void base_multiboot_init_mem(void);

DESCRIPTION

This function finds all physical memory available for general use and adds it to the malloc_lmm
pool, as described in Section 10.14.3. It is normally called automatically during initialization by
multiboot.main (see Section 10.14.8).

This function uses the lower and upper memory size fields in the MultiBoot information structure
to determine the total amount of physical memory available; it then adds all of this memory to
the malloc_1mm pool except for the following “special” areas:

e The first 0x500 bytes of physical memory are left untouched, since this area contains BIOS
data structures which the OS might want to access (or the BIOS itself, if the OS makes any
BIOS calls).

e The area from 0xa0000 to 0x100000 is the I/O and ROM area, and therefore does not
contain usable physical memory.

e The memory occupied by the kernel itself is skipped, so that the kernel will not trash its
own code, data, or bss.

e All interesting boot loader data structures, which can be found through the MultiBoot
information structure, are skipped, so that the OS can examine them later. This includes
the kernel command line, the boot module information array, the boot modules themselves,
and the strings associated with the boot modules.

This function uses phys_lmm_init to initialize the malloc_1mm, and phys_lmm add to add avail-
able physical memory to it (see Section 10.11.1); as a consequence, this causes the physical
memory found to be split up automatically according to the three main functional “classes” of
PC memory: low 1MB memory accessible to real-mode software, low 16MB memory accessible
to the built-in DMA controller, and “all other” memory. This division allows the OS to allocate
“special” memory when needed for device access or for calls to real-mode BIOS routines, simply
by specifying the appropriate flags in the LMM allocation calls.

XXX currently doesn’t use the memory range array.

DEPENDENCIES
phystokv: 10.6.2
boot_info: 10.14.7
phys_1mm init: 10.11.3
phys_lmm add: 10.11.4
strlen: 9.4.18

10.14.10 base multiboot_init_cmdline: command-line preprocessing
SYNOPSIS

#include <oskit/x86/pc/basemultiboot.h>
void base_multiboot_init_cmdline(void);

10.14. MULTIBOOT STARTUP 257

DESCRIPTION

This function breaks up the kernel command line string passed by the boot loader into inde-
pendent C-language-compatible argument strings. Option strings are separated by any normal
whitespace characters (spaces, tabs, newlines, etc.). In addition, strings containing an equals sign
(‘=") are added to the environ array rather than the argv array, effectively providing the OS
with a minimal initial environment that can be specified by the user (through the boot loader)
and examined by the OS using the normal getenv mechanism (see Section 9.4.17).

XXX example.
XXX currently no quoting support.

XXX currently just uses “kernel” as argv|0].

DEPENDENCIES

phystokv: 10.6.2
strlen: 9.4.18
strtok: 9.4.18
malloc: 9.5.2
memcpy: 9.4.18
panic: 9.8.3

10.14.11 basemultiboot_find: find a MultiBoot boot module by name
SYNOPSIS

#include <oskit/x86/pc/basemultiboot.h>
struct multiboot module *base_multiboot_find(const char *string);

DESCRIPTION

This is not an initialization function, but rather a utility function for the use of the client OS.
Given a particular string, it searches the array of boot modules passed by the boot loader for
a boot module with a matching string. This function can be easily used by the OS to locate
specific boot modules by name.

If multiple boot modules have matching strings, then the first one found is returned. If any
boot modules have no strings attached (no pun intended), then those boot modules will never be
“found” by this function, although they can still be found by hunting through the boot module
array manually.

PARAMETERS

string: 'The string to match against the strings attached to the boot modules.

RETURNS

If successful, returns a pointer to the multiboot module entry matched; from this structure, the
actual boot module data can be found using the mod_start and mod_end elements, which contain
the start and ending physical addresses of the boot module data, respectively.

If no matching boot module can be found, this function returns NULL.

258 CHAPTER 10. KERNEL SUPPORT LIBRARY: LIBOSKIT KERN.A

DEPENDENCIES

phystokv: 10.6.2
boot_info: 10.14.7
strcmp: 9.4.18

10.14.12 Multiboot Specification

Excerpt from "MultiBoot Standard"
Version 0.6

March 29, 1996

(This contains the essential MultiBoot specification, omitting background
and related info found in ftp://flux.cs.utah.edu/flux/multiboot/.)

Contents
* Terminology
* Scope and Requirements
* Details
* Authors

The following items are not part of the standards document,
but are included for prospective 0S and bootloader writers.
* Example 0S Code

* Example Bootloader Code

Terminology

Throughout this document, the term "boot loader" means whatever
program or set of programs loads the image of the final operating
system to be run on the machine. The boot loader may itself consist of
several stages, but that is an implementation detail not relevant to
this standard. Only the "final" stage of the boot loader - the stage
that eventually transfers control to the 0S - needs to follow the
rules specified in this document in order to be "MultiBoot compliant";
earlier boot loader stages can be designed in whatever way is most
convenient.

The term "OS image" is used to refer to the initial binary image that
the boot loader loads into memory and transfers control to to start
the 0S. The 0S image is typically an executable containing the 0S
kernel.

The term "boot module" refers to other auxiliary files that the boot
loader loads into memory along with the 0S image, but does not
interpret in any way other than passing their locations to the 0S when
it is invoked.

10.14. MULTIBOOT STARTUP 259

Scope and Requirements
Architectures

This standard is primarily targetted at PC’s, since they are the most
common and have the largest variety of 0S’s and boot loaders. However,
to the extent that certain other architectures may need a boot
standard and do not have one already, a variation of this standard,
stripped of the x86-specific details, could be adopted for them as
well.

Operating systems

This standard is targetted toward free 32-bit operating systems that
can be fairly easily modified to support the standard without going
through lots of bureaucratic rigmarole. The particular free 0S’s that
this standard is being primarily designed for are Linux, FreeBSD,
NetBSD, Mach, and VSTa. It is hoped that other emerging free 0S’s will
adopt it from the start, and thus immediately be able to take
advantage of existing boot loaders. It would be nice if commercial
operating system vendors eventually adopted this standard as well, but
that’s probably a pipe dream.

Boot sources

It should be possible to write compliant boot loaders that load the 0S
image from a variety of sources, including floppy disk, hard disk, and
across a network.

Disk-based boot loaders may use a variety of techniques to find the
relevant 0S image and boot module data on disk, such as by
interpretation of specific file systems (e.g. the BSD/Mach boot
loader), using precalculated "block lists" (e.g. LILO), loading from a
special "boot partition" (e.g. 0S/2), or even loading from within
another operating system (e.g. the VSTa boot code, which loads from
D0OS) . Similarly, network-based boot loaders could use a variety of
network hardware and protocols.

It is hoped that boot loaders will be created that support multiple
loading mechanisms, increasing their portability, robustness, and
user—-friendliness.

Boot-time configuration

It is often necessary for one reason or another for the user to be
able to provide some configuration information to the 0S dynamically
at boot time. While this standard should not dictate how this
configuration information is obtained by the boot loader, it should
provide a standard means for the boot loader to pass such information
to the 0S.

Convenience to the 0S

0S images should be easy to generate. Ideally, an 0S image should

260 CHAPTER 10. KERNEL SUPPORT LIBRARY: LIBOSKIT KERN.A

simply be an ordinary 32-bit executable file in whatever file format
the 0S normally uses. It should be possible to ’nm’ or disassemble 0S
images just like normal executables. Specialized tools should not be
needed to create 0S images in a '"special" file format. If this means
shifting some work from the 0S to the boot loader, that is probably
appropriate, because all the memory consumed by the boot loader will
typically be made available again after the boot process is created,
whereas every bit of code in the 0S image typically has to remain in
memory forever. The 0S should not have to worry about getting into
32-bit mode initially, because mode switching code generally needs to
be in the boot loader anyway in order to load 0S data above the 1MB
boundary, and forcing the 0S to do this makes creation of 0S images
much more difficult.

Unfortunately, there is a horrendous variety of executable file
formats even among free Unix-like PC-based 0S’s - generally a
different format for each 0S. Most of the relevant free 0S’s use some
variant of a.out format, but some are moving to ELF. It is highly
desirable for boot loaders not to have to be able to interpret all the
different types of executable file formats in existence in order to
load the 0S image - otherwise the boot loader effectively becomes
0S-specific again.

This standard adopts a compromise solution to this problem. MultiBoot
compliant boot images always either (a) are in ELF format, or (b)
contain a "magic MultiBoot header", described below, which allows the
boot loader to load the image without having to understand numerous
a.out variants or other executable formats. This magic header does not
need to be at the very beginning of the executable file, so kernel
images can still conform to the local a.out format variant in addition
to being MultiBoot compliant.

Boot modules

Many modern operating system kernels, such as those of VSTa and Mach,
do not by themselves contain enough mechanism to get the system fully
operational: they require the presence of additional software modules
at boot time in order to access devices, mount file systems, etc.
While these additional modules could be embedded in the main 0S image
along with the kernel itself, and the resulting image be split apart
manually by the 0S when it receives control, it is often more
flexible, more space-efficient, and more convenient to the 0S and user
if the boot loader can load these additional modules independently in
the first place.

Thus, this standard should provide a standard method for a boot loader
to indicate to the 0S what auxiliary boot modules were loaded, and
where they can be found. Boot loaders don’t have to support multiple
boot modules, but they are strongly encouraged to, because some 0S’s
will be unable to boot without them.

Details

10.14. ®ss®al MULTIBOOT STARTUP

There are three main aspects of the boot-loader/0S image interface this
standard must specify:

* The format of the 0S image as seen by the boot loader.
* The state of the machine when the boot loader starts the 0S.
* The format of the information passed by the boot loader to the 0S.

0S Image Format

An 0S image is generally just an ordinary 32-bit executable file in the
standard format for that particular 0S, except that it may be linked at a
non-default load address to avoid loading on top of the PC’s I/0 region or
other reserved areas, and of course it can’t use shared libraries or other
fancy features. Initially, only images in a.out format are supported; ELF
support will probably later be specified in the standard.

Unfortunately, the exact meaning of the text, data, bss, and entry fields of
a.out headers tends to vary widely between different executable flavors, and it
is sometimes very difficult to distinguish one flavor from another (e.g. Linux
ZMAGIC executables and Mach ZMAGIC executables). Furthermore, there is no
simple, reliable way of determining at what address in memory the text segment
is supposed to start. Therefore, this standard requires that an additional
header, known as a ’multiboot_header’, appear somewhere near the beginning of
the executable file. In general it should come "as early as possible", and is
typically embedded in the beginning of the text segment after the "real"
executable header. It _must_ be contained completely within the first 8192
bytes of the executable file, and must be longword (32-bit) aligned. These
rules allow the boot loader to find and synchronize with the text segment in
the a.out file without knowing beforehand the details of the a.out variant. The
layout of the header is as follows:

it +

0 | magic: 0x1BADB002 | (required)

4 | flags | (required)

8 | checksum | (required)
it +

8 header_addr (present if flags[16] is set)

12 load_addr (present if flags[16] is set)

20 bss_end_addr (present if flags[16] is set)

| |
| |
16 | load_end_addr | (present if flags[16] is set)
| |
24 | entry_addr | (present if flags[16] is set)

A1l fields are in little-endian byte order, of course. The first field is the
magic number identifying the header, which must be the hex value 0x1BADB002.

The flags field specifies features that the 0S image requests or requires of
the boot loader. Bits 0-15 indicate requirements; if the boot loader sees any
of these bits set but doesn’t understand the flag or can’t fulfill the
requirements it indicates for some reason, it must notify the user and fail to
load the 0S image. Bits 16-31 indicate optional features; if any bits in this
range are set but the boot loader doesn’t understand them, it can simply ignore
them and proceed as usual. Naturally, all as-yet-undefined bits in the flags

261

262 CHAPTER 10. KERNEL SUPPORT LIBRARY: LIBOSKIT KERN.A

word must be set to zero in 0S images. This way, the flags fields serves for
version control as well as simple feature selection.

If bit 0 in the flags word is set, then all boot modules loaded along with the
0S must be aligned on page (4KB) boundaries. Some 0S’s expect to be able to map
the pages containing boot modules directly into a paged address space during
startup, and thus need the boot modules to be page-aligned.

If bit 1 in the flags word is set, then information on available memory via at
least the ’mem_x*’ fields of the multiboot_info structure defined below must be
included. If the bootloader is capable of passing a memory map (the ’mmap_x*’
fields) and one exists, then it must be included as well.

If bit 16 in the flags word is set, then the fields at offsets 8-24 in the
multiboot_header are valid, and the boot loader should use them instead of the
fields in the actual executable header to calculate where to load the 0S image.
This information does not need to be provided if the kernel image is in ELF
format, but it should be provided if the images is in a.out format or in some
other format. Compliant boot loaders must be able to load images that either
are in ELF format or contain the load address information embedded in the
multiboot_header; they may also directly support other executable formats, such
as particular a.out variants, but are not required to.

A1l of the address fields enabled by flag bit 16 are physical addresses. The
meaning of each is as follows:

* header_addr -- Contains the address corresponding to the beginning
of the multiboot_header - the physical memory location at which
the magic value is supposed to be loaded. This field serves to
"synchronize" the mapping between 0S image offsets and physical
memory addresses.

* load_addr -- Contains the physical address of the beginning of the
text segment. The offset in the 0S image file at which to start
loading is defined by the offset at which the header was found,
minus (header_addr - load_addr). load_addr must be less than or
equal to header_addr.

* load_end_addr -- Contains the physical address of the end of the
data segment. (load_end_addr - load_addr) specifies how much data
to load. This implies that the text and data segments must be
consecutive in the 0S image; this is true for existing a.out
executable formats.

* bss_end_addr -- Contains the physical address of the end of the
bss segment. The boot loader initializes this area to zero, and
reserves the memory it occupies to avoid placing boot modules and
other data relevant to the 0S in that area.

* entry —- The physical address to which the boot loader should jump
in order to start running the 0S.

The checksum is a 32-bit unsigned value which, when added to the other required
fields, must have a 32-bit unsigned sum of zero.

Machine State

When the boot loader invokes the 32-bit operating system, the machine must have

10.14. MULTIBOOT STARTUP

the following state:

* CS must be a 32-bit read/execute code segment with an offset of 0
and a limit of Oxffffffff.

* DS, ES, FS, GS, and SS must be a 32-bit read/write data segment
with an offset of O and a limit of Oxffffffff.

* The address 20 line must be usable for standard linear 32-bit
addressing of memory (in standard PC hardware, it is wired to 0 at
bootup, forcing addresses in the 1-2 MB range to be mapped to the
0-1 MB range, 3-4 is mapped to 2-3, etc.).

* Paging must be turned off.

* The processor interrupt flag must be turned off.

* EAX must contain the magic value 0x2BADB002; the presence of this
value indicates to the 0S that it was loaded by a
MultiBoot-compliant boot loader (e.g. as opposed to another type
of boot loader that the 0S can also be loaded from).

* EBX must contain the 32-bit physical address of the multiboot_info
structure provided by the boot loader (see below).

A1l other processor registers and flag bits are undefined. This includes, in
particular:

* ESP: the 32-bit 0S must create its own stack as soon as it needs
one.

* GDTR: Even though the segment registers are set up as described
above, the GDTR may be invalid, so the 0S must not load any
segment registers (even just reloading the same values!) until it
sets up its own GDT.

* IDTR: The 0S must leave interrupts disabled until it sets up its
own IDT.

However, other machine state should be left by the boot loader in '"normal
working order", i.e. as initialized by the BIOS (or DOS, if that’s what the
boot loader runs from). In other words, the 0S should be able to make BIOS
calls and such after being loaded, as long as it does not overwrite the BIOS
data structures before doing so. Also, the boot loader must leave the PIC
programmed with the normal BIOS/DOS values, even if it changed them during the
switch to 32-bit mode.

Boot Information Format

Upon entry to the 0S, the EBX register contains the physical address of a
’multiboot_info’ data structure, through which the boot loader communicates
vital information to the 0S. The 0S can use or ignore any parts of the
structure as it chooses; all information passed by the boot loader is advisory
only.

The multiboot_info structure and its related substructures may be placed
anywhere in memory by the boot loader (with the exception of the memory
reserved for the kernel and boot modules, of course). It is the 0S’s
responsibility to avoid overwriting this memory until it is done using it.

The format of the multiboot_info structure (as defined so far) follows:

263

264 CHAPTER 10. KERNEL SUPPORT LIBRARY: LIBOSKIT KERN.A

e +

0 | flags | (required)
o +

4 | mem_lower | (present if flags[0] is set)

8 | mem_upper | (present if flags[0] is set)
e +

12 | boot_device | (present if flags[1] is set)
o +

16 | cmdline | (present if flags[2] is set)
e +

20 | mods_count | (present if flags[3] is set)

24 | mods_addr | (present if flags[3] is set)
o +

28 - 40 | syms | (present if flags[4] or flags[5] is set)
e +

44 | mmap_length | (present if flags[6] is set)

48 | mmap_addr | (present if flags[6] is set)
fomm +

The first longword indicates the presence and validity of other fields in the
multiboot_info structure. All as-yet-undefined bits must be set to zero by the
boot loader. Any set bits that the 0S does not understand should be ignored.
Thus, the flags field also functions as a version indicator, allowing the
multiboot_info structure to be expanded in the future without breaking
anything.

If bit O in the multiboot_info.flags word is set, then the ’mem_x’ fields are
valid. ’mem_lower’ and ’mem_upper’ indicate the amount of lower and upper
memory, respectively, in kilobytes. Lower memory starts at address O, and upper
memory starts at address 1 megabyte. The maximum possible value for lower
memory is 640 kilobytes. The value returned for upper memory is maximally the
address of the first upper memory hole minus 1 megabyte. It is not guaranteed
to be this value.

If bit 1 in the multiboot_info.flags word is set, then the ’boot_device’ field
is valid, and indicates which BIOS disk device the boot loader loaded the 0S
from. If the 0S was not loaded from a BIOS disk, then this field must not be
present (bit 3 must be clear). The 0S may use this field as a hint for
determining its own "root" device, but is not required to. The boot_device
field is layed out in four one-byte subfields as follows:

Fo—— o to—— to—— - +

| drive | partl | part2 | part3 |
o= o o e +

The first byte contains the BIOS drive number as understood by the BIOS INT
0x13 low-level disk interface: e.g. 0x00 for the first floppy disk or 0x80 for
the first hard disk.

The three remaining bytes specify the boot partition. ’partl’ specifies the
"top-level" partition number, ’part2’ specifies a '"sub-partition" in the
top-level partition, etc. Partition numbers always start from zero. Unused
partition bytes must be set to OxFF. For example, if the disk is partitioned
using a simple one-level DOS partitioning scheme, then ’partl’ contains the DOS

10.14. MULTIBOOT STARTUP

partition number, and ’part2’ and ’part3’ are both zero. As another example, if
a disk is partitioned first into DOS partitions, and then one of those DOS
partitions is subdivided into several BSD partitions using BSD’s "disklabel"
strategy, then ’partl’ contains the DOS partition number, ’part2’ contains the
BSD sub-partition within that DOS partition, and ’part3’ is OxFF.

DOS extended partitions are indicated as partition numbers starting from 4 and
increasing, rather than as nested sub-partitions, even though the underlying
disk layout of extended partitions is hierarchical in nature. For example, if
the boot loader boots from the second extended partition on a disk partitioned
in conventional DOS style, then ’partl’ will be 5, and ’part2’ and ’part3’ will
both be OxFF.

If bit 2 of the flags longword is set, the ’cmdline’ field is valid, and
contains the physical address of the the command line to be passed to the
kernel. The command line is a normal C-style null-terminated string.

If bit 3 of the flags is set, then the ’'mods’ fields indicate to the kernmel
what boot modules were loaded along with the kernel image, and where they can
be found. ’mods_count’ contains the number of modules loaded; ’mods_addr’
contains the physical address of the first module structure. ’mods_count’ may
be zero, indicating no boot modules were loaded, even if bit 1 of ’flags’ is
set. Each module structure is formatted as follows:

e +
0 | mod_start
4 | mod_end
R +
8 | string
e +
12 | reserved (0) |
R +

The first two fields contain the start and end addresses of the boot module
itself. The ’string’ field provides an arbitrary string to be associated with
that particular boot module; it is a null-terminated ASCII string, just like
the kernel command line. The ’string’ field may be O if there is no string
associated with the module. Typically the string might be a command line (e.g.
if the 0S treats boot modules as executable programs), or a pathname (e.g. if
the 0S treats boot modules as files in a file system), but its exact use is
specific to the 0S. The ’reserved’ field must be set to 0 by the boot loader
and ignored by the 0S.

NOTE: Bits 4 & 5 are mutually exclusive.

If bit 4 in the multiboot_info.flags word is set, then the following fields in
the multiboot_info structure starting at byte 28 are valid:

e +
28 | tabsize
32 | strsize
36 | addr
40 | reserved (0) |

265

266 CHAPTER 10. KERNEL SUPPORT LIBRARY: LIBOSKIT KERN.A

These indicate where the symbol table from an a.out kernel image can be found.
’addr’ is the physical address of the size (4-byte unsigned long) of an array
of a.out-format ’nlist’ structures, followed immediately by the array itself,
then the size (4-byte unsigned long) of a set of null-terminated ASCII strings
(plus sizeof(unsigned long) in this case), and finally the set of strings
itself. ’tabsize’ is equal to it’s size parameter (found at the beginning of
the symbol section), and ’strsize’ is equal to it’s size parameter (found at
the beginning of the string section) of the following string table to which the
symbol table refers. Note that ’tabsize’ may be 0, indicating no symbols, even
if bit 4 in the flags word is set.

If bit 5 in the multiboot_info.flags word is set, then the following fields in
the multiboot_info structure starting at byte 28 are valid:

e +
28 | num |
32 | size
36 | addr
40 | shndx |
e +

These indicate where the section header table from an ELF kernel is, the size
of each entry, number of entries, and the string table used as the index of
names. They correspond to the ’shdr_*’ entries (’shdr_num’, etc.) in the
Executable and Linkable Format (ELF) specification in the program header. All
sections are loaded, and the physical address fields of the elf section header
then refer to where the sections are in memory (refer to the 1386 ELF
documentation for details as to how to read the section header(s)). Note that
’shdr_num’ may be 0, indicating no symbols, even if bit 5 in the flags word is
set.

If bit 6 in the multiboot_info.flags word is set, then the ’mmap_x*’ fields are
valid, and indicate the address and length of a buffer containing a memory map
of the machine provided by the BIOS. ’mmap_addr’ is the address, and
’mmap_length’ is the total size of the buffer. The buffer consists of one or
more of the following size/structure pairs (’size’ is really used for skipping
to the next pair):

Fomm +
-4 | size
it +
0 | BaseAddrLow
4 | BaseAddrHigh |
8 | LengthLow
12 | LengthHigh |
16 | Type
it +

where ’size’ is the size of the associated structure in bytes, which can be
greater than the minimum of 20 bytes. ’BaseAddrLow’ is the lower 32 bits of the
starting address, and ’BaseAddrHigh’ is the upper 32 bits, for a total of a
64-bit starting address. ’LengthlLow’ is the lower 32 bits of the size of the
memory region in bytes, and ’LengthHigh’ is the upper 32 bits, for a total of a

10.14. MULTIBOOT STARTUP 267

64-bit length. ’Type’ is the variety of address range represented, where a
value of 1 indicates available RAM, and all other values currently indicated a
reserved area.

The map provided is guaranteed to list all standard RAM that should be
available for normal use.

Bryan Ford

Flux Research Group

Dept. of Computer Science
University of Utah

Salt Lake City, UT 84112
multiboot@flux.cs.utah.edu
baford@cs.utah.edu

Erich Stefan Boleyn

924 S.W. 16th Ave, #202
Portland, OR, USA 97205
(503) 226-0741
erich@uruk.org

We would also like to thank the many other people have provided comments,
ideas, information, and other forms of support for our work.

Example 0S code can be found in the 0SKit in the "kern/x86" directory and
in the oskit/x86/multiboot.h file.

Example Bootloader Code (from Erich Boleyn) - The GRUB bootloader

project (http://www.uruk.org/grub) will be fully Multiboot-compliant,
supporting all required and optional features present in this

standard. A final release has not been made, but the GRUB beta release
(which is quite stable) is available from ftp://ftp.uruk.org/public/grub/.

268 CHAPTER 10. KERNEL SUPPORT LIBRARY: LIBOSKIT KERN.A

10.15 Raw BIOS Startup

The BIOS startup code is written and functional but not yet documented or integrated into the OSKit source
tree.

10.16. DOS STARTUP 269

10.16 DOS Startup

The DOS startup code is written and functional but not yet documented or integrated into the OSKit source
tree.

270 CHAPTER 10. KERNEL SUPPORT LIBRARY: LIBOSKIT KERN.A

10.17 Remote Kernel Debugging with GDB

In addition to the libkern functionality described above which is intended to facilitate implementing kernels,
the library also provides complete, easy-to-use functionality to facilitate debugging kernels. The OSKit does
not itself contain a complete kernel debugger (at least, not yet), but it contains extensive support for remote
debugging using GDB, the GNU debugger. This remote debugging support allows you to run the debugger
on one machine, and run the actual OS kernel being debugged on a different machine. The two machines
can be of different architectures. A small “debugging stub” is linked into the OS kernel; this piece of code
handles debugging-related traps and interrupts and communicates with the remote debugger, acting as a
“slave” that simply interprets and obeys the debugger’s commands.

This section describes remote debugging in general, applicable to any mechanism for communicating with
the remote kernel (e.g., serial line or ethernet). The next section (10.18) describes kernel debugging support
specific to the serial line mechanism (currently the only one implemented).

XXX diagram

One of the main advantages of remote debugging is that you can use a complete, full-featured source-level
debugger, since it can run on a stable, well-established operating system such as Unix; a debugger running
on the same machine as the kernel being debugged would necessarily have to be much smaller and simpler
because of the lack of a stable underlying OS it can rely on. Another advantage is that remote debugging
is less invasive: since most of the debugging code is on a different machine, and the remote debugging stub
linked into the OS is much smaller than even a simple stand-alone debugger, there is much less that can “go
wrong” with the debugging code when Strange Things start to happen due to subtle kernel bugs. The main
disadvantage of remote debugging, of course, is that it requires at least two machines with an appropriate
connection between them.

The GNU debugger, GDB, supports a variety of remote debugging protocols. The most common and
well-supported is the serial-line protocol, which operates over an arbitrary serial line (typically null-modem)
connection operating at any speed supported by the two machines involved. The serial-line debugging
protocol supports a multitude of features such as multiple threads, signals, and data compression. GDB also
supports an Ethernet-based remote debugging protocol and a variety of existing vendor- and OS-specific
protocols.

Ths OS kit’s GDB support has been tested with GDB versions 4.15 and 4.16; probably a version >=
4.15 is required.

10.17.1 Organization of remote GDB support code

The GDB remote debugging support provided by the OSKit is broken into two components: the protocol-
independent component and the protocol-specific component. The protocol-independent component en-
capsulates all the processor architecture-specific code to handle processor traps and convert them into the
“signals” understood by GDB, to convert saved state frames to and from GDB’s standard representation for
a given architecture, and to perform “safe” memory reads and writes on behalf of the remote user so that
faulting accesses will terminate cleanly without causing recursive traps.

The protocol-specific component of the toolkit’s remote GDB support encapsulates the code necessary
to talk to the remote debugger using the appropriate protocol. Although this code is specific to a particular
protocol, it is architecture-neutral. The OSKit currently supports only the standard serial-line protocol,
although support for other protocols is planned (particularly the remote Ethernet debugging protocol) and
should be easy to add.

10.17.2 Using the remote debugging code

If you are using the base environment’s default trap handler, then activating the kernel debugger is extremely
easy: it is simply necessary to call an appropriate initialization routine near the beginning of your kernel code;
all subsequent traps that occur will be dispatched to the remote debugger. For example, on a PC, to activate
serial-line debugging over COM1 using default serial parameters, simply make the call ‘gdb_pc_com_init (1,
0)’. Some example kernels are provided with the OSKit that demonstrate how to initialize and use the
remote debugging facilities; see Section 1.6.1 for more information.

10.17. REMOTE KERNEL DEBUGGING WITH GDB 271

If you want a trap to occur immediately after initialization of the debugging mechanism, to transfer
control to the remote debugger from the start and give you the opportunity to set breakpoints and such,
simply invoke the gdb_breakpoint macro immediately after the call to initialize the remote debugger (see
Section 10.17.11).

If your kernel uses its own trap entrypoint mechanisms or its own serial line communication code (e.g.,
“real” interrupt-driven serial device drivers instead of the simple polling code used by default by the toolkit),
then you will have to write a small amount of “glue” code to interface the generic remote debugging support
code in the toolkit with your specific OS mechanisms. However, this glue code should generally be extremely
small and simple, and you can use the default implementations in the OSKit as templates to work from or
use as examples.

10.17.3 Debugging address spaces other than the kernel’s

Although the OSKit’s remote debugging support code is most directly and obviously useful for debugging
the OS kernel itself, most of the code does not assume that the kernel is the entity being debugged. In
fact, it is quite straightforward to adapt the mechanism to allow remote debugging of other entities, such
as user-level programs running on top of the kernel. To make the debugging stub operate on a different
address space than the kernel’s, it is simply necessary to override the gdb_copyin and gdb_copyout routines
with alternate versions that transfer data to or from the appropriate address space. Operating systems that
support a notion of user-level address spaces generally have some kind of “copyin” and “copyout” routines
anyway to provide safe access to user address spaces; the replacement gdb_copyin and gdb_copyout routines
can call those standard user space access routines. In addition, the trap handling mechanism may need to be
set up so that only traps occurring in a particular context (e.g., within a particular user process or thread)
will be dispatched to the remote debugger.

10.17.4 gdb_state: processor register state frame used by GDB
SYNOPSIS

#include <oskit/gdb.h>
struct gdb_state {

.5 /* architecture-specific definitions */
b

DESCRIPTION

This structure represents the processor register state for the target architecture in the form
in which GDB expects it. GDB uses a standard internal data structure for each processor
architecture to represent the register state of a program being debugged, and most of GDB’s
architecture-neutral remote debugging protocols use this standard structure. The gdb_state
structure defined by the OSKit is defined to match GDB’s corresponding register state structure
for each supported architecture.

10.17.5 gdb_trap: default trap handler for remote GDB debugging
SYNOPSIS

#include <oskit/gdb.h>
int gdb_trap(struct trap_state *trap_state);

DESCRIPTION

This function is intended to be installed as the kernel trap handler for all traps by setting each
of the entries in the base_trap_handlers array to point to it (see Section 10.8.4), when remote
GDB debugging is desired. (Alternatively, the client OS can use its own trap handlers which

272 CHAPTER 10. KERNEL SUPPORT LIBRARY: LIBOSKIT KERN.A

chain to gdb_trap when appropriate.) This function converts the contents of the trap_state
structure saved by the base trap entrypoint code into the gdb_state structure used by GDB.
It also converts the architecture-specific processor trap vector number into a suitable machine-
independent signal number which can be interpreted by the remote debugger.

After converting the register state and trap vector appropriately, this function calls the ap-
propriate protocol-specific GDB stub through the gdb_signal function pointer variable (see
Section 10.17.9). Finally, it converts the final register state, possibly modified by the remote
debugger, back into the original trap_state format and returns an appropriate success or failure
code as described below.

On architectures that don’t provide a way for the kernel to “validate” memory accesses before per-
forming them, such as the x86, this function also provides support for “recovering” from faulting
memory accesses during calls to gdb_copyin or gdb_copyout (see Sections 10.17.6 and 10.17.7).
This is typically implemented using a “recovery pointer” which is set before a “safe” memory
access and cleared afterwards; gdb_trap checks this recovery pointer, and if set, modifies the trap
state appropriately and returns from the trap without invoking the protocol-specific GDB stub.

If the client OS uses its own trap entrypoint code which saves register state in a different format
when handling traps, then the client OS will also need to override the gdb_trap function with a
version that understands its custom saved state format.

PARAMETERS

trap_state: A pointer to the saved register state representing the processor state at the time the
trap occurred. The saved state must be in the default format defined by the OSKit’s base
environment,.

RETURNS

The gdb_trap function returns success (zero) when the remote debugger instructs the local stub
to resume execution at the place it was stopped and “consume” the trap that caused the debugger
to be invoked; this is the normal case.

This function returns failure (nonzero) if the remote debugger passed the same or a different
signal back to the local GDB stub, instructing the local kernel to handle the trap (signal) itself.
If the default trap entrypoint mechanism provided by the base environment in use, then this
simply causes the kernel to panic with a register dump, since the default trap code does not
know how to “handle” signals by itself. However, if the client OS uses its own trap entrypoint
mechanism or interposes its own trap handler over gdb_trap, then it may wish to interpret a
nonzero return code from gdb_trap as a request for the trap to be handled using the “normal”
mechanism, (e.g., dispatched to the application being debugged).

DEPENDENCIES

trap_state: 10.8.1
gdb_state: 10.17.4
gdb_signal: 10.17.9
gdb_trap_recover: 10.17.8

10.17.6 gdb_copyin: safely read data from the subject’s address space
SYNOPSIS

#include <oskit/gdb.h>
int gdb_copyin(oskit_addr_t src_va, void *dest_buf, oskit_size_t size);

10.17.

REMOTE KERNEL DEBUGGING WITH GDB

DESCRIPTION

PARA

The protocol-specific local GDB stub calls this function in order to read data in the address
space of the program being debugged. The default implementation of this function provided by
libkern assumes that the kernel itself is the program being debugged; thus, it acts basically like
an ordinary memcpy. However, the client can override this function with a version that accesses
a different address space, such as a user process’s address space, in order to support remote
debugging of entities other than the kernel.

If a fault occurs while trying to read the specified data, this function catches the fault cleanly
and returns an error code rather than allowing a recursive trap to be dispatched to the debugger.
This way, if the user of the debugger accidentally attempts to follow an invalid pointer or display
unmapped or nonexistent memory, it will merely cause the debugger to report an error rather
than making everything go haywire.

METERS

src_va: The virtual address in the address space of the program being debugged (the kernel’s
address space, by default) from which to read data.

dest_buf: A pointer to the kernel buffer to copy data into. This buffer is provided by the caller,
typically the local GDB stub,

size: The number of bytes of data to read into the destination buffer.

RETURNS

DEPE

10.1

SYNO

DEsc

Returns zero if the transfer completed successfully, or nonzero if some or all of the source region
is not accessible.

NDENCIES

gdb_trap_recover: 10.17.8

7.7 gdb_copyout: safely write data into the subject’s address space
PSIS

#include <oskit/gdb.h>

int gdb_copyout(const void *src_buf, oskit_addr_t dest_va, oskit_size_t size);

RIPTION

The protocol-specific local GDB stub calls this function in order to write data into the address
space of the program being debugged. The default implementation of this function provided by
libkern assumes that the kernel itself is the program being debugged; thus, it acts basically like
an ordinary memcpy. However, the client can override this function with a version that accesses
a different address space, such as a user process’s address space, in order to support remote
debugging of entities other than the kernel.

If a fault occurs while trying to write the specified data, this function catches the fault cleanly
and returns an error code rather than allowing a recursive trap to be dispatched to the debugger.
This way, if the user of the debugger accidentally attempts to write to unmapped or nonexistent
memory, it will merely cause the debugger to report an error rather than making everything go
haywire.

273

274 CHAPTER 10. KERNEL SUPPORT LIBRARY: LIBOSKIT KERN.A

PARAMETERS

sre_buf: A pointer to the kernel buffer containing the data to write.

dest_va: The virtual address in the address space of the program being debugged (the kernel’s
address space, by default) at which to write the data.

size: The number of bytes of data to transfer.

RETURNS

Returns zero if the transfer completed successfully, or nonzero if some or all of the destination
region is not writable.

DEPENDENCIES

gdb_trap_recover: 10.17.8

10.17.8 gdb_trap_recover: recovery pointer for safe memory transfer routines

10.17.9 gdb_signal: vector to GDB trap/signal handler routine
SYNOPSIS

#include <oskit/gdb.h>

extern void (xgdb_signal) (int *inout_signo, struct gdb_state *inout_gdb_state);

DESCRIPTION

Before gdb_trap is called for the first time, this function pointer must be initialized to point to
an appropriate GDB debugging stub, such as gdb_serial signal (see Section 10.18.2). This
function is called to notify the remote debugger that a relevant processor trap or interrupt has
occurred, and to wait for further instructions from the remote debugger. When the function
returns, execution will be resumed as described in Section 10.17.5.

PARAMETERS

inout_signo: On entry, the variable referenced by this pointer contains the signal number to
transmit to the remote debugger. On return, this variable may have been modified to
indicate what signal should be dispatched to the program being debugged. For example, if
the variable is the same on return as on entry, then it means the remote debugger instructed
the stub to “pass through” the signal to the application. If *signo is 0 on return from this
function, it means the remote debugger has “consumed” the signal and execution of the
subject program should be resumed immediately.

inout_gdb_state: On entry, this structure contains a snapshot of the processor state at the time
the relevant trap or interrupt occurred. On return, the remote debugger may have modified
this state; the new state should be used when resuming execution.

10.17.10 gdb_set_trace_flag: enable or disable single-stepping in a state frame
SYNOPSIS

#include <oskit/gdb.h>
void gdb_set_trace_flag(int trace_enable, [in/out] struct gdb_state xstate);

10.17. REMOTE KERNEL DEBUGGING WITH GDB 275

DESCRIPTION

This architecture-specific function merely modifies the specified processor state structure to en-
able or disable single-stepping according to the trace_enable parameter. On architectures that
have some kind of trace flag, this function simply sets or clears that flag as appropriate. On
other architectures, this behavior is achieved through other means. This function is called by
machine-independent remote debugging stubs such as gdb_serial_signal before resuming ex-
ecution of the subject program, according to whether the remote debugger requested that the
program “continue” or “step” one instruction.

PARAMETERS

trace_enable: True if single-stepping should be enabled, or false otherwise.

state: The state frame to modify.

10.17.11 gdb_breakpoint: macro to generate a manual instruction breakpoint
SYNOPSIS

#include <oskit/gdb.h>
void gdb_breakpoint(void);

DESCRIPTION

This is simply an architecture-specific macro which causes an instruction causing a breakpoint
trap to be emitted at the corresponding location in the current function. This macro can be used
to set “manual breakpoints” in program code, as well as to give control to the debugger at the
very beginning of program execution as described in Section 10.17.2.

276 CHAPTER 10. KERNEL SUPPORT LIBRARY: LIBOSKIT KERN.A

10.18 Serial-line Remote Debugging with GDB

The GDB serial-line debugging protocol is probably the most powerful and commonly-used remote debugging
protocol supported by GDB; this is the only protocol for which the OSKit currently has direct support. The
GDB serial-line debugging stub supplied with the OSKit is fully architecture-independent, and supports
most of the major features of the GDB serial-line protocol.

For technical information on the remote serial-line GDB debugging protocol, or information on how to
run and use the remote debugger itself, consult the appropriate sections of the GDB manual. This section
merely describes how remote serial-line debugging is supported by the OSKit.

Note that source code for several example serial-line debugging stubs are supplied in the GDB distribution
(gdb/*-stub.c); in fact, this code was used as a template and example for the OSKit’s serial-line debugging
stub. However, these stubs are highly machine-dependent and make many more assumptions about how they
are used. For example, they assume that they have exclusive control of the processor’s trap vector table,
and are therefore only generally usable in an embedded environment where traps are never supposed to
occur during normal operation and therefore all traps can be fielded directly by the debugger. In contrast,
the serial-line debugging stub provided in the OSKit is much more generic and cleanly decomposed, and
therefore should be usable in a much wider range of environments.

10.18.1 Redirecting console output to the remote debugger

If the machine on which the kernel is being debugged is truly “remote,” e.g., in a different room or a
completely different building, and you don’t have easy access to the machine’s “real” console, it is possible
to make the kernel use the remote debugger as its “console” for printing status messages and such. To
do this, simply write your kernel’s “console” output functions (e.g., putchar and puts, if you're using the
OSKit’s minimal C library for console output routines such as printf) so that they call gdb_serial putchar
and gdb_serial puts, described in Sections 10.18.5 and 10.18.6, respectively. The OSKit base console
environment (section 10.13) does this as necessary.

This mechanism only works for console output: console input cannot be obtained from the remote de-
bugger’s console because the GDB serial-line debugging protocol does not currently support it. However,
console input can be obtained “outside the protocol” as described in section 10.18.4.

10.18.2 gdb_serial_signal: primary event handler in the GDB stub
SYNOPSIS

#include <oskit/gdb_serial.h>
void gdb_serial_signal([in/out] int *signo, [in/out] struct gdb_state *state);

DESCRIPTION

This is the main trap/signal handler routine in the serial-line debugging stub; it should be called
whenever a relevant processor trap occurs. This function notifies the remote debugger about
the event that caused the processor to stop, and then waits for instructions from the remote
debugger. The remote debugger may then cause the stub to perform various actions, such as
examine memory, modify the register state, or kill the program being debugged. Eventually, the
remote debugger will probably instruct the stub to resume execution, in which case this function
returns with the signal number and trap state modified appropriately.

If this function receives a “kill” (‘k’) command from the remote debugger, then it breaks the
remote debugging connection and then calls panic to reboot the machine. XXX may not be
appropriate when debugging a user task; should call an intermediate function.

PARAMETERS

signo: On entry, the variable referenced by this pointer contains the signal number to transmit
to the remote debugger. On return, this variable may have been modified to indicate what

10.18. SERIAL-LINE REMOTE DEBUGGING WITH GDB 277

signal should be dispatched to the program being debugged. For example, if the variable is
the same on return as on entry, then it means the remote debugger instructed the stub to
“pass through” the signal to the application. If *signo is 0 on return from this function, it
means the remote debugger has “consumed” the signal and execution of the subject program
should be resumed immediately.

state: On entry, this structure contains a snapshot of the processor state at the time the relevant
trap or interrupt occurred. On return, the remote debugger may have modified this state;
the new state should be used when resuming execution.

DEPENDENCIES

gdb_serial_send: 10.18.8
gdb_serial recv: 10.18.7
gdb_copyin: 10.17.6
gdb_copyout: 10.17.7
gdb_set_trace_flag: 10.17.10
panic: 9.8.3

10.18.3 gdb_serial_exit: notify the remote debugger that the subject is dead
SYNOPSIS

#include <oskit/gdb_serial.h>
void gdb_serial_exit(int ezit_code);

DESCRIPTION

This function sends a message to the remote debugger indicating that the program being debugged
is terminating. This message causes the debugger to display an appropriate message on the
debugger’s console along with the ezit_code, and causes it to break the connection (i.e., stop
listening for further messages on the serial port). If no remote debugging connection is currently
active, this function does nothing.

The client OS should typically call this function just before it reboots for any reason, so that the
debugger does not hang indefinitely waiting for a response from a kernel that is no longer running.
Alternatively, if the remote debugging facility is being used to debug a user-mode process running
under the kernel, then this function should be called when that process terminates.

Note that despite its name, this function does return. It does not by itself cause the machine to
“exit” or reboot or hang or whatever; it merely notifies the debugger that the subject program
is about to terminate.

PARAMETERS
exit_code: Exit code to pass back to the remote debugger. Typically this value is simply printed
on the remote debugger’s console.

DEPENDENCIES

gdb_serial_send: 10.18.8
gdb_serial recv: 10.18.7

278 CHAPTER 10. KERNEL SUPPORT LIBRARY: LIBOSKIT KERN.A

10.18.4 gdb_serial_getchar: input a character from the remote debugger’s con-
sole

SYNOPSIS

#include <oskit/gdb_serial.h>
int gdb_serial_getchar(void);
static char inbuf[256];

DESCRIPTION

Unfortunately, the GDB protocol doesn’t support console input. However, we can simulate it
with a rather horrible kludge: when the kernel first does a read from the console we take a
breakpoint, allowing the user to fill an input buffer with a command such as:

call strepy (inbuf, ” hello’g)

The supplied characters will be returned from successive calls to gdb_serial_getchar, until
inbuf is emptied, at which point we hit a breakpoint again.

RETURNS

Returns the next available character in the inbuf array.

DEPENDENCIES

gdb_breakpoint: 10.17.11
base_critical_enter: 10.2.5

base_critical_leave: 10.2.5

10.18.5 gdb_serial_putchar: output a character to the remote debugger’s con-
sole

SYNOPSIS

#include <oskit/gdb_serial.h>
void gdb_serial_putchar(int ch);

DESCRIPTION

If a remote debugging connection is currently active, this function sends the specified character
to the remote debugger in a special “output” (‘0’) message which causes that character to be
sent to the debugger’s standard output. This allows the serial line used for remote debugging to
double as a remote serial console, as described in Section 10.18.1.

Note that using gdb_serial putchar by itself to print messages can be very inefficient, because
a separate message is used for each character, and each of these messages must be acknowledged
by the remote debugger before the next character can be sent. When possible, it is much faster to
print strings of text using gdb_serial puts (see Section 10.18.6). If you are using the implemen-
tation of printf in the OSKit’s minimal C library (see Section 9.6), you can make this happen
automatically by overriding puts with a version that calls gdb_serial puts directly instead of
calling putchar successively on each character.

If this function is called while no remote debugging connection is active, but the gdb_serial_send
and gdb_serial receive pointers are initialized to point to serial-line communication functions,

10.18. SERIAL-LINE REMOTE DEBUGGING WITH GDB 279

then this function simply sends the specified character out the serial port using gdb_serial send.
This way, if the kernel attempts to print any messages before a connection has been established
or after the connection has been dropped (e.g., by calling gdb_serial_exit), they won’t confuse
the debugger or cause the kernel to hang as they otherwise would, and they may be seen by the
remote user if the serial port is being monitored at the time.

If the gdb_serial_send and gdb_serial_receive pointers are uninitialized (still NULL) when
this function is called, it does nothing,.

PARAMETERS

ch: The character to send to the remote debugger’s console.

DEPENDENCIES

gdb_serial_send: 10.18.8
gdb_serial recv: 10.18.7

10.18.6 gdb_serial_puts: output a line to the remote debugger’s console
SYNOPSIS

#include <oskit/gdb_serial.h>

void gdb_serial_puts(const char *s);

DESCRIPTION

If a remote debugging connection is currently active, this function sends the specified string,
followed by a newline character, to the remote debugger in a special “output” (‘0’) message
which causes the line to be sent to the debugger’s standard output. This allows the serial line
used for remote debugging to double as a remote serial console, as described in Section 10.18.1.

If this function is called while no remote debugging connection is active, but the gdb_serial_send
and gdb_serial receive pointers are initialized to point to serial-line communication functions,
then this function simply sends the specified line out the serial port using gdb_serial_send. This
way, if the kernel attempts to print any messages before a connection has been established or
after the connection has been dropped (e.g., by calling gdb_serial_exit), they won’t confuse
the debugger or cause the kernel to hang as they otherwise would, and they may be seen by the
remote user if the serial port is being monitored at the time.

If the gdb_serial_send and gdb_serial receive pointers are uninitialized (still NULL) when
this function is called, it does nothing.

PARAMETERS
s: The string to send to the remote debugger’s console. A newline is automatically appended
to this string.

DEPENDENCIES

gdb_serial_send: 10.18.8
gdb_serial recv: 10.18.7

280 CHAPTER 10. KERNEL SUPPORT LIBRARY: LIBOSKIT KERN.A

10.18.7 gdb_serial_recv: vector to GDB serial line receive function
SYNOPSIS

#include <oskit/gdb_serial.h>
int (*gdb_serial_recv) (void);

DESCRIPTION

Before the remote serial-line debugging stub can be used, this global variable must be initialized to
point to a function to call to read a character from the serial port. The function should not return
until a character has been received; the GDB stub has no notion of timeouts or interruptions.

Calling functions in the GDB serial-line debugging stub before this variable is initialized (i.e.,
while it is still null) is guaranteed to be harmless.
RETURNS

Returns the character received.

10.18.8 gdb_serial_send: vector to GDB serial line send function
SYNOPSIS

#include <oskit/gdb_serial.h>
void (*gdb_serial_send) (int ch);

DESCRIPTION

Before the remote serial-line debugging stub can be used, this global variable must be initialized
to point to a function to call to send out a character on the serial port.

Calling functions in the GDB serial-line debugging stub before this variable is initialized (i.e.,
while it is still null) is guaranteed to be harmless.
RETURNS

Returns the character received.

10.18.9 gdb_pc_com_init: set up serial-line debugging over a COM port
SYNOPSIS

#include <oskit/gdb.h>

void gdb_pc_com_init(int com_port, struct termios *com_params);

DESCRIPTION

This is a simple “wrapper” function which ties together all of the OSKit’s remote debugging
facilities to automatically create a complete remote debugging environment for a specific, typical
configuration: namely, remote serial-line debugging on a PC through a COM port. This function
can be used as-is if this configuration happens to suit your purposes, or it can be used as an
example for setting up the debugging facilities for other configurations.

Specifically, this function does the following;:

e Sets all entries in the base_trap_handlers array to point to gdb_trap. This establishes the
GDB debugging trap handler as the basic handler used to handle all processor traps.

10.18. SERIAL-LINE REMOTE DEBUGGING WITH GDB 281

o Sets the gdb_signal variable to point to gdb_serial_signal. This “connects” the generic
GDB debugging code to the serial-line debugging stub.

e Sets gdb_serial_recv to point to com_cons_getchar, and gdb_serial_send to point to
com_cons_putchar. (Actually a wrapper that gives the port to those functions, as they now
take a serial port as the first parameter). This connects the serial-line debugging stub to
the simple polling PC COM-port console code.

e Initializes the specified COM port using the specified parameters (baud rate, etc.).

e Sets the hardware IRQ vector in the base IDT corresponding to the selected COM port
to point to an interrupt handler that invokes the remote debugger with a “fake” SIGINT
trap, and enables the serial port interrupt. This allows the remote user to interrupt the
running kernel by pressing CTRL-C on the remote debugger’s console, at least if the kernel
is running with interrupts enabled.

PARAMETERS

com_port: The COM port number through which to communicate: must be 1, 2, 3, or 4.

com_params: A pointer to a termios structure defining the required serial port communication
parameters. If this parameter is NULL, the serial port is set up for 9600,8,N,1 by default.

DEPENDENCIES

gdb_trap: 10.17.5

gdb_signal: 10.17.9

gdb_serial_signal: 10.18.2

gdb_serial recv: 10.18.7

gdb_serial_send: 10.18.8

com_cons_init: 10.13.8

com_cons_getchar: 10.13.9
com_cons_putchar: 10.13.10
com_cons_enable_receive_interrupt: 10.13.12
base_idt: 10.7.4

base_raw_termios: 10.13.4

282 CHAPTER 10. KERNEL SUPPORT LIBRARY: LIBOSKIT KERN.A

10.19 Annotations

Kernel annotations are “markers” that can be placed in code or static data. Annotations are static and are
collected into a special section of the object/executable file. How this section is created is object-file format
specific and is normally handled by the default startup files (e.g, crt0.o0).

Annotations are organized in tables which is sorted by a key value (typically the address being marked)
at boot time via anno_init.

The basic annotation structures look like:
struct anno_table {

struct anno.entry *start; /* first entry ¥/

struct anno_entry *end; /* last entry */
b

struct anno_entry {

oskit_addr t vall,; /* lookup value */
oskit_addrt val2; /* context dependent value */
oskit_addr t val3; /* context dependent value */
struct anno_table *table; /* associated anno_table */

b

Annotation tables contain a pointer to the first and last entries they contain. All entries in a table are
contiguous and sorted by the key value.

Annotation entries specify the table they belong to, the key value used for lookups, and two uninterpreted
values.

Though annotations can be structured arbitrarily, the OSKit supports two common kernel annotation
uses: “trap tables” and “interrupt tables.” These are described in the following anno_trap and anno_intr
sections.

Currently, annotation support only works with the ELF binary file format (i.e., it does not work with
a.out).

10.19.1 anno.h: generic macros to place annotations in kernel code.
SYNOPSIS

#include <oskit/machine/anno.h>

ANNO_ENTRY (table, vall, val2, val3)
ANNO_TEXT (table, val2, val3)

DESCRIPTION

Contains architecture-dependent, assembly-code callable macros for placing annotations in kernel
text and initialized data. No C-callable versions are included since most C compilers may reorder
code making exact placement of annotations impossible.

ANNQO_ENTRY creates a generic annotation entry associated with the indicated table and filled with
the specified values.

ANNO_TEXT records an annotation in the given table for the current point in the text (code)
segment. The current value of the program counter is placed in vall. The specified values for
val2 and val3 are recorded.

10.19.2 anno_dump: dump all annotation tables
SYNOPSIS

#include <oskit/anno.h>
void anno_dump(void);

10.19. ANNOTATIONS 283

DESCRIPTION
Dumps, using printf, all registered annotation tables and entries. Should not be called before
anno_init.

DEPENDENCIES

printf: 9.6

10.19.3 anno_find exact: find annotation table exactly entry matching a value.
SYNOPSIS

#include <oskit/anno.h>

struct anno_entry *anno_find_exact(struct anno_table *tab, oskit_addr_t vall);

DESCRIPTION
Find an entry in the specified annotation table whose vall field exactly matches the specified
value.

PARAMETERS

tab: annotation table to search

vall: value to search for

RETURNS

Returns a pointer to the anno_entry matching the value, or zero if no entry matches.

10.19.4 anno_find lower: find greatest annotation table entry below a value.
SYNOPSIS

#include <oskit/anno.h>

struct anno_entry *anno_find_lower(struct anno_table *tab, oskit_addr_t vall);

DESCRIPTION
Find an entry in the specified annotation table with the largest vall field less than or equal to
the specified value. If no entry has a lower or equal value, returns zero.

PARAMETERS

tab: annotation table to search

vall: value to search for

RETURNS

Returns a pointer to the appropriate anno_entry, or zero if no lower entry is found.

284 CHAPTER 10. KERNEL SUPPORT LIBRARY: LIBOSKIT KERN.A

10.19.5 anno_init: initialize annotation tables and sort the entries.
SYNOPSIS

#include <oskit/anno.h>
void anno_init(void);

DESCRIPTION

This routine should be called once at program startup; it sorts all of the annotation entries
appropriately and initializes the annotation tables they reside in.

10.19.6 anno_intr: interrupt annotations
SYNOPSIS

#include <oskit/anno.h>
struct anno_table anno_intr;
ANNO_INTR (routine, val3)

void anno_intr_handler(struct anno_entry *anno, struct trap_state *tstate);

DESCRIPTION

The interrupt annotation table anno_intr contains entries which associate a handler function
with ranges of addresses in the kernel. Each entry defines an action to be performed if an
asynchronous exception occurs between the address associated with this entry and that associated
with the following entry. When an interrupt occurs, the default OSKit interrupt handler (in
base_irq_inittab.S) uses anno_find_lower to locate the correct annotation entry based on the
instruction pointer at the time of the interrupt. This handler function is invoked prior to calling
the standard interrupt handling function.

ANNO_INTR is a macro in oskit/x86/anno.h. It records an annotation in anno_intr for the
current point in the code segment. The given routine and val3 arguments are stored in the
entry’s val2 and val3 fields respectively. To disable interrupt redirection for a piece of code,
place an ANNO_INTR(0,0) call before it.

The annotation interrupt handler function is called in the context of the interrupted thread with
a pointer to the associated annotation entry and a pointer to the architecture-specific trap state
for the thread. On return from the annotation handler, the actual interrupt handler is called.

An example of interrupt annotation usage in a kernel is an efficient alternative to using “spls”
(i.e., raising processor priority) to protect critical sections from interrupts. By marking the
critical section with an annotation entry, the kernel detects when an interrupt occurs within it
and invokes an associated roll-back or roll-forward routine to back out of or complete the critical
section before invoking the interrupt handler.

10.19.7 anno_trap: trap annotations
SYNOPSIS

#include <oskit/anno.h>
struct anno_table anno_trap;
ANNO_TRAP (routine, val3)

int anno_trap_handler(struct anno_entry *anno, struct trap_state *tstate);

10.19. ANNOTATIONS 285

DESCRIPTION

The trap annotation table anno_trap contains entries which associate a handler function with
specific addresses in the kernel. These addresses correspond to points where synchronous excep-
tions are expected to occur. When such an exception occurs, the default OSKit trap handler
(in base_trap-inittab.S) uses anno_find exact to locate an annotation entry based on the in-
struction pointer at the time of the fault. This handler function is invoked instead of the standard
kernel trap handler in those instances.

ANNO_TRAP is a macro in oskit/x86/anno.h. It records an annotation in anno_trap for the
current point in the code segment. The given routine and wval3 arguments are stored in the
entry’s val2 and val3 fields respectively.

The annotation trap handler function is called in the context of the faulting thread with a
pointer to the matching annotation entry and a pointer to the architecture-specific trap state for
the thread. If the handler returns zero, the OSKit trap handler will restore state from the trap
state structure and resume execution. If it returns non-zero, it is considered a failed fault and
the kernel will panic.

An example of trap annotation usage is a kernel copyin routine which must read data in the
user’s address space. Associating an annotation entry with the instruction which moves data
from the user’s address space enables the kernel to catch any access violation caused and reflect
it to the user.

286 CHAPTER 10. KERNEL SUPPORT LIBRARY: LIBOSKIT KERN.A

10.20 Boot Module Filesystem

The Boot Module (BMOD) filesystem is a memory-based filesystem exporting the OSKit filesystem interface.
The initial contents of the BMOD filesystem are loaded from the Multiboot boot image. This allows an OSKit
kernel to load a filesystem at boot time, possibly not even requiring an actual disk-based filesystem.

XXX multiboot strings are parsed to create hierarchical filesystem. XXX new BMODs may be added,
multiboot BMODs may be modified or destroyed. XXX no guarantee on alignment of multiboot created
BMOD files.

10.20.1 oskit_bmod_init: initialize BMOD filesystem
SYNOPSIS

#include <oskit/fs/bmodfs.h>
oskit_dir_ t *oskit_bmod_init(void);

DESCRIPTION

Initialize the BMOD filesystem.

RETURNS

Returns handle to the root of the BMOD filesystem.

10.20.2 oskit_bmod_lock: lock BMOD filesystem
SYNOPSIS

#include <oskit/fs/bmodfs.h>
void oskit_bmod_lock(void);

DESCRIPTION

Lock the BMOD filesystem.

10.20.3 oskit_bmod_unlock: unlock BMOD filesystem
SYNOPSIS

#include <oskit/fs/bmodfs.h>
void oskit_bmod_unlock(void);

DESCRIPTION

Unlock the BMOD filesystem.

10.20.4 oskit_bmod_file_set_contents: replace contents of a BMOD file
SYNOPSIS

#include <oskit/fs/bmodfs.h>

oskit_error_t oskit_bmod _file_set_contents(oskit_file_t *file, void *data, oskit_off_t
size, oskit_off_t allocsize, oskit_bool_t can_sfree, oskit_bool_t inhibit_resize);

10.20. BOOT MODULE FILESYSTEM 287

DESCRIPTION

This function changes the indicated BMOD file to use the memory from [data - data+size-1] as
its contents. File must be a regular BMOD file and not a directory.

Allocsize indicates the total amount of memory available for the file to use when growing and
must be greater than or equal to size. If an attempt is made to grow the file to a size greater
than allocsize, new memory will be allocated with smemalign and the file contents copied to the
new memory.

If inhibit_resize is true, attempts to change the size of the file hereafter will fail with 0SKIT_EPERM.

If can_sfree is true, sfree is called on the data buffer if the file grows beyond allocsize, is truncated
to zero-length or is removed.

PARAMETERS

file: File in the bmod filesystem whose contents are being replaced.
data: Pointer to memory to be used as the new file contents.

size: The new size of the file.

allocsize: Size of writable memory available for the file.

can_sfree: If true, indicates that the memory pointed to by data can be released with sfree
when the file grows beyond allocsize, is truncated to zero-length, or is removed.

inhibit_resize: If true, fails any attempt to change the size of the file.

RETURNS

Returns zero on success, an error code otherwise.

DEPENDENCIES

smemalign: 9.5.10
sfree: 9.5.11
memset: 9.4.18

288 CHAPTER 10. KERNEL SUPPORT LIBRARY: LIBOSKIT KERN.A

10.21 Signals

The signal handling facilities allow the client OS to provide compatibility with POSIX style signal handling
semantics. The support provided is extremely basic and is intended to be used in conjunction with the
OSKit’s FreeBSD C library (see Section 14) by arranging for unexpected hardware traps to be converted into
an appropriate signal and delivered through the C library. By default, the FreeBSD C library will not arrange
for signals to be delivered unless the oskit_init_libc initialization routine is called (see Section 9.7.1). The
exception are kernels linked with the POSIX threads module, which will always call the initialization routine.

10.21.1 oskit_sendsig init: initialize kernel signal delivery
SYNOPSIS

#include <oskit/c/signal.h>
void oskit_sendsig_init(int (*deliver_function)(int signo, int code, struct trap_state *ts));

DESCRIPTION

Initialize the kernel signal delivery mechanism, providing an upper level signal delivery routine.
This delivery function will usually be an entrypoint in the C library that provides the appropriate
signal semantics to the application. This entrypoint is responsible for converting the machine
dependent trap state information into a suitable signal context structure, as defined by the API
of the library in use. Since a pointer to the trap state structure is passed along, the callee is free
to modify the machine state in way it wishes.

DEPENDENCIES

oskit_init_libc: 9.7.1
oskit_init_libc: 14.7.1

10.21.2 oskit_sendsig: deliver a signal
SYNOPSIS

#include <oskit/c/signal.h>
#include <oskit/x86/base_trap.h>

int oskit_sendsig(int signo, struct trap_state xstate);

DESCRIPTION

Propagate a machine trap to the signal handling entrypoint provided to oskit_sendsig init ()
above. This routine is intended to be called by modules that have replaced a particular trap
handler, and wish to propagate the trap to the application in the form of a signal. If the C
library has not called oskit_sendsig init (), the routine returns without doing anything.

PARAMETERS

signo: The signal number.

state: A pointer to the trap state structure.

RETURNS

Returns non-zero if a C library handler has not been installed, and thus the signal could not be
propagated.

10.21. SIGNALS 289

10.21.3 sendsig_trap_handler: convert trap into a signal
SYNOPSIS

#include <oskit/c/signal.h>
#include <oskit/x86/base_trap.h>

void oskit_sendsig(struct trap_state *state);

DESCRIPTION

Convert the machine dependent trap state structure state (see Section 10.8.1) into a signal code,
and pass that, along with the trap state, to the C library via oskit_sendsig above.

This routine is provided as a default trap handler that can be plugged into the base_trap_handlers
array (see Section 10.8.4). Unexpected hardware traps are thus converted into signals and deliv-
ered to the application through the C library.

PARAMETERS

state: A pointer to the trap state structure.

290 CHAPTER 10. KERNEL SUPPORT LIBRARY: LIBOSKIT KERN.A

Chapter 11

Symmetric Multiprocessing:
liboskit smp.a

11.1 Introduction

This library is designed to simplify the startup and use of multiprocessors. It defines a common interface to
multiprocessor machines that is fairly platform independent.

Combined with the spin-locks provided in libkern, it is possible to implement a complete symmetric
multiprocessor (SMP) based system using the OSKit code.

There is currently one machine-dependent interface, smp_apic_ack for the x86.

11.2 Supported Systems

Currently, SMP support is only provided for Intel x86 systems conforming to the Intel Multiprocessor
Specification.

11.2.1 Intel x86

Systems which fully comply to the Intel MultiProcessing Specification (IMPS) should be supported. Since
some of the code is based on Linux 2.0, some features (such as dual I/O APICs) are not fully supported. The
APIC (Advanced Programmable Interrupt Controller) is not yet used for general interrupt delivery. Instead,
all hardware interrupts are sent to the BootStrap Processor (BSP).

If a machine works with Linux 2.0 it should work with the OSKit; however, testing has been limited to
a few dual-processor machines.

The SMP code must be compiled with a compiler that supports .code16 for full functionality. The smp
library will compile without it, but it will only support a single processor.

Inter-processor interrupts (IPIs) are implemented. These are currently the only interrupts received by
the Application Processors (APs). IPIs allow the client OS to implement TLB-shoot-down and reschedule
requests.

It is important to note that if more than one processor wishes to run in “user mode,” that the per-
processor data structures in libkern (such as base_tss, base_idt, and base_gdt) will have to be made
per-processor.

The OSKit code has not been tested with more than two processors. Success (and failure) reports for
systems with three or more processors would be appreciated.

smp_apic_ack mentions a potential pitfall with Intel x86 SMPs. If more than one processor tries to send
an IPI to a target processor, or if a processor sends multiple IPIs without waiting for them to be processed,
IPIs can get lost. It is up to the programmer to deal with this limitation.

291

292 CHAPTER 11. SYMMETRIC MULTIPROCESSING: LIBOSKIT_SMP. A

11.2.2 External dependencies

The SMP library assumes that the base environment is usable. It starts up the Application Processors on
the kernel support library’s “base” data structures. It is possible (in fact required in many cases) to reload
per-processor copies.

The following are symbols from the kernel support library required by the SMP library:

DEPENDENCIES

base_gdt 10.7.1
base_idt 10.7.4
base_tss_load 10.7.8
boot_info 10.14.7
phys_mem_va 10.6.2

The LMM library is used to allocate pages of memory below 1MB. This requires the symbols:

DEPENDENCIES
Imm_alloc_page 16.6.8

malloc_lmm 9.5.1

These minimal C library symbols are pulled in by the SMP support code:

DEPENDENCIES
panic 9.8.3
printf 9.6

This library provides SMP-safe implementations for:

DEPENDENCIES

base_critical_enter 10.2.5

base_critical_leave 10.2.5

11.3 API reference

11.3.1 smp_init: Initializes the SMP startup code
SYNOPSIS

#include <oskit/smp.h>
int smp_init(void);

DESCRIPTION

This function does the initial setup for the SMP support. It should be called before any other
SMP library routines are used. It identifies the processors and gets them ready and waiting in a
busy-loop for a “go” from the boot processor.

Note that success does not necessarily mean the system has multiple processors. Rather, failure
indicates that the machine does not support multiple processors. smp_get num_cpus should be
used to determine the number of CPUs present.

Don’t call this more than once. .. yet.

11.3. API REFERENCE 293

RETURNS

It returns O on success (SMP-capable system is found). E_.SMP_NO_CONFIG is returned on
non-IMPS-compliant x86 machines.

11.3.2 smp_find_cur_cpu: Return the processor ID of the current processor.
SYNOPSIS

#include <oskit/smp.h>

int smp_find_cur_cpu(void);

DESCRIPTION

This function returns a unique (per-processor) integer representing the current processor. Note
that the numbers are not guaranteed to be sequential or starting from 0, although that may be
a common case.

On the x86, these numbers correspond to the processor’s APIC ID, which is set by the hardware.
However, these are to be treated as logical processor numbers since the smp library may do a
transformation in the future.

RETURNS

The processor’s ID.

11.3.3 smp_find cpu: Return the next processor ID
SYNOPSIS

#include <oskit/smp.h>

int smp_find_cpu(int first);

DESCRIPTION

Given a number first, it returns the first processor ID such that the ID is greater than or equal
to that number.

In order to be assured of finding all the CPUs, the initial call should be made with an argument
of 0 and subsequent calls should be made with one more than the previously returned value.

This is designed to be used as an iterator function for the client OS to determine which processor
numbers are present.

PARAMETERS

first: The processor number at which to start searching.

RETURNS

Returns E.SSMP_NO_PROC if there are no more processors, otherwise the ID of the next proces-
sor.

294 CHAPTER 11. SYMMETRIC MULTIPROCESSING: LIBOSKIT_SMP. A

11.3.4 smp_start_cpu: Starts a processor running a specified function
SYNOPSIS

#include <oskit/smp.h>
void smp_start_cpu(int processor_id, void (*func)(void *data), void *data, void *stack_ptr);

DESCRIPTION
This releases the specified processor to start running a function with the specified stack.

Results are undefined if:

1. the processor indicated does not exist,

2. a processor attempts to start itself,

3. any processor is started more than once, or
4

. any of the parameters is invalid.

smp_find_cur_cpu can be used to prevent calling smp_start_cpu on yourself. This function must
be called for each processor started up by smp_init; if the processor is not used, then func should
execute the halt instruction immediately.

It is up to the user to verify that the processor is started up correctly.

PARAMETERS

processor—id: The ID of a processor found by the startup code.
func: A function pointer to be called by the processor after it has set up its stack.
data: A pointer to some structure that is placed on that stack before func is called.

stack_ptr: The stack pointer to be used by the processor. This should point to the top of the
stack to be used by the processor, and should be large enough for func’s requirements.

11.3.5 smp_get_num_cpus: Returns the total number of processors
SYNOPSIS

#include <oskit/smp.h>
int smp_get_num_cpus(void);

DESCRIPTION

This returns the number of processors that exist.

RETURNS

The number of processors that have been found. In a non-SMP-capable system, this will always
return one.

11.3.6 smp_map.range: Request the OS map physical memory
SYNOPSIS

#include <oskit/smp.h>
oskit_addr_t Smp_map_range(oskit_addr_t start, oskit_size_t size);

11.3. API REFERENCE 295

DESCRIPTION

This function is a hook provided by the host OS to allow the SMP library to request physical
memory be mapped into its virtual address space. This is called by smp_init_paging.

Note that this could be implemented using osenv_mem map_phys.

RETURNS

The virtual address where the physical pages are mapped. Returns zero if unable to map the
memory.

11.3.7 smp_init_paging: Tell the SMP code that paging is being enabled
SYNOPSIS

#include <oskit/smp.h>

int smp_init_paging(void);

DESCRIPTION

This routine is called by the OS when it is ready to turn on paging. This call causes the SMP
library to make call-backs to the OS to map the regions that are SMP-specific. On Intel x86
processors, this means the APICS.

RETURNS

Zero on success, non-zero on failure.

11.3.8 smp_message_pass: Send an inter-processor interrupt to another CPU
SYNOPSIS

#include <oskit/smp.h>

void Smp_message_pass(int cpunum);

DESCRIPTION

This causes the target processor to run its interrupt handler for the IPI vector, if the appropriate
entry of smp message pass_enable has been set to non-zero by that processor. A processor
should only modify its own smp_message pass_enable entry after it is ready to start receiving
IPIs.

This call offers very limited functionality. The expectation is that the OS writer will implement
the desired functionality on top of this primitive.

11.3.9 smp_message_pass_enable:
SYNOPSIS

smp_message_pass_enable[CPUID]

296 CHAPTER 11. SYMMETRIC MULTIPROCESSING: LIBOSKIT_SMP. A

DESCRIPTION

This array contains an entry for each processor. If a processor is ready to start receiving
inter-processor interrupts, it should set smp_message_pass_enable[smp_find_cur_cpu()] to non-
zero. This is used internally by the SMP library to prevent interrupts from being delivered
before the processor has set up enough state to receive them.

11.3.10 smp_apic_ack: acknowledge an inter-processor interrupt
SYNOPSIS

#include <oskit/x86/smp.h>
void smp_apic_ack(void);

DESCRIPTION

This routine ACKs the local APIC. The APIC must be ACKed before returning from the IPI
handler. Due to limitations in the APIC design, IPIs can be lost if sent too closely together, as
the APIC only handles two outstanding requests.

Chapter 12

Kernel Device Driver Support:
liboskit_dev.a

This chapter is extremely incomplete; it is basically only a bare skeleton.

12.1 Introduction

This library provides default implementations of various functions needed by device drivers under the OSKit
device driver framework. These default implementations can be used by the host OS, if appropriate, to make
it easier to adopt the driver framework. The facilities provided include:

e Hardware resource management and tracking functions to allocate and free IRQs, I/O ports, DMA
channels, etc.

e Device namespace management
e Memory allocation for device drivers

e Data buffer management

XXX: oskit_dev_init() call this to init libdev
XXX: oskit_dev_probe() call this after init to probe for devices

12.2 Device Registration

XXX Builds a hardware tree. An example hardware tree is shown in Figure 12.1.

Roughly... the library is initialized through a call to oskit_dev_init. It first does auto-configuration by
calling the initialization and probe routines of the different driver sets. After auto-configuration, it builds a
device tree representing the topology of the machine. While building the tree, it also organizes the drivers
into “driver sets.” A driver set consists of driver that share a common set of properties. After initialization,
the library is ready to perform I/O requests for the OS.

void oskit_dev_init(void);

This function initializes the library.

12.3 Naming
To be done.

297

298 CHAPTER 12. KERNEL DEVICE DRIVER SUPPORT: LIBOSKITDEV. A

Figure 12.1: Example Hardware Tree

12.4 Memory Allocation

Default implementation uses the LMM.

12.5 Buffer Management

Provides a “simple buffer” implementation, in which buffers are simply regions of physically- and virtually-
contiguous physical memory.

12.6 Processor Bus Resource Management

XXX to allocate and free IRQs, I/O ports, DMA channels, etc.

Part 1V

Component Libraries

299

Chapter 13

POSIX Interface Library:

liboskit posix.a

13.1 Introduction

The POSIX library adds support for what a POSIX conformant system would typically implement as system
calls. These POSIX operations are mapped to the corresponding OSKit COM interfaces. Both the minimal
C library (Section 9) and the FreeBSD C library (Section 14) rely on the posix library to provide the
necessary system level operations. For example, fopen in the C library will chain to open in the POSIX
library, which in turn will chain to the appropriate oskit dir and oskit_file COM operations. All of
the pathname operations, file descriptor bookkeeping, locking, and other details normally carried out in a
“kernel” implementation of a system call interface, are handled by the POSIX library. Alternatively, the
poOsIX library bridges differences between the COM interfaces and the functions as defined by POSIX.

Since almost all of the functions and definitions provided by the pOsiX library implement well-known,
well-defined ANSI and POSIX C library interfaces which are amply documented elsewhere, we do not attempt
to describe the purpose and behavior of each function in this chapter. Instead, only specfic peculiarities,
such as implementation interdependencies and side effects, are described here.

The following set of functions are implemented, and correspond to their POSIX.1 equivalents: accept,
access, bind, chdir, chmod, chown, chroot, close, connect, creat, dup, dup2, fchdir, fchmod, fchown, fc-
ntl, fpathconf, fstat, fsync, ftruncate, getpagesize, getpeername, getsockname, getsockopt, gettimeofday,
getumask, ioctl, Ichown, link, listen, lseek, Istat, mkdir, mkfifo, mknod, open, pathconf, pipe, read, readlink,
readv, recv, recvirom, rename, rmdir, select, send, sendto, setitimer, setsockopt, shutdown, sigaction, socket,
socketpair, stat, symlink, truncate, umask, unlink, uname, utime, utimes, write, and writev.

13.2 Modified Functions

These functions are not fully implemented, and return an error condition if called: adjtime, getdirentries,
sbrk, flock.

13.2.1 getdtablesize: get descriptor table size

The getdtablesize function returns a constant value, even though there is no limit on the number of open
file descriptors. This function is provided for backwards comptability with older BSD system call interfaces.

13.2.2 mmap, munmap, mprotect: map files into memory

mmap is extremely limited in its capabilities. Anonymous memory requests are satisfied using malloc. The
combination of MAP_PRIVATE and PROT_WRITE is not supported. Beyond that, the underlying file or device
must provide the oskit_openfile COM interface.

301

302 CHAPTER 13. POSIX INTERFACE LIBRARY: LIBOSKIT POSIX.A

13.2.3 getpid: get process id

getpid always returns zero since there is no concept of “process” in a standalone OSKit application.

13.2.4 gettimeofday: get current time

Timing functions such as gettimeofday are mapped to the (currently undocumented) oskit_clock COM
interface. In essence, this interface is a very natural adaptation of the POSIX.1 real-time extensions. The
system time is initialized with the set_system_clock routine (see Section 13.3.3).

13.3. INITIALIZATION FUNCTIONS 303

13.3 Initialization Functions

The posiX library exports a number of initializtion routines that the application should call when appropriate.
In the fopen example above, the root filesystem must have been initialized by a call to fs_init in the
application startup code. The next few sections describe the initialization routines that are provided.

13.3.1 fs_init: Provide a root directory defining the file system namespace
SYNOPSIS

#include <oskit/c/fs.h>

oskit_error_t fs_init(oskit dir_t *root);

DESCRIPTION

Provide a root directory defining the file system namespace. The current directory will initially
also be this root directory. Note that the call is equivalent to fs_mount ("/", root).

A typical call sequence in a standalone application that uses the BMOD (section 10.20) file system
might be as follows:

fs_init(oskit_bmod_init());

PARAMETERS

root: A valid oskit_dir instance. A reference to root is acquired.

RETURNS

Returns zero on success, or 0SKIT_EINVAL if root is NULL.

13.3.2 fs_release: Release root and current directory references
SYNOPSIS

#include <oskit/c/fs.h>

void fs_release(void);

DESCRIPTION

This call releases the root and current directory references, leaving the file system module in its
original uninitialized state.

13.3.3 set_system_clock: initialize clock support
SYNOPSIS

#include <oskit/c/sys/time.h>

void set_system_clock(struct oskit_clock *clock);

304 CHAPTER 13. POSIX INTERFACE LIBRARY: LIBOSKIT POSIX.A

DESCRIPTION

This function provides the C library with a clock device. A typical call sequence in a standalone
application might be as follows:

#define LOCAL_TO_GMT(t) (t)->tv_sec += secondswest

void start_clock()
{

oskit_timespec_t time;
/* use fdev’s default clock device */
oskit_clock_t *clock = oskit_clock_init();

oskit_rtc_get(&time); /* read rtc */
LOCAL_TO_GMT(&time); /* adjust for local time */

oskit_clock_settime(clock, &time); /* set time */

set_system_clock(clock);

PARAMETERS

clock: A pointer to an instance implementing the oskit_clock interface.

13.4. EXTENDED API FUNCTIONS 305

13.4 Extended API functions

13.4.1 fs_mount, fs_unmount: Compose file system name spaces
SYNOPSIS

#include <oskit/c/fs.h>

oskit_error_t fS_mount(const char *path, oskit_file_t *subtree);
oskit_error_t fS_unmount(const char *path);

DESCRIPTION

BSD-like mount and unmount functions which the client can use to build its file system namespace
out of multiple file systems.

Note that the underlying oskit_dir COM interface doesn’t support mount points, So crossing
mount points while traversing the file system space is implemented in the C library function
doing the lookup (fs_lookup).

PARAMETERS

path: A valid pathname in the current file system space where the file system should be added
or removed.

subtree: The root of the file system to be added. A reference to subtree is acquired.

RETURNS

Returns zero on success, or an appropriate error code.

13.4.2 _exit: terminate normally
DESCRIPTION

_exit, which terminates the calling process in Unix, calls oskit_libc_exit with the exit status
code. oskit_libc_exit is declared as void (*oskit_libc_exit) (int). It is initialized to a
function which loops infinitely. Other OSKit libraries and user libraries can set this function
pointer at will accordingly.

That OSKit kernel library will initialize this function pointer with a function that performs
necessary cleanup and reboots the machine; if you set oskit_libc_exit, be sure to save and
invoke that function if that behavior is desired.

306 CHAPTER 13. POSIX INTERFACE LIBRARY: LIBOSKIT POSIX.A

Chapter 14

FreeBSD C Library:
liboskit freebsd c.a

14.1 Introduction

The FreeBSD C library is provided as an alternative to the OSKit’s minimal C library (see Section 9) so that
more sophisicated applications can be built. It is derived from version 2.2.2. In addition to the standard
single threaded version of the library, a multi threaded version is also built which relies on the pthread library
(see Section 19) to supply the locking primitives. Both of these libraries can be found in the lib directory as
oskit_freebsd_c.a and oskit_freebsd_c_r.a. In order to link with the FreeBSD C library, the application must
be compiled against the FreeBSD C header files. Example kernels that are built with the FreeBSD libraries
can be found in the examples/extended and examples/threads directories.

The following sections briefly describe the OSKit’s implementation of the FreeBSD C library. Not all of
the library is built since some parts do not make sense in the OSKit’s basic environment. Those functions
are listed below, as well as a list of the extended initialization functions.

14.2 posix Interface

Like the minimal C library, the FreeBSD C library depends on the POSIX library (see Section 13) to provide
mappings to the appropriate OSKit COM interfaces. For example, fopen in the C library will chain to open
in the POSIX library, which in turn will chain to the appropriate oskit_dir and oskit_file COM operations.
Applications that link with the FreeBSDC library must also link with the COM library (but not the POsIX
library since that is included as part of the FreeBSD C library archive file). Further, certain initialization
routines in the POSIX library may need to be called; refer to Section 13.3 for details. A multi-threaded
version of the POSIX library is also provided for applications that link with the multi-threaded version of the
FreeBSDC library.

14.3 Malloc Support

The FreeBSD malloc has been completely replaced with the OSKit’s basic memory allocator. Please refer
to to Section 9.5 for a description of the OSKit’s allocator interface. This is a temporary measure; a future
release will include a more traditional “fast” memory allocator.

14.4 Signal Support

Rudimentary signal support is provided in both the single and multi-threaded versions of the library. As
part of the C library initialization, a delivery handler is provided to the kernel library that is used to pass up
hardware exceptions (see Section 10.21). Assuming the application has made the necessary calls to sigaction

307

308 CHAPTER 14. FREEBSD C LIBRARY: LIBOSKIT_FREEBSD_C. A

to arrange for catching signals, an exception causes the delivery function to be invoked, which converts the
machine trap state into a more standard sigcontext structure, and passes that to the application via the
signal handler. The application can freely modify the sigcontext structure; the sigcontext is copied back into
the trap state when the handler returns, which then becomes the new machine state. Use caution! Note
that the default action for all signals is to call panic and reboot the machine. Any hardware exception that
that results in a signal that is blocked, also generates a panic and reboot.

14.5 Missing Functionality

Not all of the FreeBSD C library has been compiled. In some cases, the functions missing simply cannot be
implemented in the OSKit’s basic environment. In other cases, they are on the yet to be done list, and will
eventually be added. The list of the missing functions follows is:

All of the external data representation (xdr) functions, all of the remote procedure call (rpc) functions,
gethostid, sethostid, getwd, killpg, setpgrp, setrgid, setruid, sigvec, sigpause, catopen, catclose, catgets,
clock, confstr, crypt, ctermid, daemon, devname, errlst, execve, execl, execlp, execle, exect, execv, execvp,
getfsent, getfsspec, getfsfile, setfsent, endfsent, getbootfile, getbsize, cgetent, cgetset, cgetmatch, cgetcap,
cgetnum, cgetstr, cgetustr, cgetfirst, cgetnext, cgetclose getcwd, getdomainname, getgrent, getgrnam, get-
grgid, setgroupent, setgrent, endgrent, getlogin, getmntinfo, getnetgrent, innetgr, setnetgrent, endnetgrent
getosreldate, getpass, getpwent, getpwnam, getpwuid, setpassent, setpwent, endpwent, getttyent, gettty-
nam, setttyent, endttyent, getusershell, setusershell, endusershell, getvfsbyname, getvisbytype, getvfsent,
setvfsent, endvfsent, vfsisloadable, vfsload, glob, globfree, initgroups, msgctl, msgget, msgrev, msgsnd, nice,
nlist, ntp_gettime, pause, popen, psignal, user_from_uid, group_from_gid, scandir, seekdir, semconfig, sem-
ctl, semget, semop, setdomainname, sethostname, longjmperror, setmode, getmode, shmat, shmctl, shmdt,
shmget, siginterrupt, siglist, sleep, sysconf, sysctl, times, timezone, ttyname, ttyslot, ualarm, unvis, usleep,
valloc, vis, wait, wait3, and waitpid.

14.6 errno.h

The symbolic constants defined in errno.h have been redefined with the corresponding symbols defined in
oskit/error.h (see 4.6.2), which are the error codes used through the OSKit’s COM interfaces; this way,
error codes from arbitrary OSKit components can be used directly as errno values at least by programs
that use the FreeBSD C library. The main disadvantage of using COM error codes as errno values is that,
since they don’t start from around 0 like typical Unix errno values, it’s impossible to provide a traditional
Unix-style sys_errlist table for them. However, they are fully compatible with the strerror and perror
routines.

14.7. LIBRARY INITIALIZATION 309

14.7 Library Initialization

14.7.1 oskit_init_libc: Initialize the FreeBSD C library
SYNOPSIS

void oskit_init_libc(void);

DESCRIPTION

oskit_init_libc allows for internal initializatons to be done. This routine must be called when
the operating system is initialized, typically at the beginning of the main program.

310 CHAPTER 14. FREEBSD C LIBRARY: LIBOSKIT_FREEBSD_C. A

Chapter 15

FreeBSD Math Library:
liboskit freebsd m.a

15.1 Introduction

The OSKit’s math library provides the traditional UNIX “math library” functions as required by the POSIX.1
and X/Open CAE specifications. These functions are required by a number of non-trivial applications,
such as a Java or SR runtime system. The library itself is taken directly from the FreeBSD source tree
(/usr/src/lib/msun), though it was developed by Sun Microsystems.

15.1.1 Architecture Dependencies

The library supports both big or little endian architectures as well as multiple standards (with respect to
how exceptions are handled and reported). The OSKit library also includes the i387-optimized versions of
routines that were added by FreeBSD. The OSKit version is also built for “multi-standard” support with
IEEE as the default.

15.1.2 External Dependencies

The file k_standard. c requires either write to file descriptor 2 or an fputs and fflush using stderr.

15.1.3 Caveats

The OSKit math library is largely untested.

There is currently no other floating point support in the OSKit. Most importantly, there is no floating
point emulation code to allow math functions to run on systems without hardware FPUs. There is also no
support for “context switching” floating point state. The default setjmp and longjmp calls do not save and
restore floating point registers, nor does the default exception handler. Thus, any multi-threaded floating
point application using a thread package built on top of these mechanisms would not work correctly. Finally,
the minimal C library contains no functions for conversion or printing of floating point numbers.

311

312 CHAPTER 15. FREEBSD MATH LIBRARY: LIBOSKIT_FREEBSD_M. A

15.2 Functions

Following is a list of the functions supported by the library. Since these functions and their implementations
are fully standard, they are not described in detail here; refer to the ISO C and Unix standards for more
information.

acos,asin,atan,atan2: arc cosine, sine, tangent function
acosh,asinh,atanh: inverse hyperbolic cosine, sine, tangent functions
cbrt: cube root function

ceil: ceiling value function

cos,sin,tan: cosine, sine, tangent functions

cosh,sinh,tanh: hyperbolic cosine, sine, tangent functions
erf,erfc: error and complementary error functions

exp,expml: exponential function

fabs: absolute value function

floor: floor value function

fmod: floating point remainder function

frexp: extract mantissa and exponent from double precision number
gamma, lgamma: log gamma functions

hypot: Euclidean distance function

ilogb: returns exponent part of a floating point number

isnan: test for NaN

jO,j1,jn: Bessel functions of the first kind

ldexp: load exponent of a floating point number

log,loglp: natural logarithm functions

log10: base 10 logarithm function

logb: radix-independent exponent function

modf: decompose floating point number

nextafter: return next representable double-precision floating point number
pow: power function

remainder: floating point remainder function

rint: round to nearest integral value

scalb: load exponent of a radix-independent floating point number
sqrt: square root function

y0,y1,yn: Bessel functions of the second kind

Chapter 16

List-based Memory Manager:
liboskit_1lmm.a

16.1 Introduction

The list-based memory manager is a component that provides simple but extremely generic and flexible
memory management services. It provides functionality at a lower level than typical ANSI C malloc-style
memory allocation mechanisms.! For example, the LMM does not keep track of the sizes of allocated memory
blocks; that job is left to the client of the LMM library or other high-level memory allocation mechanisms.
(For example, the default version of malloc() provided by the minimal C library, described in Section 9.5.2,
is implemented on top of the LMM.)

The LMM attempts to make as few assumptions as possible about the environment in which it runs and
the use to which it is put. For example, it does not assume that all allocatable “heap” memory is contained
in one large continuous range of virtual addresses, as is the case in typical Unix process environments.
Similarly, it does not assume that the heap can be expanded on demand (although the LMM can certainly
be used in situations in which the heap is expandable). It does not assume that it is OK to “waste” pages
on the assumption that they will never be assigned “real” physical memory unless they are actually touched.
It does not assume that there is only one “type” of memory, or that all allocatable memory in the program
should be managed as a single heap. Thus, the LMM is suited for use in a wide variety of environments,
and can be used for both physical and virtual memory management.

The LMM has the following main features:

e Very efficient use of memory. At most fourteen bytes are wasted in a given allocation (because of
alignment restrictions); there is no memory overhead for properly-aligned allocations.

e Support for allocating memory with specific alignment properties. Memory can be allocated at any
given power-of-two boundary, or at an arbitrary offset beyond a specified power-of-two boundary.
Allocation requests can also be constrained to specific address ranges or even exact addresses.

e Support for allocations of memory of a specific “type.” For example, on the PC architecture, sometimes
memory needs to be allocated specifically from the first 16MB of physical memory, or from the first
1MB of memory.

e Support for a concept of allocation priority, which allows certain memory regions to be preferred over
others for allocation purposes.

e The LMM is pure and does not use any global variables; thus, different LMM pools are completely
independent of each other and can be accessed concurrently without synchronization. Section 2.2
describes the pure execution environment supported by the LMM in more detail.

'The LMM is designed quite closely along the lines of the Amiga operating system’s low-level memory management system.

313

314 CHAPTER 16. LIST-BASED MEMORY MANAGER: LIBOSKIT_LMM. A

e Extremely flexible management of the memory pool. LMM pools can be grown or shrunk at any time,
under the complete control of the caller. The client can also “map” the free memory pool, locating
free memory blocks without allocating them.

Some of the LMM’s (potential) disadvantages with respect to more conventional memory allocators are:

e It requires the caller to remember the size of each allocated block, and pass its size back as a parameter
to lmm_free. Thus, a malloc implemented on top of this memory manager would have to remember
the size of each block somewhere.

e Since the LMM uses sequential searches through linked lists, allocations are not as blazingly fast as
in packages that maintain separate free lists for different sizes of memory blocks. However, perfor-
mance is still generally acceptable for many purposes, and higher-level code is always free to cache
allocated blocks of commonly used sizes if extremely high-performance memory allocation is needed.
(For example, a malloc package built on top of the LMM could do this.)

e The LMM does not know how to “grow” the free list automatically (e.g. by calling sbrk() or some
equivalent); if it runs out of memory, the allocation simply fails. If the LMM is to be used in the
context of a growable heap, an appropriate grow-and-retry mechanism must be provided at a higher
level.

e In order to avoid making the LMM dependent on threading mechanisms, it does not contain any
internal synchronization code. The LMM can be used in multithreaded environments, but the calling
code must explicitly serialize execution while invoking LMM operations on a particular LMM heap.
However, LMM operations on different heaps are fully independent and do not need to be synchronized
with each other.

16.2 Memory regions

The LMM maintains a concept of a memory region, represented by the data type lmm region t, which
represents a range of memory addresses within which free memory blocks may be located. Multiple memory
regions can be attached to a single LMM pool, with different attributes attached to each region.

The attributes attached to memory regions include a set of caller-defined flags, which typically represent
fundamental properties of the memory described by the region (i.e., the ways in which the region can be
used), and a caller-specified allocation priority, which allows the caller to specify that some regions are to
be preferred over others for satisfying allocation requests.

It is not necessary for all the memory addresses covered by a region to actually refer to valid memory
locations; the LMM will only ever attempt to access subsections of a region that are explicitly added to
the free memory pool using 1lmm_add_free. Thus, for example, it is perfectly acceptable to create a single
region covering all virtual addresses from 0 to (oskit_addr_t)-1, as long as only the memory areas that are
actually valid and usable are added to the free pool with 1mm_add _free.

The LMM assumes that if more than one region is attached to an LMM pool, the address ranges of those
regions do not overlap each other. Furthermore, the end address of each region must be larger than the start
address, using unsigned arithmetic: a region must not “wrap around” the top of the address space to the
bottom. These restrictions are not generally an issue, but can be of importance in some situations such as
when running on the x86 with funny segment layouts.

16.2.1 Region flags

The region flags, of type lmm_flags_t, generally indicate certain features or capabilities of a particular range
of memory. Allocation requests can specify a mask of flag bits that indicate which region(s) the allocation
may be made from. For each flag bit set in the allocation request, the corresponding bit must be set in the
region in order for the region to be considered for satisfying the allocation.

For example, on PCs, the lowest 1MB of physical memory is “special” in that only it can be accessed from
real mode, and the lowest 16MB of physical memory is special in that only it can be accessed by the built-in

16.3. EXAMPLE USE 315

DMA controller. Thus, typical behavior on a PC would be to create three LMM regions: one covering the
lowest 1IMB of physical memory, one covering the next 15MB, and one covering all other physical memory.
The first region would have the “1MB memory” and “16MB memory” bits set in its associated flags word,
the second region would have only the “16MB memory” bit set, and the third region would have neither.
Normal allocations would be done with a flags word of zero, which allows the allocation to be satisfied from
any region, but, for example, allocations of DMA buffers would be done with the “16MB memory” flag set,
which will force the LMM to allocate from either the first or second region. (In fact, this is the default
arrangement used by the libkern library when setting up physical memory for an OS running on a PC; see
Section 10.11 for more details.)

16.2.2 Allocation priority

The second attribute associated with each region, the allocation priority, indicates in what order the regions
should be searched for free memory to satisfy memory allocation requests. Regions with a higher allocation
priority value are preferred over regions with a lower priority.

Allocation priorities are typically useful in two situations. First, one section of a machine’s physical
memory may provide faster access than other regions for some reason, for example because it is directly
connected to the processor rather than connected over a slower bus of some kind. (For example, the Amiga
has what is known as “fast” memory, which typically supports faster access because it does not contend
with ongoing DMA activity in the system.) In this case, if it is not likely that all available memory will be
needed, the memory region describing the faster memory might be given higher priority so that the LMM
will allocate from it whenever possible.

Alternatively, it can be useful to give a region a lower priority because it is in some way more “precious”
than other memory, and should be conserved by satisfying normal allocation requests from other regions
whenever possible. For example, on the PC, it makes sense to give 16MB memory a lower priority than
“high” memory, and 1MB memory a still lower priority; this will decrease the likelihood of using up precious
“special” memory for normal allocation requests which just need any type of memory, and causing memory
shortages when special memory really is needed.

16.3 Example use

To make an LMM pool ready for use, a client generally proceeds in three stages:
1. Initialize the LMM pool, using lmm_init.
2. Add one or more memory regions to the LMM, using 1mm_add_region.

3. Add some free memory to the pool, using lmm_add _free. (The free memory added should overlap at
least one of the regions added in step 2; otherwise it will simply be thrown away.)

Here is an example initialization sequence that sets up an LMM pool for use in a Unix-like environment,
using an (initially) 1IMB memory pool to service allocations. It uses only one region, which covers all possible
memory addresses; this allows additional free memory areas to be added to the pool later regardless of where
they happen to be located.

#include <oskit/lmm.h>

Imm_t 1lmm;
Imm_region_t region;

int setup_lmm()

{
unsigned mem_size = 1024%1024;
char *mem = sbrk(mem_size);
if (mem == (charx*)-1)

316 CHAPTER 16. LIST-BASED MEMORY MANAGER: LIBOSKIT_LMM. A

return -1;

Imm_init (&1mm) ;
lmm_add_region(&1lmm, ®ion, (void*)0, (oskit_size_t)-1, 0, 0);
1mm_add_free(&1lmm, mem, mem_size);

return 0;

After the LMM pool is set up properly, memory blocks can be allocated from it using any of the lmm_alloc
functions described in the reference section below, and returned to the memory pool using the lmm free
function.

16.4 Restrictions and guarantees

This section describes some of the important restrictions the LMM places on its use. Many of these are
restrictions one would expect to be present; however, they are listed here anyway in order to make them
explicit and to make it more clear in what situations the LMM can and can’t be used.

As mentioned previously, the LMM implements no internal synchronization mechanisms, so if it is used
in a multithreaded environment, the caller must explicitly serialize execution when performing operations
on a particular LMM pool.

If a client uses multiple LMM memory pools, then each pool must manage disjoint blocks of memory.
In other words, a particular chunk of memory must never be present on two or more LMM pools at once.
However, as long as the actual memory blocks in different pools are disjoint, the overall memory regions
managed by the pools can overlap. For example, it is OK if pages 1 and 3 are managed by one LMM pool
and page 2 is managed by another, as long as none of those pages are managed by two LMM pools at once.

The LMM uses the memory it manages as storage space for free list information. This means that
the LMM is not suitable for managing memory that cannot be accessed directly using normal C pointer
arithmetic in the local address space, or memory with special access semantics, such as flash memory. In
such a situation, you must use a memory management system that stores free memory metadata separately
from the free memory itself.

The LMM guarantees that it will not use any memory other than the memory explicitly given to it for
its use through the lmm_init, lmm add region, and lmm_add_free calls. This implies that no “destructor”
functions need to be provided by the library in order to destroy LMM pools, regions, or free lists: an LMM
pool can be “destroyed” by the caller simply by overwriting or reinitializing the memory with something
else. Of course, it is up to the caller to ensure that no attempts are made to use an LMM pool that has
been destroyed.

16.5 Sanity checking

When the OSKit is compiled with debugging enabled (--enable-debug), a fairly large number of sanity
checks are compiled into the LMM library to help detect memory list corruption bugs and such. Assertion
failures in the LMM library can indicate bugs either in the LMM itself or in the application using it (e.g.,
freeing blocks twice, overwriting allocated buffers, etc.). In practice such assertion failures usually tend to be
caused by the application, since the LMM library itself is quite well-tested and stable. For additional help
in debugging memory management errors in applications that use the C-standard malloc/free interfaces, the
OSKit’s memdebug library can be used as well (see Section 20).

Note that the sanity checks in the LMM library are likely to slow down the library considerably under
normal use, so it may be a good idea to turn off this debugging support when linking the LMM into “stable”
versions of a program.

16.6. API REFERENCE 317

16.6 API reference

The following sections describe the functions exported by the LMM in detail. All of these functions, as well
as the types necessary to use them, are defined in the header file <oskit/lmm.h>.

16.6.1 1mm_init: initialize an LMM pool
SYNOPSIS

#include <oskit/lmm.h>

void lImm _init(1mm t *imm);

DESCRIPTION

This function initializes an LMM pool. The caller must provide a pointer to an 1lmm_t structure,
which is typically (but doesn’t have to be) statically allocated; the LMM system uses this struc-
ture to keep track of the state of the LMM pool. In subsequent LMM operations, the caller must
pass back a pointer to the same 1lmm structure, which acts as a handle for the LMM pool.

Note that the LMM pool initially contains no regions or free memory; thus, immediate attempts
to allocate memory from it will fail. The caller must register one or more memory regions using
1lmm add region, and then add some free memory to the pool using lmm add free, before the
LMM pool will become useful for servicing allocations.

PARAMETERS

Imm: A pointer to an uninitialized structure of type lmm_t which is to be used to represent the
LMM pool.

16.6.2 1mm add region: register a memory region in an LMM pool
SYNOPSIS

#include <oskit/lmm.h>

void Imm_add_region(lmm t *lmm, lmm region_t *region, void *addr, oskit_size t size,
lmm_flags_t flags, lmm_pri_t pri);

DESCRIPTION

This function attaches a new memory region to an LMM pool. The region describes a contiguous
range of addresses with specific attributes, in which free memory management may need to be
done.

The caller must supply a structure of type 1mm region_t in which the LMM can store critical
state for the region. This structure must remain available for the exclusive use of the LMM for
the entire remaining lifetime of the LMM pool to which it is attached. However, the contents of
the structure is opaque; client code should not examine or modify its contents directly.

The caller must only ensure that if multiple regions are attached to a single LMM pool, they
refer to disjoint address ranges.

Note that this routine does not actually make any free memory available; it merely registers a
range of addresses in which free memory might be made available later. Typically this call is
followed by one or more calls to 1mm_add_free, which actually adds memory blocks to the pool’s
free memory list.

The act of registering a new region does not cause any of the memory described by that region
to be accessed or modified in any way by the LMM; only the Imm region_t structure itself is

318 CHAPTER 16. LIST-BASED MEMORY MANAGER: LIBOSKIT_LMM. A

modified at this point. The LMM will only access and modify memory that is explicitly added
to the free list using 1lmm_add_free. This means, for example, that it is safe to create a single
region with a base of 0 and a size of (oskit_size_t)-1, regardless of what parts of that address
range actually contain valid memory.

See Section 16.2 for general information on memory regions.

PARAMETERS

Imm: The LMM pool to which the region should be added.

region: A pointer to a structure in which the LMM maintains the critical state representing
the region. The initial contents of the structure don’t matter; however, the structure must
remain available and untouched for the remaining lifetime of the LMM pool to which it is
attached.

addr: The start address of the region to add. Different regions attached to a single LMM pool
must cover disjoint areas of memory.

size: The size of the region to add. Must be greater than zero, but no more than (oskit_addr_t)-1
- addr; in other words, the region must not wrap around past the end of the address space.

flags: The attribute flags to be associated with the region. Allocation requests will be satisfied
from this region only if all of the flags specified in the allocation request are also present in
the region’s flags word.

pri: The allocation priority for the region, as a signed integer. Higher priority regions will be
preferred over lower priority regions for satisfying allocations.

16.6.3 1mm_add free: add a block of free memory to an LMM pool
SYNOPSIS

#include <oskit/lmm.h>

void Imm_add_free(imm_t *Imm, void xblock, oskit_size_t size);

DESCRIPTION

This routine declares a range of memory to be available for allocation, and attaches that memory
to the specified LMM pool. The memory block will be made available to satisfy subsequent
allocation requests.

The caller can specify a block of any size and alignment, as long as the block does not wrap
around the end of the address space. The LMM may discard a few bytes at the beginning and
end of the block in order to enforce internal alignment constraints; however, the LMM will never
touch memory outside the specified block (unless, of course, that memory is part of another free
block).

If the block’s beginning or end happens to coincide exactly with the beginning or end of a block
already on the free list, then the LMM will merge the new block with the existing one. Of course,
the block may be further subdivided or merged later as memory is allocated from the pool and
returned to it.

The new free block will automatically be associated with whatever region it happens to fall in.
If the block crosses the boundary between two regions, then it is automatically split between the
regions. If part of the block does not fall within any region, then that part of the block is simply
ignored and forgotten about. (By extension, if the entire block does not overlap any region, the
entire block is dropped on the floor.)

16.6. API REFERENCE 319

PARAMETERS

Imm: The LMM pool to add the free memory to.
block: The start address of the memory block to add. There are no alignment restrictions.

size: The size of the block to add, in bytes. There are no alignment restrictions, but the size
must not be so large as to wrap around the end of the address space.

16.6.4 1mm remove_free: remove a block of memory from an LMM pool
SYNOPSIS

#include <oskit/lmm.h>

void Imm_remove_free(lmm_t *imm, void *block, oskit_size_t size);

DESCRIPTION

This routine is complementary to 1lmm_add_free: it removes all free memory blocks in a specified
address range from an LMM memory pool. After this call completes, unless the caller subse-
quently adds memory in this range back onto the LMM pool using 1mm_add_free or lmm_free it
is guaranteed that no subsequent memory allocation will return a memory block that overlaps
the specified range.

The address range specified to this routine does not actually all have to be on the free list. If
the address range contains several smaller free memory blocks, then all of those free blocks are
removed from the pool without touching or affecting any memory parts of the address range that
weren’t in the free memory list. Similarly, if a free block crosses the beginning or end of the range,
then the free block is “clipped” so that the part previously extending into the address range is
removed and thrown away.

One use for this routine is to reserve a specific piece of memory for some special purpose, and
ensure that no subsequent allocations use that region. For example, the example MultiBoot boot
loaders in the OSKit use this routine to reserve the address range that will eventually be occupied
by the OS executable being loaded, ensuring that none of the information structures to be passed
to the OS will overlap with the final position of its executable image.

This routine works by finding all the free memory in the given range and allocating it. This
means that if blocks were allocated in that range before the lmm remove free call and then freed
afterwords, then they will be candidates for future allocations.

PARAMETERS

Imm: The LMM pool from which to remove free memory.
block: The start address of the range in which to remove all free memory.

size: The size of the address range.

16.6.5 1mm_alloc: allocate memory
SYNOPSIS

#include <oskit/lmm.h>

void *lmm_alloc(lmm_t *Imm, oskit_size_t size, lmm_flags_t flags);

320 CHAPTER 16. LIST-BASED MEMORY MANAGER: LIBOSKIT_LMM. A

DESCRIPTION

This is the primary routine used to allocate memory from an LMM pool. It searches for a free
memory block of the specified size and with the specified memory type requirements (indicated
by the flags argument), and returns a pointer to the allocated memory block. If no memory block
of sufficient size and proper type can be found, then this function returns NULL instead.

Note that unlike with malloc, the caller must keep track of the size of allocated blocks in order
to allow them to be freed properly later.

PARAMETERS

Imm: The memory pool from which to allocate.
size: The number of contiguous bytes of memory needed.

flags: The memory type required for this allocation. For each bit set in the flags parameter,
the corresponding bit in a region’s flags word must also be set in order for the region to be
considered for allocation. If the flags parameter is zero, memory will be allocated from any
region.

RETURNS

Returns a pointer to the memory block allocated, or NULL if no sufficiently large block of the
correct type is available. The returned memory block will be at least doubleword aligned, but
no other alignment properties are guaranteed by this routine.

16.6.6 1mm alloc_aligned: allocate memory with a specific alignment
SYNOPSIS

#include <oskit/lmm.h>

void *lmm_alloc_aligned(1mm_t *Imm, oskit_size_t size, lImm_flags_t flags, int align_bits,
oskit_addr_t align_ofs);

DESCRIPTION

This routine allocates a memory block with specific alignment constraints. It works like lmm_alloc,
except that it enforces the rule that the lowest align_bits bits of the address of the returned block
must match the lowest align_bits of align_ofs. In other words, align_bits specifies an alignment
boundary as a power of two, and align_ofs specifies an offset from “natural” alignment. If no
memory block with the proper requirements can be found, then this function returns NULL
instead.

PARAMETERS

Imm: The memory pool from which to allocate.
size: The number of contiguous bytes of memory needed.

flags: The memory type required for this allocation. For each bit set in the flags parameter,
the corresponding bit in a region’s flags word must also be set in order for the region to be
considered for allocation. If the flags parameter is zero, memory will be allocated from any
region.

align_bits: The number of low bits of the returned memory block address that must match the
corresponding bits in align_ofs.

align_ofs: The required offset from natural power-of-two alignment. If align_ofs is zero, then the
returned memory block will be naturally aligned on a 2¢/197-b#s houndary.

16.6. API REFERENCE 321

RETURNS

Returns a pointer to the memory block allocated, or NULL if no memory block satisfying the
specified requirements can be found.

16.6.7 1mm alloc_gen: allocate memory with general constraints
SYNOPSIS

#include <oskit/lmm.h>

void *lmm_alloc_gen(lmm_t *Imm, oskit_size_t size, lmm_flags_t flags, int align_bits,
oskit_addr_t align_ofs, oskit_addr_t in_min, oskit_size_t in_size);

DESCRIPTION

This routine allocates a memory block meeting various alignment and address constraints. It
works like lmm alloc_aligned, except that as an additional constraint, the returned memory
block must fit entirely in the address range specified by the in_min and in_size parameters.

If in_size is equal to size, then memory will only be allocated if a block can be found at ezactly
the address specified by in_min; i.e. the returned pointer will either be in_min or NULL.

PARAMETERS

Imm: The memory pool from which to allocate.
size: The number of contiguous bytes of memory needed.

flags: The memory type required for this allocation. For each bit set in the flags parameter,
the corresponding bit in a region’s flags word must also be set in order for the region to be
considered for allocation. If the flags parameter is zero, memory will be allocated from any
region.

align_bits: The number of low bits of the returned memory block address that must match the
corresponding bits in align_ofs.

align_ofs: The required offset from natural power-of-two alignment. If align_ofs is zero, then the
returned memory block will be naturally aligned on a 2¢/197-b¥s houndary.

in-min: Start address of the address range in which to search for a free block. The returned
memory block, if found, will have an address no lower than in_min.

in_size: Size of the address range in which to search for the free block. The returned memory
block, if found, will fit entirely within this address range, so that mem_block + size <=
tn-min + in_size.

RETURNS

Returns a pointer to the memory block allocated, or NULL if no memory block satisfying all of
the specified requirements can be found.

16.6.8 1mm alloc_page: allocate a page of memory
SYNOPSIS

#include <oskit/lmm.h>
void *lmm_alloc_page(lmm_t *Imm, lmm_flags_t flags);

322 CHAPTER 16. LIST-BASED MEMORY MANAGER: LIBOSKIT_LMM. A

DESCRIPTION

This routine allocates a memory block that is exactly one minimum-size hardware page in
size, and is naturally aligned to a page boundary. The same effect can be achieved by call-
ing 1lmm alloc_aligned with appropriate parameters; this routine merely provides a simpler
interface for this extremely common action.

PARAMETERS

Imm: The memory pool from which to allocate.
flags: The memory type required for this allocation. For each bit set in the flags parameter,
the corresponding bit in a region’s flags word must also be set in order for the region to be
considered for allocation. If the flags parameter is zero, memory will be allocated from any
region.
RETURNS

Returns a pointer to the memory page allocated, or NULL if no naturally-aligned page can be
found.

16.6.9 1mm free: free previously-allocated memory
SYNOPSIS

#include <oskit/lmm.h>

void Imm _free(lmm_t *xlmm, void *block, oskit_size_t size);

DESCRIPTION

This routine is used to return a memory block allocated with one of the above 1lmm_alloc functions
to the LMM pool from which it was allocated.

PARAMETERS

Imm: The memory pool from which the memory block was allocated.
block: A pointer to the memory block to free, as returned by one of the lmm_alloc functions.

size: The size of the memory block to free, as specified to the allocation function when the block
was allocated.

16.6.10 1mm free_page: free a page allocated with Imm_alloc_page
SYNOPSIS

#include <oskit/lmm.h>

void Imm _free_page(lmm_t *lmm, void *block);

DESCRIPTION

This routine simply calls lmm free with PAGE_SIZE as the size argument, providing a companion
to Imm_alloc_page.

16.6. API REFERENCE 323

PARAMETERS

Imm: The memory pool from which the page was allocated.

block: A pointer to the page to free, as returned by the Imm_alloc_page function.

16.6.11 1mm_avail: find the amount of free memory in an LMM pool
SYNOPSIS

#include <oskit/lmm.h>
oskit_size t Imm_avail(lmm_t *lmm, lmm_flags_t *flags);

DESCRIPTION

This routine returns the number of bytes of free memory currently exist in the specified LMM
memory pool of a certain memory type, specified by the flags argument.

Note that the returned value does not imply that a block of that size can be allocated; due to
fragmentation it may only be possible to allocate memory in significantly smaller chunks.

PARAMETERS

Imm: The LMM pool in which to tally free memory.

flags: The memory type to determine the availability of. Only memory regions whose flags
words contain all the bits set in the flags parameter will be considered in counting available
memory. If flags is zero, then all free memory in the LMM pool will be counted.

RETURNS

Returns the number of bytes of free memory available of the requested memory type.

16.6.12 1mm find free: scan a memory pool for free blocks
SYNOPSIS

#include <oskit/lmm.h>

void Imm find _free(lmm t *xlmm, [in/out] oskit_addr_t *inout_addr, [out] oskit size t
*out_size, [out] lmm_flags_t *out_flags);

DESCRIPTION

This routine can be used to locate free memory blocks in an LMM pool. It searches the pool
for free memory starting at the address specified in *inout_addr, and returns a description of the
lowest, block of available memory starting at at least this address. The address and size of the
next block found are returned in *inout_addr and *out_size, respectively, and the memory type
flags associated with the region in which the block was found are returned in *out_flags. If no
further free memory can be found above the specified address, then this routine returns with
*out_size set to zero.

If the specified *inout_addr points into the middle of a free block, then a description of the
remainder of the block is returned, i.e. the part of the block starting at *inout_addr and extending
to the end of the free block.

This routine does not actually cause any memory to be allocated; it merely reports on available
memory blocks. The caller must not actually attempt to use or modify any reported blocks
without allocating them first. The caller can allocate a block reported by this routine using

324 CHAPTER 16. LIST-BASED MEMORY MANAGER: LIBOSKIT_LMM. A

1lmm alloc_gen, using its in_min and in_size parameters to constrain the address of the allocated
block to exactly the address reported by 1mm find free. If this allocation is done immediately
after the call to lmm_find free, without any intervening memory allocations, then the allocation
is guaranteed to succeed. However, any intervening memory allocation operations will effectively
invalidate the information returned by this routine, and a subsequent attempt to allocate the
reported block may fail.

PARAMETERS

Imm: The LMM pool in which to search for free memory.

inout_addr: On entry, the value pointed to by this parameter must be the address at which to
start searching for free memory. On return, it contains the start address of the next free
block actually found.

out_size: On return, the value pointed to by this parameter contains the size of the next free
memory block found, or zero if no more free blocks could be located.

out_flags: On return, the value pointed to by this parameter contains the flags word associated
with the region in which the next free memory block was found.

16.6.13 1mm dump: display the free memory list in an LMM pool
SYNOPSIS

#include <oskit/lmm.h>
void Imm_dump(1mm_t *lmm);

DESCRIPTION

This routine is primarily used for debugging the LMM and the code that uses it. It scans through
the LMM pool and calls printf to display each attached memory region and all the blocks of
free memory currently contained in each.

Chapter 17

Address Map Manager:
liboskit amm.a

17.1 Introduction

The Address Map Manager (AMM) library manages collections of resources where each element of a collection
has a name (address) and some set of attributes. These collections are described by address maps. Examples
of resources which might be managed by address maps include:

e Swap space. An OS might use a disk partition as backing store for memory. Here the names are disk
block (sector) numbers and the single attribute of a block is either “free” or “allocated.”

e A process address space. An OS keeps track of which portions of a process’s virtual address space are
allocated and what access permissions are allowed to the allocated regions. Here the names are virtual
addresses or virtual page numbers and the attributes include “read,” “write,” and “execute” as well
as “allocated” or “free.”

Logically, an address map is an array of attribute values indexed by address. However, such an im-
plementation would be impractical for all but the smallest address ranges so the AMM coalesces ranges
of contiguous addresses with identical attributes and describes each such range with an address map entry.
Hence address maps are collections of map entries with every possible address contained in exactly one entry.

The AMM library includes routines to create and destroy address maps, lookup addresses within a
map, modify the attributes of addresses within a map, and iterate over all entries in a map. The library is
responsible for maintaining a consistent and efficient representation of the map. The complete set of routines
is described in section 17.8.

The AMM is a pure component: it uses no static or global variables, so clients can freely make concurrent
AMM calls on different address maps without synchronization. However, in interruptible or multithreaded
environments, the client is responsible for synchronizing calls that manipulate a single AMM pool. Section 2.2
describes the pure execution environment supported by the AMM in more detail.

17.2 Addresses and attributes

The AMM attempts to be general by making very few assumptions about addresses or attributes. An address
is defined as an arbitrary unsigned integer of some reasonable size (typically 32 or 64 bits). The value of the
integer is not interpreted by AMM in any way. The only assumption that the AMM makes about addresses
is that two addresses are considered contiguous (i.e., represent adjacent pieces of a resource) if their integer
values are consecutive. This is an intuitive assumption and not likely to be a restriction for many (any?)
uses.

Attributes are represented using an opaque flag word (again, an integer of reasonable size). The only
assumption that AMM makes about attributes is that the attributes of two addresses are identical if their

325

326 CHAPTER 17. ADDRESS MAP MANAGER: LIBOSKIT_AMM. A

flag words have the same integer value. This again is a fairly obvious assumption. Note that though the flag
word appears to limit the number of possible attributes to 32 or 64 single-bit values, the user can actually
define arbitrary attributes for an address by associating additional state with the address. Section 17.5
explains how this is done.

17.3 Address maps and entries

Each address map is represented by an amm_t structure. This structure is allocated by the user and initialized

once at startup via a library routine. After initialization, a pointer to the structure is used as an opaque
handle for all subsequent AMM calls.

Many of the library routines take map entries as parameters or pass them back as return values. Thus the
AMM defines an opaque amm_entry_t type and includes routines to obtain the starting and ending addresses,
size and attributes associated with the entry.

Implementing an address map as a collection of map entries requires that the AMM be able to split
and join map entries as the attributes of addresses change. An entry is split into two entries when some
sub-range of the entry changes attributes. Analogously, two entries which are adjacent may be joined when
the attributes of one change to be identical to those of the other.

The AMM library provides hooks to allow the user to associate additional state with map entries. These
hooks include explicit map entry parameters to some routines as well as callback interfaces to handle allo-
cation, deallocation, splitting and joining map entries. Section 17.5 contains complete details.

17.4 Simple interface

Though the AMM is general enough to allow the user to associate arbitrary attributes with address map
entries, one of the most common uses of address maps involves keeping track of which elements of a resource
are free and which are available.

The AMM library provides an interface to make this “simple” use more convenient and, to some extent,
more efficient. It is important to note that the simple interfaces are just wrappers for the generic interfaces
described in Section 17.5. They are not a separate implementation. Thus, simple and generic routines can
be called for the same map.

In the simple interface, the AMM pre-defines three attribute values: AMM_ALLOCATED, AMM_FREE, and
AMM_RESERVED, and provides a set of routines that knows their semantics. Addresses that are AMM_ALLOCATED
represent resources that are in use and unavailable until freed. Addresses that are AMM_FREE represent
resources that are available for allocation. AMM_RESERVED addresses represent “out of range” resources that
can not be allocated or freed.

amm_init performs the one-time initialization of an address map including restricting the “valid” range
of addresses. Addresses within the specified range are marked as free and all others marked as reserved.
amm_reserve allows additional areas of the address map to be reserved. This can be used to represent “holes”
within an otherwise contiguous address map. amm_allocate allocates a range of a given size from the valid
portion of the address map. This routine includes a “hint” address indicating where to start searching for
free space in which to locate the range. Finally, amm deallocate can be used to free a range of allocated
space.

This set of routines is sufficient to implement basic resource management similar to that provided by
UNIX resource maps. For example:

17.5. GENERIC INTERFACE 327

#include <oskit/amm.h>
#include <assert.h>

struct simple_rmap {

amm_t amm;
};
void simple_rminit(struct simple_rmap *smap, oskit_addr_t saddr, oskit_addr_t eaddr)
{
assert(saddr !'= 0); /* zero is used to indicate allocation errors */
amm_init(&smap->amm, saddr, eaddr);
}
oskit_addr_t simple_rmalloc(struct simple_rmap *smap, oskit_size_t size)
{
oskit_addr_t addr = 0;
return amm_allocate(&smap->amm, &addr, size, 0) ? O : addr;
}
void simple_rmfree(struct simple_rmap #*smap, oskit_addr_t addr, oskit_size_t size)
{
(void)amm_deallocate(&smap->amm, addr, size);
}

Three additional routines enable the simple interface to be used for another common OS usage: manag-
ing process/task address spaces. amm protect changes the attributes associated with a range of the map.
Attributes are restricted to whatever can be described in the flag word and should not clash with the
AMM_ALLOCATED, AMM_FREE, and AMM_RESERVED bits, but there are typically only a small number of address
space protection bits anyway so this isn’t likely to be a problem. amm_find_addr looks up an address, re-
turning a pointer to the entry containing the address. A final function, amm iterate takes a function pointer
and calls that function for every entry in the map, passing the map and map entry pointers as arguments.
This allows the user to traverse the map, examining each entry in turn.

When using the simple AMM interface, map entries are allocated with malloc, deallocated with free,
and the default library routines are used to split and join entries based on the attributes in the flag word.

17.5 Generic interface

The more general AMM interface routines provide the same basic capability as the simple interface. amm_init_gen
provides the one-time initialization of a map, amm_find_gen locates an address range in a map, amm modify
changes the attributes of an address range, and amm_iterate_gen allows a user-provided function to be called

for selected entries in a map.

The primary differences between the two interfaces are that the generic interface allows fine-grained
control over the selection of addresses and attributes within a map and it permits user-directed allocation
and management of address map entries.

Fine-grained control of address selection enables the user to specify exact alignment and offset criteria
when attempting to find a range of addresses in a map using amm find gen. For example, an address space
manager can allocate arbitrary-sized, page-aligned address ranges using this technique.

Similarly, fine-grained control of attribute selection enables inexact attribute matches when locating an
address range using amm find gen. In the address space manager example, this would allow an address space
deallocation routine to match any allocated map entry regardless of its additional protection bits. These
mask and match parameters are also used in amm_iterate_gen to selectively iterate over entries in a map.

User-directed allocation and management of entries allows the user to embed the standard amm_entry_t
structure in a larger application specific structure thus associating additional state with each entry. Alloca-
tion control is addressed in two ways. First, is by providing explicit map entry parameters to amm_init_gen
and amm modify, the two routines that result in an entry being added to a map. In this way, the caller can
pass in the wrapped amm_entry_t structure to use. Second, as part of the amm_init_gen call, the user can
register a routine to be called when a map entry is to be split. Since entry splitting results in one or two
new entries being created, this routine allows the user to provide the wrapped entries to use.

328 CHAPTER 17. ADDRESS MAP MANAGER: LIBOSKIT_AMM. A

User-directed management is attained through the above allocation hooks as well as additional initialization-
time registered callback routines for joining and deallocation of map entries. The join routine permits the
user to determine if two entries which are adjacent in address and have equivalent attributes flags can be
coalesced into a single entry. If they can be joined, this routine is responsible for merging the extended at-
tribute information and returning a new entry with this state. The deallocation routine enables user control
over situations where the AMM library destroys map entries, either left over entries from a join operation or
entries that are completely replaced by a single entry in amm modify. This routine is responsible for freeing
the extended attribute information.

17.6 Generic interface example

As an example of a non-trivial use of AMM, consider a Fluke address space manager which maintains a map
to describe the address space in which threads run. In Fluke, an address space is populated with memory by
mapping memory from other address spaces into the space using kernel-managed mapping objects. Hence
each allocated area of the address space would be described by a composite entry consisting of an amm_entry_t
structure and a Fluke mapping object:

#include <oskit/amm.h>
#include <fluke/mapping.h>

struct as {
amm_t map;

}

struct as_entry {
amm_entry_t entry;
fluke_mapping_t mapping;
};

Note that unallocated (AMM_FREE) entries don’t need to have mapping objects associated with them and
could just be standard amm_entry_t structures. Thus, a user-provided entry allocation routine can create
and return the appropriate structure depending on whether it is for an allocated or free entry. In the case
of allocated map entries, the Fluke mapping object can be created at this time. Similarly, a user-provided
deallocation routine can free an entry appropriately, destroying mapping objects as necessary:

amm_entry_t *as_entry_alloc(amm_t *amm, oskit_addr_t addr, oskit_size_t size, int flags)
{

struct as_entry *aentry;

if (flags == AMM_FREE)
return malloc(sizeof (amm_entry_t));

if ((aentry = malloc(sizeof *aentry)) == 0)
return 0;

if (fluke_mapping_create(&aentry->mapping)) {
free(aentry);
return 0;

¥

return &aentry->entry;

}

void as_entry_free(amm_t *amm, amm_entry_t *entry)
{

struct as_entry *aentry;

if (amm_entry_flags(entry) == AMM_FREE)
free(sizeof *entry);

else {
aentry = (struct as_entry *)entry;
fluke_mapping_destroy(&aentry->mapping);
free(sizeof *aentry);

17.6. GENERIC INTERFACE EXAMPLE 329

Address space is allocated, freed, or the protections changed, using amm modify. Here the address space
manager first creates an entry of the correct type, creating and initializing the mapping object as necessary.
It then calls amm modify with that entry:

int as_allocate(struct as *map, oskit_addr_t addr, oskit_size_t size, int prot)

{
struct as_entry *aentry;
int rc;
/* check range to ensure it is available, etc. */
aentry = (struct as_entry *)as_entry_alloc(&map->amm, addr, size, prot|AMM_ALLOCATED);
/* setup Fluke mapping state */
fluke_mapping_set_state(&aentry->mapping, ...);
rc = amm_modify(&map->amm, addr, size, prot|AMM_ALLOCATED, &aentry->entry);
}
int as_deallocate(struct as *map, oskit_addr_t addr, oskit_size_t size)
{
int rc;
/* as_entry_free will destroy all Fluke mappings */
rc = amm_modify(&map->amm, addr, size, AMM_FREE, 0);
}
int as_protect(struct as *map, oskit_addr_t addr, oskit_size_t size, int prot)
{
struct as_entry *aentry;
int rc;
/* check range to ensure it is allocated, etc. */
aentry = (struct as_entry #*)as_entry_alloc(&map->amm, addr, size, prot|AMM_ALLOCATED);
/* setup Fluke mapping state */
fluke_mapping_set_state(&aentry->mapping, ...);
rc = amm_modify(&map->amm, addr, size, prot|AMM_ALLOCATED, &aentry->entry);
}

Note that since AMM_FREE entries are just standard amm entry_t structures, it is not necessary to pass
amm modify an explicit entry parameter when freeing address space. In this situation, amm modify will call
the user-provided allocation routine which will allocate a basic map entry structure based on the fact that
the flag parameter is AMM_FREE. This works since no user initialization of the amm_entry_t is required. In
general, the parameters passed to the allocation routine do not provide sufficient information to initialize
user-extended attributes and thus these entries must be initialized and passed to amm modify.

In amm modify, if the modification results in an entry being split, the user-provided split routine is called
with the entry and an address at which the entry is to be broken. The split routine will create a new entry
of the appropriate type, creating and initializing a Fluke mapping object if necessary. It then adjusts any
Fluke mapping object associated with the existing entry to reflect the split and returns both objects.

After isolating the range identified by the address and size parameters, amm modify discards it by calling
the user-provided deallocation routine for every entry within the range. The deallocation routine will destroy
any Fluke mapping object associated with an entry.

Once the address range has been cleared, amm modify inserts the user-provided entry in the map. The
newly inserted entry may now be compatible with one or both of its neighbors in which case the user-provided

330 CHAPTER 17. ADDRESS MAP MANAGER: LIBOSKIT_AMM. A

join routine is called (possibly twice) with the entries to join as parameters. If the entries can be merged, the
join routine modifies one of the existing entries to cover the joined range and returns a pointer to that entry.
Note that, even though the map entry addresses and attributes are compatible to join, the user-provided
join routine may choose not to join them. In this example, it is possible that the source addresses of the two
mapping objects are not adjacent and hence the two mappings cannot be combined into one. Thus, the join
function will fail and the two entries will remain separate.

The following code illustrates the split and join functions described:

int as_entry_split(amm_t *amm, amm_entry_t *entry, oskit_addr_t addr,
amm_entry_t **head, amm_entry_t **xtail)
{
amm_entry_t *nentry;
struct as_entry *aentry;
int flags = amm_entry_flags(entry);

nentry = as_entry_alloc(amm, addr, amm_entry_end(entry) - addr, flags);
if (nentry == 0)
return ENOMEM;
*head = entry;
*tail = nentry;
if (flags == AMM_FREE)
return 0;

/* Modify existing Fluke mapping for first half of range */
aentry = (struct as_entry *)entry;

fluke_mapping_set_state(&aentry->mapping, ...);

/* Setup new Fluke mapping for last half of range */
aentry = (struct as_entry *)nentry;

fluke_mapping_set_state(&aentry->mapping, ...);

return 0;

int as_entry_join(amm_t *amm, amm_entry_t *head, amm_entry_t *tail, amm_entry_t **new)

struct as_entry *aentryh, *aentryt;
int flags = amm_entry_flags(head);

*new = head;

/* Basic entries are always joined */
if (flags == AMM_FREE)
return 0;

/* Sources of mappings must be adjacent to join */

aentryh = (struct as_entry *)head;

aentryt = (struct as_entry *)tail;

if (mapping_source(&aentryh->mapping) + amm_entry_size(entry) !=
mapping_source(&aentryt->mapping))
return 1;

/* Collapse range of two Fluke mappings into head mapping */
fluke_mapping_set_state(&aentryh->mapping, ...);

/* Caller will deallocate tail mapping via as_entry_free */
return 0;

}

Finally, the address space manager may want to perform some operation on only selected parts of the
address space. For example, assume it wants to write-protect some arbitrary subset of the address space.
Write protecting should only be done to the parts of the address space which are actually allocated (i.e.,
not free or reserved) and, for efficiency, only on those parts which currently allow write access (i.e., include

17.7. EXTERNAL DEPENDENCIES 331

FLUKE_PROT_WRITE in their attributes). Here it could use amm_iterate_gen to process the map matching
only those entries which are allocated and have write permission. Amm modify can then be used on those
entries to write-protect them as follows:

int as_write_protect(struct as *map, oskit_addr_t addr, oskit_size_t size)

{
return amm_iterate_gen(&map->amm, as_wp_func, 0, addr, size,
AMM_ALLOCATED | FLUKE_PROT_WRITE,
AMM_ALLOCATED | FLUKE_PROT__WRITE) ;
}
int as_wp_func(amm_t *amm, amm_entry_t *entry, void *arg)
{
struct as_entry *aentry = (struct as_entry *)entry;
/* Tweak permission of Fluke mapping to remove write permission */
fluke_mapping_set_state(&aentry->mapping, ...);
/* Modify the existing AMM entry, removing write permission */
rc = amm_modify(&map->amm, amm_entry_start(entry), amm_entry_size(entry),
amm_entry_flags(entry) & “FLUKE_PROT_WRITE, entry);
return 0;
}

17.7 External dependencies

The AMM library requires only four external routines. AMM uses smalloc and sfree (Section 9.5) to
allocate and free entries for maps which don’t specify an allocator (see amm_init_gen). The amm dump
routine uses printf (Section 9.6) to generate output. Various routines use panic (Section 9.8.3) when an
internal consistency check fails.

17.8 API reference

The following sections describe the functions exported by the AMM in detail. All of these functions, as well
as the types necessary to use them, are defined in the header file <oskit/amm.h>.

17.8.1 amm alloc func: Allocate an AMM map entry (user-provided callout)
SYNOPSIS

#include <oskit/amm.h>

amm_entry_t *amm_alloc_func(amm_t *amm, oskit_addr_t addr, oskit_size_t size, int

flags);

DESCRIPTION

User-provided function called whenever an AMM entry needs to be allocated in the given map
amm. The allocation function for an AMM is set at initialization time by passing a pointer to it
as a parameter to amm_init_gen.

The parameters to amm_alloc_func provide information about the entry being created; i.e., the
entry will cover the range [addr - addr+size-1] and have the attributes specified in flags.

If the map is using extended map entries, this routine should initialize the extended portion of
the entry. No initialization of the AMM-private portion is necessary.

332 CHAPTER 17. ADDRESS MAP MANAGER: LIBOSKIT_AMM. A

PARAMETERS

amm: A pointer to the amm_t structure representing the address map.
addr: Start address of the range being created.
size: Size of the range being created.

flags: Attributes of the range being created.

RETURNS

Returns a pointer to the uninitialized, AMM-private part of the allocated entry, or zero if no
memory can be allocated.

RELATED INFORMATION

amm_init_gen

17.8.2 amm allocate: Allocate an address range in an AMM (simple interface)
SYNOPSIS

#include <oskit/amm.h>
int amm_allocate(amm_t xamm, [in/out] oskit_addr_t *addrp, oskit_size_t size, int prot);

DESCRIPTION

Looks for a range of the indicated size with flags AMM_FREE and modifies it to have the attributes
AMM_ALLOCATED|prot.

On call, *addrp specifies a hint address at which to start searching for a range of the desired size.
The search will progress toward higher addresses from that point. If no range is found before
the maximum possible address the search “wraps around,” starting from the lowest address and
searching forward until it reaches the original hint address. If no free range of sufficient size is
found, ENOMEM is returned.

Amm_allocateis a simplified interface to amm modify intended to be used with amm_init, amm deallocate,
amm_protect, and amm_reserve.

PARAMETERS

amm: A pointer to the amm_t structure representing the address map.

addrp: On call, a pointer to the address at which to start searching. On return, the address
chosen.

size: Size of the desired range.

prot: Additional attribute flags to associate with the range.

RETURNS

Returns zero if successful, an error code otherwise.

RELATED INFORMATION

amm_deallocate, amm_init, amm modify, amm protect, amm reserve

17.8. API REFERENCE 333

17.8.3 amm deallocate: Deallocate an address range in an AMM (simple inter-
face)

SYNOPSIS

#include <oskit/amm.h>
int amm_deallocate(amm t *amm, oskit_addr_t addr, oskit_size_t size);

DESCRIPTION

Marks a range of address space as AMM_FREE. Only pieces of the range marked as AMM_ALLOCATED
(e.g., allocated with amm_allocate) are “freed,” all other regions are ignored.

Amm Deallocate is a simplified interface to amm modify intended to be used with amm init,
amm_allocate, amm protect, and amm _reserve.
PARAMETERS

amm: A pointer to the amm_t structure representing the address map.
addr: Start address of the range.

size: Size of the range.

RETURNS

Returns zero if successful, an error code otherwise.

RELATED INFORMATION

amm_allocate, amm_init, amm modify, amm protect, amm reserve

17.8.4 amm destroy: Destroy an AMM
SYNOPSIS

#include <oskit/amm.h>
void amm_destroy(amm_t *amm);

DESCRIPTION

Free all the address map entries associated with the map amm. The user-provided free function
is called for every entry in the map. If no free function is associated with the map, the standard
libc free function is used.

PARAMETERS

amm: A pointer to the amm_t structure representing the address map.

RELATED INFORMATION

amm_free_func

17.8.5 amm dump: display the AMM-private data for every entry in an AMM
SYNOPSIS

#include <oskit/amm.h>
void amm_dump(amm_t *amm);

334 CHAPTER 17. ADDRESS MAP MANAGER: LIBOSKIT_AMM. A

DESCRIPTION
This routine is primarily used for debugging the AMM and the code that uses it. It scans through
the AMM and calls printf to display the AMM-private data for each entry in it.
PARAMETERS

amm: A pointer to the amm_t structure representing the address map.

17.8.6 amm entry_field: Accessor macros for AMMS-private data members
SYNOPSIS

#include <oskit/amm.h>

oskit_addr_t amm _entry_start(amm entry t *entry);
oskit_addr_t amm_entry_end(amm_entry_t *entry);
oskit_size t amm_entry_size(amm entry_t *entry);

int amm_entry_flags(amm_entry_t xentry);

DESCRIPTION

Macros provided to access AMM-private data members. Currently defined are macros to return
the starting and ending virtual addresses of the entry as well as the size and attributes of the
range covered by the entry.

PARAMETERS

entry: A pointer to a valid amm_entry_t structure.

RETURNS

Returns a data member of the appropriate type.

17.8.7 amm find addr: Locate the map entry containing a specific address
SYNOPSIS

#include <oskit/amm.h>

amm_entry_t *amm_find_addr(amm_t *amm, oskit_addr_t addr);

DESCRIPTION

Locates the map entry describing the given address in the map amm and returns a pointer to it.
Since AMM maps contain every possible address in some entry, this routine will always succeed;
i.e., it will always return a valid amm_entry_t pointer.

AMM-private fields of the returned entry can be queried with the amm_entry_field macros.

PARAMETERS

amm: A pointer to the amm_t structure representing the address map.

addr: Address to locate.

17.8. API REFERENCE 335

RETURNS

Returns a pointer to the entry containing the desired address.

17.8.8 amm find gen: Locate a map entry matching specified criteria
SYNOPSIS

#include <oskit/amm.h>

amm_entry_t *amm_find_gen(amm_t xamm, [in/out] oskit_addr_t *addrp, oskit_size_t size,
int flags, int flagmask, int align_bits, oskit_addr_t align_off, int find_flags);

DESCRIPTION

Returns a pointer to a map entry in the map amm with the indicated attributes which contains
an address range of the given size and alignment. If no range can be found, amm_find_gen returns
Zero.

On call, *addrp contains a “hint” at which to start searching for the range. On a successful
return, *addrp contains the address chosen; i.e., [*addrp - *addrp+size-1] is the desired range.
This address may not be the same as the start address of the chosen map entry.

Flags and flagmask specify the attributes that the returned range must match. Only entries
which satisfy ((entry->flags & flagmask) == flags) are considered when looking for a range.

Align_bits and align_off specify the alignment of the returned range. Align_bits specifies an align-
ment boundary as a power of two, and align_ofs specifies an offset from “natural” alignment; i.e.
the lowest align_bits bits of the returned address must match the lowest align_bits of align_ofs.
For example, align_bits == 12 and align_ofs == 8 would return a range starting 8 bytes past a
4096 byte boundary.

Find_flags can be used to modify the behavior of the lookup:

AMM_EXACT_ADDR. Range must start at the specified address. If that address is unsuitable,
amm_find_gen returns zero.

AMM_FORWARD. Search forward from the hint address looking for a match. This is the default
behavior.

AMM_BACKWARD. Search backward from the hint address looking for a match. Not implemented.

AMM _FIRSTFIT. Return the first entry found that contains a suitable range. This is the default
behavior.

AMM_BESTFIT. Of all entries containing a suitable range, return the entry which is the closest fit.
Not implemented.

PARAMETERS

amm: A pointer to the amm_t structure representing the address map.

addrp: On call, pointer to a search hint address. On return, the actual address found.
size: Size of the desired address range.

flags: Attribute flags that an entry must possess after masking with flagmask.
flagmask: Attribute mask to bitwise-AND with when matching an entry.

align_bits: The number of low bits of the returned address that must match the corresponding
bits in align_ofs.

align_ofs: The required offset from natural power-of-two alignment. If align_ofs is zero, then the
returned address will be naturally aligned on a 2%%97-bis houndary.

find_flags: Flags modifying the behavior of the address space search.

336 CHAPTER 17. ADDRESS MAP MANAGER: LIBOSKIT_AMM. A

RETURNS

Returns a pointer to the entry containing the desired range, or zero if no suitable range could be
found.

17.8.9 amm free func: Free an AMM map entry (user-provided callout)
SYNOPSIS

#include <oskit/amm.h>

void amm_free_func(amm_t *xamm, amm_entry_t xentry);

DESCRIPTION

User-provided function called whenever an AMM entry needs to be deallocated from the given
map amm. The free function for an AMM is set at initialization time by passing a pointer to it
as a parameter to amm_init_gen.

The range and attributes of the entry can be obtained using the amm_entry_field macros.

If the map is using extended map entries, this routine should clean up any map-private data
before deallocating the entry.

PARAMETERS

amm: A pointer to the amm_t structure representing the address map.

entry: The entry to be destroyed.

RELATED INFORMATION

amm_entry_field, amm_init_gen

17.8.10 amm_init: initialize an address map (simple interface)
SYNOPSIS

#include <oskit/amm.h>

void amm_init(amm_t *amm, oskit_addr_t lo, oskit_addr_t hi);

DESCRIPTION

This function initializes an address map as it would be used in most “simple” applications. The
caller must provide a pointer to an amm_t structure; the AMM system uses this structure to keep
track of the state of the address map. In subsequent AMM operations, the caller must pass a
pointer to the same amm_t structure, which acts as a handle for the address map.

The address range [lo - hi-1] forms the valid area of the map. A single map entry is created
for that range with attribute AMM_FREE so that all addresses within the range are eligible for
allocation with amm allocate. If necessary, entries are created for the ranges [AMM_MINADDR -
lo-1] and [hi - AMM_MAXADDR] with attribute AMM_RESERVED so that addresses within those ranges
are ignored by other simple interface routines.

Amm_Init is a simplified interface to amm_init_gen intended to be used with amm_allocate,
amm_deallocate, amm protect and amm reserve.

17.8. API REFERENCE 337

PARAMETERS

amm: A pointer to an uninitialized structure of type amm_t which is to be used to represent the
address map.

lo: The first address to be marked AMM_FREE.
hi: The last address + 1 to be marked AMM_FREE.

RELATED INFORMATION

amm_allocate, amm_deallocate, amm modify, amm protect, amm reserve

17.8.11 amm init_gen: initialize an address map
SYNOPSIS

#include <oskit/amm.h>

void amm_init_gen(amm_t *amm, int flags, amm_entry_t *entry, amm_entry_t * (*amm_alloc_func)(),
void (*amm _free_func)(), int (*amm_split_func)(), int (*amm_join_func)());

DESCRIPTION

This function initializes an address map. The caller must provide a pointer to an amm_t structure;
the AMM system uses this structure to keep track of the state of the address map. In subsequent
AMM operations, the caller must pass a pointer to the same amm_t structure, which acts as a
handle for the address map.

The map is initialized to contain a single entry describing the maximum possible address range
[AMM_MINADDR - AMM_MAXADDR] and have the attributes specified in flags. If the entry parameter
is non-zero, it is used as the initial entry. This allows the caller to allocate a structure larger
than the basic amm_entry_t and store additional attribute data in the extended structure. If the
caller supplies such an entry they must have initialized any caller-private data in that entry, but
amm_init_gen will initialize the AMM-private part (the actual amm_entry_t). If entry is zero,
a standard entry will be allocated using the default or caller-provided entry allocation routine
(described below).

The four function pointer parameters permit the caller to customize AMM entry management
on a per-AMM basis. If non-zero, amm_alloc_func and amm_free_func specify routines that the
AMM library will callout to whenever an AMM entry is to be created or destroyed. If zero,
malloc and free are used to manage basic amm_entry_t structures.

If non-zero, amm_split_func and amm_join_func specify routines that the AMM library will callout
to whenever an AMM entry needs to be split or two entries need to be joined. If zero, default
split and join calls are used. Split and join calls only occur as a side-effect of an amm modify call.

When using extended AMM structures, the caller needs to provide free, split and join functions.
The alloc function is not strictly necessary since the two AMM functions which create entries,
amm_init_gen and amm modify, have explicit entry parameters, and the third function which
can create an entry, amm_split_func, will be caller-provided. The allocation hook is primarily
provided to allow the caller control over the placement of AMM entry storage.

PARAMETERS

amm: A pointer to an uninitialized structure of type amm_t which is to be used to represent the
address map.

flags: Initial attribute flags to assign to the entry representing the entire address range.

entry: Initial entry to associate with the map.

338 CHAPTER 17. ADDRESS MAP MANAGER: LIBOSKIT_AMM. A

amm_alloc_func: If non-zero, the function called whenever the AMM library needs to allocate a
new map entry.

amm_free_func: If non-zero, the function called whenever the AMM library needs to destroy a
map entry.

amm_split_func: If non-zero, the function called whenever the AMM library needs to split an
existing map entry into two entries.

amm_join_func: If non-zero, the function called whenever the AMM library needs to join adja-
cent map entries.

RELATED INFORMATION

amm_alloc_func, amm free_func, amm_join_func, amm split_func

17.8.12 amm_iterate: Call a user-defined function for every entry in an AMM
(simple interface)

SYNOPSIS

#include <oskit/amm.h>

int amm_iterate(amm_t *xamm, int (*amm_iterate_func)(), void *arg);

DESCRIPTION

Calls a user-provided function amme_iterate_func for every entry of amm.

Arg is an opaque value which is passed to every instance of amm iterate_func along with amm
and the entry itself.

amm_iterate continues until the function has been called for all entries in the AMM or until one
instance of the function returns non-zero. In the latter case, that non-zero value will be returned
from amm_iterate.

Since the iteration function may modify or even destroy the entry passed in, amm_iterate uses the
following technique for locating the “next” entry. At the beginning of each iteration, amm_iterate
records the last address covered by the current entry. After the specified iteration function
returns, amm_find_addr is called with this address to “relocate” the current entry. From this
entry, amm_iterate derives the next entry.

PARAMETERS

amm: A pointer to the amm_t structure representing the address map.
amme_iterate_func: Function to be called for every entry.

arg: Argument to be passed to every instance of the iteration function.

RETURNS

Returns zero if amm_iterate_func returned zero for all entries. Returns the first non-zero value
returned from any amm_iterate_func call.

RELATED INFORMATION

amm_iterate_func

17.8. API REFERENCE 339

17.8.13 amm iterate func: Function to call with every AMM entry (user-provided
callout)

SYNOPSIS

#include <oskit/amm.h>
int amm_iterate_func(amm_t *xamm, amm_entry_t *entry, void *arg);

DESCRIPTION

Function called successively by amm_iterate and amm_iterate_gen with each selected entry from
the map amm. The iteration function may modify or destroy the entry passed in.

If this function returns non-zero, the iterator will stop and amm_iterate or amm_iterate_gen will
return that non-zero value. Returning zero will continue the iteration.

PARAMETERS

amm: A pointer to the amm_t structure representing the address map.
entry: The selected entry in the map.

arg: The opaque argument provided to amm_iterate and amm_iterate_gen and passed to each
instance of amm_iterate func.

RETURNS

Should return zero if the iteration is to continue, non-zero otherwise.

RELATED INFORMATION

amm_iterate, amm_iterate_gen

17.8.14 amm iterate_gen: Call a user-defined function for select entries in an
AMM

SYNOPSIS

#include <oskit/amm.h>

int amm_iterate_gen(amm_t *amm, int (*amm_iterate_func)(), void *arg, oskit_addr_t addr,
oskit_size_t size, int flags, int flagmask);

DESCRIPTION

Calls a user-provided function amm_iterate_func for every entry of amm which falls partially or
completely in the range [addr - addr+size-1] and matches the given attribute criteria.

Arg is an opaque value which is passed to every instance of amm_iterate func (along with amm
and the entry itself).

Flags and flagmask specify the attributes that an entry in the range must match for amm_iterate func
to be invoked. Only entries with ((entry->flags & flagmask) == flags) are considered.

amm_iterate_gen continues until the function has been called for all appropriate entries in the
range or until one instance of the function returns non-zero. In the latter case, that non-zero
value will be returned from amm_iterate_gen.

Since the iteration function may modify or even destroy the entry passed in, amm_iterate_gen
uses the following technique for locating the “next” entry. At the beginning of each iteration,
amm_iterate_gen records the last address covered by the current entry. After the specified

340 CHAPTER 17. ADDRESS MAP MANAGER: LIBOSKIT_AMM. A

iteration function returns, amm_find_addr is called with this address to “relocate” the current
entry. From this entry, amm_iterate_gen derives the next entry.

PARAMETERS

amm: A pointer to the amm_t structure representing the address map.
amme_iterate_func: Function to be called for every matching entry.

arg: Argument to be passed to every instance of the iteration function.

addr: Address at which to start iterating.

size: Size of the desired range over which to iterate.

flags: Attribute flags that an entry must possess after masking with flagmask.
flagmask: Attribute mask to bitwise-AND with when matching an entry.

RETURNS

Returns zero if amm_iterate_func returned zero for all entries. Returns the first non-zero value
returned from any amm_iterate_func call.

RELATED INFORMATION

amm_iterate_func

17.8.15 amm_join_func: Join two adjacent map entries (user-provided callout)
SYNOPSIS

#include <oskit/amm.h>

int amm_join_func(amm t *amm, amm entry_t *head, amm_entry_t *tail, [out] amm_entry_t
**new);

DESCRIPTION

User-provided function called whenever the AMM thinks that two map entries for the map amm
can be joined, based on comparison of the their flag words. The join function for an AMM is set
at initialization time by passing a pointer to it as a parameter to amm_init_gen.

Head and tail are the two entries to join. If the join is successful, a pointer to the joined entry
is returned in new. The returned entry may be one of the two entries passed in or it may be
an entirely new entry. The AMM will call the entry free function for any “left-over” entries on
return from a successful join call.

This routine is responsible for merging the map-private attributes of the two entries if they can
be joined.

If the map-private attributes of the two entries are incompatible, the call should return non-zero
to prevent the caller from reflecting the join in the map. Failure to join two entries is not an
error, and the return code will not be propagated up through the call chain.

amm_join func is only called by amm modify.

PARAMETERS
amm: A pointer to the amm_t structure representing the address map.
head,tail: The two entries to be joined.

new: A pointer to the new, joined entry.

17.8. API REFERENCE 341

RETURNS

Returns zero if the join was successful, non-zero if not.

RELATED INFORMATION

amm_init_gen, amm modify

17.8.16 amm modify: Modify the attributes of an address range

SYNOPSIS

#include <oskit/amm.h>

int amm_modify(amm_t *amm, oskit_addr_t addr, oskit_size_t size, int flags, amm_entry_t
*entry);

DESCRIPTION

Creates a new map entry in amm describing the range [addr - addr+size-1] with the attributes
indicated in flags.

Any existing map entries wholly within the range are deleted, any that partly overlap the range
are split as necessary. After adding the new entry, the AMM may attempt to join it with adjacent
already-existing entries if the flag words are compatible.

If entry is zero, a standard amm entry_t structure is allocated for the new range. If entry is
non-zero, the caller must have already allocated and initialized any extra attribute data in the
extended entry. In either case, the AMM will initialize the private part of the new entry, including
setting its attribute flags to flags.

PARAMETERS
amm: A pointer to the amm_t structure representing the address map.
addr: Start address of the range being modified.
size: Size of the range being modified.
flags: New attributes for the range being modified.

entry: If non-zero, the entry structure to use in the map.

RETURNS

Returns zero if the modification was successful, non-zero if an entry split failed.

RELATED INFORMATION

amm_alloc_func, amm free_func, amm_join_func, amm split_func

17.8.17 amm protect: Modify the attribute flags of an address range in an AMM
(simple interface)

SYNOPSIS

#include <oskit/amm.h>
int amm_protect(amm t *amm, oskit_addr_t addr, oskit_size_t size, int prot);

342 CHAPTER 17. ADDRESS MAP MANAGER: LIBOSKIT_AMM. A

DESCRIPTION

Modifies the attribute flags associated with with all AMM_ALLOCATED entries within the specified
address range. The resulting attributes are AMM_ALLOCATED|prot. AMM_RESERVED and AMM_FREE
areas within the range are ignored.

Amm Protect is a simplified interface to amm modify intended to be used with amm_init, amm allocate,
amm_deallocate, and amm_reserve.
PARAMETERS

amm: A pointer to the amm_t structure representing the address map.
addr: Start address of the desired range.
size: Size of the desired range.

prot: New attribute flags to associate with the range.

RETURNS

Returns zero if successful, an error code otherwise.

RELATED INFORMATION

amm_allocate, amm_deallocate, amm_init, amm modify, amm reserve

17.8.18 amm reserve: Mark as unavailable an address range in an AMM (simple
interface)

SYNOPSIS

#include <oskit/amm.h>

int amm_reserve(amm_t *amm, oskit_addr_t *addr, oskit_size_t size);

DESCRIPTION

Mark the specified address range as AMM_RESERVED. All entries within the range are effected
regardless of existing attributes.

Amm Reserve is a simplified interface to amm modify intended to be used with amm_init, amm allocate,
amm_deallocate, and amm_protect.
PARAMETERS

amm: A pointer to the amm_t structure representing the address map.
addr: Start address of the desired range.

size: Size of the desired range.

RETURNS

Returns zero if successful, an error code otherwise.

RELATED INFORMATION

amm_allocate, amm_deallocate, amm_init, amm modify, amm protect

17.8. API REFERENCE 343

17.8.19 amm_select: Returns an entry describing an address range exactly
SYNOPSIS

#include <oskit/amm.h>

amm_entry_t *amm_select(amm_t xamm, oskit_addr_t addr, oskit_size_t size);

DESCRIPTION

Return a map entry in amm describing the range [addr - addr+size-1]. If either the start or end
address is contained within an entry, the entry is split to create one starting or ending at the
desired address.

Note that the desired range may still be described by multiple entries. Amm_select only guaran-
tees that there is an entry starting at addr and an entry ending at addr+size-1.

This function returns a pointer to the selected entry. In the event that the desired range is
described by multiple entries, amm_select returns the first entry. Successive entries may be
obtained using amm _find_addr using the end address of the current entry (amm_entry_end).

PARAMETERS

amm: A pointer to the amm_t structure representing the address map.
addr: Start address of the desired range.

size: Size of the desired range.

RETURNS

Returns a pointer to the first entry describing the range.

RELATED INFORMATION

amm_split_func, amm find_addr, amm_entry_field

17.8.20 amm_split_func: Split a map entry into two entries (user-provided call-
out)

SYNOPSIS

#include <oskit/amm.h>

int amm _split_func(amm t xamm, amm_entry_t xentry, oskit_addr_t split_addr, [out] amm_entry_t
*xhead, [out] amm_entry_t **tail);

DESCRIPTION

User-provided function called whenever the AMM needs to split an entry in map aemm due to
conflicting flags. The split function for an AMM is set at initialization time by passing a pointer
to it as a parameter to amm_init_gen.

Entryis the entry to be split and split_addr is the address at which to split it. If the split is success-
ful, head and tail are pointers to the resulting entries describing the ranges [amm_entry_start(entry)
- split_addr-1] and [split_addr - amm_entry_end(entry)-1] respectively. Both may be entirely new
entries allocated in this routine, or one may point to the modified original entry. The AMM will
call the entry free function for the original entry if it is not one of the returned values.

This routine is responsible for initializing the map-private attributes of the resulting new entries.

344 CHAPTER 17. ADDRESS MAP MANAGER: LIBOSKIT_AMM. A

If the split cannot be done, e.g., due to lack of resources, a non-zero value indicating the error
should be returned. A non-zero return value is propagated on to whoever performed the action
which triggered the split request.

amm_split_func is only called by amm modify.

PARAMETERS

amm: A pointer to the amm_t structure representing the address map.
entry: The map entry to be split.
split_addr: The address at which to split the entry.

head,tail: Pointers to the the resulting new entries.

RETURNS

Returns zero if the split was successful, non-zero if not.

RELATED INFORMATION

amm_init_gen

Chapter 18

Simple Virtual Memory:
liboskit svm.a

18.1 Introduction

The Simple Virtual Memory (SVM) component provides very simple virtual memory management routines
that are somewhat more application friendly than the extremely basic support provided by the kernel library
(see Section 10.9.11). Applications are able to allocate large contiguous blocks of virtual memory that are
backed by physical memory. Applications may also control the page level protection of memory. In addition,
there is optional pageout support that allows the application to allocate more virtual memory than physical
memory on machines where a disk swap partition is available. The SVM component is thread safe, although
only a single virtual memory context is provided; all threads share the same set of page tables.

The SVM manager makes use of the list-based memory manager (LMM) (see Section 16), the address
map manager (AMM) (see Section 17), and the page directory support in the kernel library. The LMM is
used to to control physical memory, while the AMM is used to control the virtual memory mappings. The
kernel paging support handles the details of manipulating the low level page tables. As a result, the SVM
manager is very simple in its construction.

Although on the surface it might appear that the SVM provides generalized VM support, nothing could
be further from the truth. What is provided is a means to allocate memory in the range above existing
physical memory, and map those ranges to physical pages. With paging enabled, the application is able to
use more virtual memory than physical memory. It should be noted that the kernel remains where it was
initially loaded, and that unused pages of physical memory are left accessible by the application.

18.2 API reference

18.2.1 svm_init: initialize SVM system
SYNOPSIS

#include <oskit/svm/svm.h>

void svm_init(oskit_absio_t *pager_absio);

DESCRIPTION

This function initializes the SVM system, turning on base paging support (see Section 10.9.1), and
optionally configuring pageout support. The pager_absio argument is optional, and if specified
should be a device suitable for use as the swap area for the pager. pager_absio may also be
a oskit_blkio_t; the pager will query the object to determine which type it is. Only a single
paging area is supported. The initialization code will create an initial set of page tables that maps

345

346

CHAPTER 18. SIMPLE VIRTUAL MEMORY: LIBOSKIT_SVM.A

all of physical memory as readable and writable, except for kernel text which is mapped read-
only. A stack redzone is also created, although stack overflows are fatal since there is not enough
support to allow recovery. The address range above the end of physical memory is mapped as
invalid so that accesses result in a page fault trap (instead of silently returning bogus data).

In the case of a multi-threaded kernel, pager_absio must be a properly wrapped object (see
Section 19.4). The current multi-threaded locking strategy is extremely simple; a single lock
protects the entire SVM module.

PARAMETERS

pager_absio: An oskit_absio_t * or oskit_blkio_t * that is suitable for use as the swap area.

18.2.2 svm alloc: allocate a region of virtual memory

SYNOPSIS

#include <oskit/svm/svm.h>
int svm_alloc(oskit_addr_t *addr, oskit_size_t length, int prot, int flags);

DESCRIPTION

Allocate a region of virtual memory, returning the base address of the new region in addr. The
region is length bytes in size, and is initialized to the page level protection specified by prot.
The size of the allocation must be an integral number of pages. The caller can optionally specify
the (page aligned) base address at which to place the region by providing a non-zero value in
addr. The actual base address might differ if the system cannot place the region at that address.
Alternatively, if the flags value contains SVM_ALLOC_FIXED, and the region cannot be placed at
the requested address, the allocation will fail and return an error code.

PARAMETERS

addr: The location in which to store the base address of the new region. Also used to provide
an optional address.

length: The size of the new region in bytes. Must be an integral number of pages.
prot: Page level protection of the new region, composed of SVM_PROT_READ and SVM_PROT WRITE.
flags: Optional flags.

RETURNS

Returns zero on success. Returns 0SKIT_E_INVALIDARG if either the base address or the size of the
allocation is not page aligned. Returns OSKIT_E_OUTOFMEMORY if the region cannpt be assigned
to the fixed location requested by the caller.

RELATED INFORMATION

svm_dealloc, svm_protect

18.2.3 svm dealloc: deallocate a region of virtual memory

SYNOPSIS

#include <oskit/svm/svm.h>
int svin_dealloc(oskit_addr_t addr, oskit_size_t length);

18.2. API REFERENCE 347

DESCRIPTION

Deallocate a range of memory that was previously allocated with svm_alloc. The range starts at
addr, and is length bytes in size. The base address must be page aligned, and the length must
be an integral number of pages. The range may be a subset of a previously allocated range; only
that subset is deallocated.

PARAMETERS

addr: The address of the region to deallocate.
length: The size in bytes of the region to deallocate.

RETURNS
Returns zero on success. Returns 0SKIT_E_INVALIDARG if either the base address or the size of
the allocation is not page aligned, or if the range is not within an existing allocation.

RELATED INFORMATION

svm_alloc, svm_protect

18.2.4 svm protect: control the protection of a region of virtual memory
SYNOPSIS

#include <oskit/svm/svm.h>
int svin_protect(oskit_addr_t addr, oskit_size_t length, int prot);

DESCRIPTION

Change the page level protection on a region of memory. The region begins at addr and ex-
tends for length bytes. The base address must be page aligned, and the length must be an
integral number of pages. The page level protection of each page in the region is set to prot.
Unlike svm_dealloc, this routine may called on any region of memory, not just regions that were
allocated with svm_alloc.

PARAMETERS

addr: The address of the region.
length: The size in bytes of the region.
prot: Page level protection of the new region, composed of SVM_PROT_READ and SVM_PROT WRITE.

RETURNS
Returns zero on success. Returns 0SKIT_E_INVALIDARG if either the base address or the size of
the allocation is not page aligned.

RELATED INFORMATION

svm_alloc, svm_dealloc

348 CHAPTER 18. SIMPLE VIRTUAL MEMORY: LIBOSKIT_SVM.A

Chapter 19

POSIX Threads: 1liboskit _threads.a

19.1 Introduction

This chapter describes the POSIX threads module and associated support for writing multithreaded kernels.
At present, threads support is very new and not every combination of components is known to work; see
Section 19.2 for a more detailed description of what has been tested. Section 19.3 describes the application
program interface for the core POSIX threads module, while Section 19.4 contains a discussion of how the
threads system interacts with the device driver framework.

19.2 Examples and Caveats

The sample kernels in the examples/threads directory (see Section 1.6.1), contain several sample kernels
demonstrating the use of the POSIX threads module.

e dphils: A computational example that tests basic POSIX threads operations such as thread creation,
mutexes, and conditions. Solves the classic Dining Philosophers problem.

e disktest: A contrived disk thrashing program that tests the interaction between POSIX threads and
the NetBSD filesystem (see section 26). A number of threads are created, where each one creates and
copies files in varying block sizes.

e disknet: Another contrived program that builds on the disk thrashing program above. Also tested
is the interaction bewteen POSIX threads and the BSD network interface. Half of the threads created
thrash the disk and the other half connect to a server process and send and receive data blocks. This
program achieves reasonable interleaving of work.

e httpproxy: A simplified HTTP proxy daemon that tests the interaction between POSIX threads and
the BSD network interface. For each new connection request, three threads are created to manage that
connection and forward data between the client and the server.

This small set of test programs clearly does not test every possible combination of components. A larger
set, of test program is in the works. In addition, not all of the thread-safe adaptors are implemented, so some
components cannot be used in a multithreaded environment. For now, the POSIX threads module should be
used with caution. Note that these examples are compiled and linked against the multithreaded version of
the FreeBSD C library (see Section 14), rather than the minimal C library (Section 9).

19.3 POSIX Threads Reference

As with most POSIX threads implementations, this one is slightly different than others. This section briefly
covers the specific interfaces, but does not describe the semantics of each interface function in great detail.

349

350 CHAPTER 19. POSIX THREADS: LIBOSKIT-THREADS. A

The reader is advised to consult the POSIX documentation for a more complete description. All of these func-
tions, as well as the types necessary to use them, are defined in the header file <oskit/threads/pthread.h>.

19.3.1 pthread.h: Thread constants and data structures
DESCRIPTION

This header file defines the following standard symbols.

PRIORITYMIN: Lowest possible thread scheduling priority.

PRIORITY NORMAL: Default thread scheduling priority.

PRIORITY MAX: Highest possible thread scheduling priority.

SCHED_FIFQ: The “first in first out” thread scheduling policy.

SCHED_RR: The “round robin” thread scheduling policy.

PTHREAD_STACK MIN: The minumum allowed stack size.

PTHREAD_CREATE_JOINABLE: Thread attribute; thread is created joinable.
PTHREAD_CREATE DETACHED: Thread attribute; thread is created detached.

PTHREAD PRIONONE: Mutex attribute; mutex does not do priority inheritance.
PTHREAD PRIO_INHERIT: Mutex attribute; mutex does priority inheritance.
PTHREAD MUTEX NORMAL: Mutex attribute; normal error checking, no recursion.
PTHREAD MUTEX_ERRORCHECK: Mutex attribute; extra error checking, no recursion.
PTHREAD MUTEX _RECURSIVE: Mutex attribute; normal error checking, recursion allowed.
PTHREAD MUTEX DEFAULT: Mutex attribute; normal error checking, no recursion.
PTHREAD_CANCEL_ENABLE: Cancelation state; Cancelation state is enabled.

PTHREAD CANCEL DISABLE: Cancelation state; Cancelation state is disabled.
PTHREAD_CANCEL_DEFERRED: Cancelation type; Cancelation type deferred,
PTHREAD_CANCEL_ASYNCHRONOUS: Cancelation type; Cancelation type is asynchronous.
PTHREAD_CANCELED: The exit status returned by pthread_join for a canceled thread.
pthread t: Thread identifier type definition.

pthread mutex t: Mutex type definition.

pthread cond_t: Condition variable type definition.

pthread attr_t: Thread attributes type definition.

pthread attr default: Default thread attributes object.

pthread mutexattr_t: Mutex attributes type definition.

pthread mutexattr default: Default mutex attributes object.

pthread condattr_t: Condition variable attributes type definition.

pthread condattr_default: Default condition variable attributes object.

sched param t: Type definition for the pthread setschedparam interface function.

19.3.2 pthread_init: Initialize the threads system
SYNOPSIS

#include <oskit/threads/pthread.h>
void pthread_init(int preemptible);

19.3. POSIX THREADS REFERENCE 351

DESCRIPTION

This function initializes the threads system. It should be called as the first function in the
application’s main program function.

When pthread_init returns, the caller is now running within the main thread, although on the
same stack as when called. One or more idle threads have also been created, and are running at
low priority. At this point, the application is free to use any of the pthread interface functions
described in this section.

PARAMETERS

preemptible: A boolean value specifying whether the threads system should use preemption
based scheduling. When preemption based scheduling is not used, it is up to the application
to yield the processor using sched_yield as necessary.

19.3.3 pthread.attr_init: Initialize a thread attributes object
SYNOPSIS

#include <oskit/threads/pthread.h>
int pthread_attr_init(pthread attr_t *attr);

DESCRIPTION

Initialize a thread attributes object for use with pthread _create.

PARAMETERS

attr: A pointer to the pthread attr_t object representing the attributes for a thread creation.

RETURNS

Returns zero on success.

RELATED INFORMATION

pthread create, pthread attr_setprio, pthread_attr_setstacksize

19.3.4 pthread attr_setdetachstate: Set the detach state in a thread attributes
object

SYNOPSIS

#include <oskit/threads/pthread.h>
int pthread_attr_setdetachstate(pthread attr_t *attr, int detachstate);

DESCRIPTION
Set the thread detach state in a previously initialized threads attribute object, for use with
pthread create.

PARAMETERS

attr: A pointer to the pthread _attr_t object representing the attributes for a thread creation.
detachstate: Either PTHREAD_CREATE_JOINABLE or PTHREAD _CREATE_DETACHED.

352 CHAPTER 19. POSIX THREADS: LIBOSKIT-THREADS. A

RETURNS

Returns zero on success. Returns EINVAL if detachstate is invalid.

RELATED INFORMATION

pthread create, pthread attr_init

19.3.5 pthread attr_setprio: Set the priority in a thread attributes object
SYNOPSIS

#include <oskit/threads/pthread.h>
int pthread_attr_setprio(pthread attr_t *attr, int pri);

DESCRIPTION

Set the priority value in a previously initialized threads attribute object, for use with pthread _create.

PARAMETERS

attr: A pointer to the pthread _attr_t object representing the attributes for a thread creation.
pri: A value between PRIORITY_MIN and PRIORITY_MAX.

RETURNS
Returns zero on success. Returns EINVAL if priority is outside the range of PRIORITY_MIN
to PRIORITY_MAX.

RELATED INFORMATION

pthread create, pthread_attr_init, pthread_attr_setstacksize

19.3.6 pthread.attr_setstackaddr: Set the stack address in a thread attributes
object

SYNOPSIS

#include <oskit/threads/pthread.h>
int pthread_attr_setstackaddr(pthread attr_t *attr, oskit_u32_t stackaddr);

DESCRIPTION

Set the stack address in a previously initialized threads attribute object, for use with pthread _create.
The new thread will be created using the provided stack. It is necessary to call pthread_attr_setstacksize()
if the size is not PTHREAD _STACK_MIN.

PARAMETERS

attr: A pointer to the pthread _attr_t object representing the attributes for a thread creation.
stackaddr: The address of the stack.

RETURNS

Returns zero on success.

19.3. POSIX THREADS REFERENCE 353

RELATED INFORMATION

pthread create, pthread_attr_init, pthread_attr_setstacksize

19.3.7 pthread_attr_setguardsize: Set the stack guard size in a thread attributes
object

SYNOPSIS

#include <oskit/threads/pthread.h>
int pthread_attr_setguardsize(pthread attr_t *attr, oskit_size_t guardsize);

DESCRIPTION

Set the stack guard size in a previously initialized threads attribute object, for use with pthread create.
This much extra space will be allocated at the end of the stack and set as a redzone to catch
stack overflow. The guard size is rounded up to a multiple of the native page size. Stack guards

are not created for stacks provided with pthread attr_setstackaddr.

PARAMETERS

attr: A pointer to the pthread _attr_t object representing the attributes for a thread creation.

guardsize: A reasonable stack guard size.

RETURNS

Returns zero on success.

RELATED INFORMATION

pthread create, pthread_attr_init, pthread_attr_setstackaddr

19.3.8 pthread attr_setstacksize: Set the stack size in a thread attributes ob-
ject

SYNOPSIS

#include <oskit/threads/pthread.h>
int pthread_attr_setstacksize(pthread attr_t *attr, oskit_size_t stacksize);

DESCRIPTION

Set the stack size in a previously initialized threads attribute object, for use with pthread create.

PARAMETERS

attr: A pointer to the pthread _attr_t object representing the attributes for a thread creation.

stacksize: A reasonable stack size.

RETURNS

Returns zero on success. Returns EINVAL if stacksize is less than PTHREAD_STACK_MIN.

354 CHAPTER 19. POSIX THREADS: LIBOSKIT-THREADS. A

RELATED INFORMATION

pthread create, pthread_attr_init, pthread_attr_setprio

19.3.9 pthread attr_setschedpolicy: Set the scheduling policy in a thread at-
tributes object

SYNOPSIS

#include <oskit/threads/pthread.h>
int pthread_attr_setschedpolicy(pthread attr_t xattr, int policy);

DESCRIPTION

Set the scheduling policy in a previously initialized threads attribute object, for use with pthread create.

PARAMETERS

attr: A pointer to the pthread attr_t object representing the attributes for a thread creation.

policy: Either SCHED_FIFO or SCHED_RR.

RETURNS

Returns zero on success. Returns EINVAL if policy is invalid.

RELATED INFORMATION

pthread create, pthread attr_init

19.3.10 pthread mutexattr_init: Initialize a mutex attributes object
SYNOPSIS

#include <oskit/threads/pthread.h>
int pthread_mutexattr_init(pthread mutexattr_t *attr);

DESCRIPTION

Initialize an mutex attributes object for use with pthread mutex_init.

PARAMETERS
attr: A pointer to the pthread mutexattr_t object representing the attributes for a mutex
initialization.
RETURNS

Returns zero on success.

RELATED INFORMATION

pthread mutex_init, pthread mutex_setprotocol

19.3. POSIX THREADS REFERENCE 355

19.3.11 pthread mutexattr_setprotocol: Set the protocol attribute of a mutex
attributes object

SYNOPSIS

#include <oskit/threads/pthread.h>
int pthread_mutexattr_setprotocol(pthread mutexattr_t *attr, int protocol);

DESCRIPTION

Set the protocol in a previously initialized mutex attribute object. When a mutex is created
with the protocol PTHREAD_PRIO_INHERIT, threads that blocked on the mutex will result in
a transfer of priority from higher to lower priority threads.

PARAMETERS

attr: A pointer to the pthread mutexattr_t object representing the attributes for a mutex
initialization.

protocol: Either PTHREAD_PRIO_NONE or PTHREAD_PRIO_INHERIT.

RETURNS

Returns zero on success.

RELATED INFORMATION

pthread mutex_init

19.3.12 pthread mutexattr_settype: Set the type attribute of a mutex attributes
object

SYNOPSIS

#include <oskit/threads/pthread.h>
int pthread_mutexattr_settype(pthread mutexattr_t *attr, int type);

DESCRIPTION

Set the type in a previously initialized mutex attribute object. PTHREAD _MUTEX_NORMAL,
PTHREAD MUTEX_ERRORCHECK, and PTHREAD MUTEX_DEFAULT are equivalent. PTHREAD _MUTEX_RE(
allows a mutex to be recursively locked.

PARAMETERS

attr: A pointer to the pthread mutexattr_t object representing the attributes for a mutex
initialization.

type: One of PTHREAD MUTEX_NORMAL, PTHREAD MUTEX_ERRORCHECK, PTHREAD MUTEX_DEFAUIL
or PTHREAD MUTEX_RECURSIVE.

RETURNS

Returns zero on success.

356 CHAPTER 19. POSIX THREADS: LIBOSKIT-THREADS. A

RELATED INFORMATION

pthread mutex_init

19.3.13 pthread condattr_init: Initialize a condition attributes object
SYNOPSIS

#include <oskit/threads/pthread.h>
int pthread_condattr_init(pthread condattr_t xattr);

DESCRIPTION

Initialize an condition variable attributes object for use with pthread_cond_init.

PARAMETERS
attr: A pointer to the pthread condattr_t object representing the attributes for a condition
variable initialization.
RETURNS

Returns zero on success.

RELATED INFORMATION

pthread cond_init

19.3.14 pthread cancel: Cancel a running thread
SYNOPSIS

#include <oskit/threads/pthread.h>
int pthread_cancel(pthread_ t tid);

DESCRIPTION
Cancel the thread specified by tid. The thread is marked for cancellation, but because of
scheduling and device delays, might not be acted upon until some future time.

PARAMETERS

tid: The thread identifier of the thread to be canceled.

RETURNS

Returns zero on success. EINVAL if tid specifies an invalid thread.

RELATED INFORMATION

pthread create, pthread_sleep

19.3. POSIX THREADS REFERENCE 357

19.3.15 pthread cleanup push: Push a cancellation cleanup handler routine onto
the calling thread’s cancellation cleanup stack

SYNOPSIS

#include <oskit/threads/pthread.h>
void pthread_cleanup_push(void (*routine)(void *), void *arg);

DESCRIPTION

Push a cancellation cleanup handler routine onto the calling thread’s cancellation cleanup stack.
When requested, the cleanup routine will be popped from the cancellation stack, and invoked
with the argument arg.

PARAMETERS

routine: The cleanup handler routine.

arg: The argument to pass to the cleanup handler routine.

RELATED INFORMATION

pthread_cancel, pthread_cleaup_pop

19.3.16 pthread setcancelstate: Set the cancelation state
SYNOPSIS

#include <oskit/threads/pthread.h>
void pthread_setcancelstate(int state, int *oldstate);

DESCRIPTION
Set the cancel state for the current thread, returning the old state in oldstate. Valid states are
either PTHREAD_CANCEL _ENABLE or PTHREAD_CANCEL DISABLE. This routine is async-cancel safe.
PARAMETERS

state: New cancel state.

oldstate: Location in which to place the original cancel state.

RELATED INFORMATION

pthread_cancel, pthread_setcanceltype

19.3.17 pthread setcanceltype: Set the cancelation type
SYNOPSIS

#include <oskit/threads/pthread.h>
void pthread_setcanceltype(int type, int *oldtype);

DESCRIPTION

Set the cancel type for the current thread, returning the old type in oldtype. Valid types
are either PTHREAD_CANCEL _DEFERRED or PTHREAD_CANCEL_ASYNCHRONQUS. This routine is async-
cancel safe.

358 CHAPTER 19. POSIX THREADS: LIBOSKIT-THREADS. A

PARAMETERS

type: New cancel type.

oldtype: Location in which to place the original cancel type.

RELATED INFORMATION

pthread_cancel, pthread_setcancelstate

19.3.18 pthread testcancel: Check for a cancelation point
SYNOPSIS

#include <oskit/threads/pthread.h>
void pthread_testcancel(void);

DESCRIPTION

Test whether a cancelation is pending, and deliver the cancelation if the cancel state is PTHREAD_CANCEL ENABLED.

RELATED INFORMATION

pthread_cancel, pthread_setcancelstate

19.3.19 pthread cond broadcast: Wakeup all threads waiting on a condition vari-
able

SYNOPSIS

#include <oskit/threads/pthread.h>
int pthread_cond_broadcast(pthread_cond_t *cond);

DESCRIPTION

Wakeup all threads waiting on a condition variable.

PARAMETERS

cond: A pointer to the condition variable object.

RETURNS

Returns zero on success.

RELATED INFORMATION

pthread cond_init, pthread cond_wait, pthread cond_signal

19.3.20 pthread cond destroy: Destroy a condition variable
SYNOPSIS

#include <oskit/threads/pthread.h>
int pthread_cond_destroy(pthread_cond_t *cond);

19.3. POSIX THREADS REFERENCE 359

DESCRIPTION
Destroy a condition variable object. The condition variable should be unused, with no threads
waiting for it. The memory for the object is left intact; it is up to the caller to deallocate it.
PARAMETERS

cond: A pointer to the condition variable object.

RETURNS

Returns zero on success. EINVAL if there are threads still waiting.

RELATED INFORMATION

pthread cond_init

19.3.21 pthread cond init: Initialize a condition variable
SYNOPSIS

#include <oskit/threads/pthread.h>
int pthread_cond_init(pthread cond_t *cond, pthread_condattr_t *attr);

DESCRIPTION
Initialize a condition variable object, using the provided condition attributes object. The at-
tributes object may be a NULL pointer, in which case pthread_condattr_default is used.
PARAMETERS

cond: A pointer to the condition variable object.

attr: A pointer to the condition variable attributes object.

RETURNS

Returns zero on success.

RELATED INFORMATION

pthread_cond_destroy

19.3.22 pthread_cond_signal: Wakeup one thread waiting on a condition variable
SYNOPSIS

#include <oskit/threads/pthread.h>
int pthread_cond_signal(pthread_cond_t *cond);

DESCRIPTION

Wakeup the highest priority thread waiting on a condition variable.

PARAMETERS

cond: A pointer to the condition variable object.

360 CHAPTER 19. POSIX THREADS: LIBOSKIT-THREADS. A

RETURNS

Returns zero on success.

RELATED INFORMATION

pthread cond_wait, pthread_cond_broadcast

19.3.23 pthread_cond wait: Wait on a condition variable
SYNOPSIS

#include <oskit/threads/pthread.h>
int pthread_cond_wait(pthread_cond_t *cond, pthread mutex_t *mutex);

DESCRIPTION
The current thread is made to wait until the condition variable is signaled or broadcast. The
mutex is released prior to waiting, and reacquired before returning.

PARAMETERS

cond: A pointer to the condition variable object.

mutex: A pointer to the mutex object.

RETURNS

Returns zero on success.

RELATED INFORMATION

pthread cond_signal, pthread cond _broadcast, pthread_cond_timedwait

19.3.24 pthread cond timedwait: Wait on a condition variable with timeout
SYNOPSIS

#include <oskit/threads/pthread.h>

int pthread_cond_timedwait(pthread_cond_t *cond, pthread mutex_t *muter, oskit_timespec_t
*abstime);

DESCRIPTION

The current thread is made to wait until the condition variable is signaled or broadcast, or until
the timeout expires. The mutex is released prior to waiting, and reacquired before returning.
The timeout is given as an absolute time in the future that bounds the wait.

PARAMETERS

cond: A pointer to the condition variable object.
mutex: A pointer to the mutex object.

abstime: A pointer to an oskit_timespec structure.

19.3. POSIX THREADS REFERENCE 361

RETURNS

Returns zero on success. Returns ETIMEDOUT if the timeout expires.

RELATED INFORMATION

pthread cond_signal, pthread_cond_broadcast, pthread_cond wait

19.3.25 pthread create: Create a new thread and start it running
SYNOPSIS

#include <oskit/threads/pthread.h>
int pthread_create(pthread t *tid, const pthread_attr_t *attr, void (*function)(void *),

void *arg);
DESCRIPTION

Create a new thread and schedule it to run. The thread is created using the attributes object
attr, which specifies the initial priority, stack size, and detach state. If a NULL attributes
object is provided, a system default attributes object is used instead, specifying that the thread
is detachable, has priority PRIORITY_NORMAL, and with a reasonable stack size.

This call returns immediately, with the thread id stored in the location given by tid. This thread
id should be saved if the application wishes to manipulate the thread’s state at some future time.

The new thread is scheduled to run. When the thread starts up, it will call void (*function) (void
*xarg).
PARAMETERS

tid: A pointer to the location where the thread id should be stored.
attr: A pointer to the thread creation attributes object.
function: The initial function to call when the thread first starts.

arg: The argument to the initial function.

RETURNS

Returns zero on success, storing the tid of the new thread into *tid.

RELATED INFORMATION

pthread_join, pthread detach, pthread_exit

19.3.26 pthread detach: Detach a thread from its parent
SYNOPSIS

#include <oskit/threads/pthread.h>
int pthread_detach(pthread_ t tid);

DESCRIPTION

The thread specified by tid is detached from its parent. If the thread has already exited, its
resources are released.

362 CHAPTER 19. POSIX THREADS: LIBOSKIT-THREADS. A

PARAMETERS

tid: The thread id of the thread being detached.

RETURNS

Returns zero on success. EINVAL if tid refers to a non-existent thread.

RELATED INFORMATION

pthread_join, pthread create, pthread_exit

19.3.27 pthread_exit: Terminate a thread with status
SYNOPSIS

#include <oskit/threads/pthread.h>
int pthread_exit(void *status);

DESCRIPTION
The current thread is terminated, with its status value made available to the parent using
pthread_join.

PARAMETERS

status: The exit status.

RETURNS

This function does not return.

RELATED INFORMATION

pthread_join, pthread_create, pthread _detach

19.3.28 pthread_join: Join with a target thread
SYNOPSIS

#include <oskit/threads/pthread.h>
int pthread_join(pthread_t tid, void *xstatus);

DESCRIPTION

The current thread indicates that it would like to join with the target thread specified by tid. If
the target thread has already terminated, its exit status is provided immediately to the caller. If
the target thread has not yet exited, the caller is made to wait. Once the target has exited, all
of the threads waiting to join with it are woken up, and the target’s exit status provided to each.

PARAMETERS

tid: The thread id of the thread being joined with.

status: A pointer to a location where the target’s exit status is placed.

19.3. POSIX THREADS REFERENCE 363

RETURNS
Returns zero on success, storing the target’s exit status in *status. EINVAL if tid refers to a
non-existent thread.

RELATED INFORMATION

pthread_join, pthread_create, pthread_detach

19.3.29 pthread key create: Create a thread-specific data key
SYNOPSIS

#include <oskit/threads/pthread.h>
int pthread_key_create(pthread ket_t *key, void (*destructor)(void *));

DESCRIPTION
Create a thread-specific key for use with pthread_setspecific. If specified, the destructor is
called on any non-NULL key/value pair when a thread exits.

PARAMETERS

key: Address where the new key value should be stored.

destructor: Pointer to the destructor function, which may be NULL.

RETURNS
Returns zero on success, and stores the new key value at *key. Returns EAGAIN if the are no
more keys available.

RELATED INFORMATION

pthread key_delete, pthread_setspecific, pthread getspecific

19.3.30 pthread key delete: Delete a thread-specific data key
SYNOPSIS

#include <oskit/threads/pthread.h>
int pthread_key_delete(pthread ket_t *key);

DESCRIPTION
Delete the thread-specific key. Attempts to use a key via pthread_setspecificor pthread getspecific
after it has been deleted is undefined.

PARAMETERS

key: The key that should be deleted.

RETURNS

Returns zero on success. Returns EINVAL if key refers to an invalid key.

364 CHAPTER 19. POSIX THREADS: LIBOSKIT-THREADS. A

RELATED INFORMATION

pthread key_create, pthread_setspecific, pthread getspecific

19.3.31 pthread setspecific: Set a thread-specific data value
SYNOPSIS

#include <oskit/threads/pthread.h>

int pthread_setspecific(pthread ket_t key, const void *value);

DESCRIPTION

Associate a new thread-specific value with the specified key.

PARAMETERS

key: The key that should be set.

value: The new value to associate with the key.

RETURNS

Returns zero on success. Returns EINVAL if key refers to an invalid key.

RELATED INFORMATION

pthread key_create, pthread key_delete, pthread_getspecific

19.3.32 pthread_getspecific: Set a thread-specific data value
SYNOPSIS

#include <oskit/threads/pthread.h>
void *pthread_setspecific(pthread ket_t key);

DESCRIPTION

Get the thread-specific value associated the specified key.

PARAMETERS

key: The key for the value that should be retrieved.

RETURNS

Returns the value of the key. Errors always return zero.

RELATED INFORMATION

pthread key_create, pthread key_delete, pthread_setspecific

19.3. POSIX THREADS REFERENCE 365

19.3.33 pthread mutex_init: Initialize a mutex object
SYNOPSIS

#include <oskit/threads/pthread.h>
int pthread _mutex_init(pthread mutex t *m, pthread mutexattr_t *attr);

DESCRIPTION
Initialize a mutex object, using the provided mutex attributes object. The attributes object may
be a NULL pointer, in which case pthread mutexattr_default is used.

PARAMETERS

mutex: A pointer to the mutex object.

attr: A pointer to the mutex attributes object.

RETURNS

Returns zero on success.

RELATED INFORMATION

pthread mutex_destroy, pthread mutex_lock, pthread mutex_unlock

19.3.34 pthread -mutex_destroy: Destroy a mutex object
SYNOPSIS

#include <oskit/threads/pthread.h>
int pthread_mutex_destroy(pthread mutex_t *m);

DESCRIPTION
The mutex object is destroyed, although the memory for the object is not deallocated. The
mutex must not be held.

PARAMETERS

mutex: A pointer to the mutex object.

RETURNS

Returns zero on success. Returns EBUSY if the mutex is still held.

RELATED INFORMATION

pthread mutex_init

19.3.35 pthread-mutex_lock: Lock a unlocked mutex object
SYNOPSIS

#include <oskit/threads/pthread.h>
int pthread_mutex_lock(pthread mutex_t *m);

366 CHAPTER 19. POSIX THREADS: LIBOSKIT-THREADS. A

DESCRIPTION
Lock a mutex object. If the mutex is currently locked, the thread waits (is suspended) for the
mutex to become available.

PARAMETERS

mutex: A pointer to the mutex object.

RETURNS

Returns zero on success.

RELATED INFORMATION

pthread mutex_init, pthread mutex_unlock, pthread mutex_trylock

19.3.36 pthread mutex trylock: Attempt to lock a unlocked mutex object
SYNOPSIS

#include <oskit/threads/pthread.h>
int pthread_mutex_trylock(pthread mutex_t *m);

DESCRIPTION

Attempt to lock a mutex object. This function always returns immediately.

PARAMETERS

mutex: A pointer to the mutex object.

RETURNS

Returns zero on success. Returns EBUSY if the mutex object is locked.

RELATED INFORMATION

pthread mutex_init, pthread mutex_unlock, pthread mutex_lock

19.3.37 pthread mutex unlock: Unlock a mutex object
SYNOPSIS

#include <oskit/threads/pthread.h>
int pthread _mutex_unlock(pthread mutex_t *m);

DESCRIPTION
Unlock a mutex object. If there other threads waiting to acquire the mutex, the highest priority
thread is woken up and granted the mutex.

PARAMETERS

mutex: A pointer to the mutex object.

19.3. POSIX THREADS REFERENCE 367

RETURNS

Returns zero on success.

RELATED INFORMATION

pthread mutex_init, pthread mutex_trylock, pthread mutex_lock

19.3.38 pthread_resume: Resume a suspended thread
SYNOPSIS

#include <oskit/threads/pthread.h>
int pthread_resume(pthread_t tid);

DESCRIPTION

Resume a thread that has been suspended with pthread _suspend.

PARAMETERS

tid: The thread identifier of the thread to be resumed.

RETURNS

Returns zero on success. EINVAL if tid specifies an invalid thread.

RELATED INFORMATION

pthread _create, pthread_suspend

19.3.39 pthread_self: Return the thread identifier of the current thread
SYNOPSIS

#include <oskit/threads/pthread.h>
pthread t pthread_self(void);

DESCRIPTION

Return the thread identifier of the current thread.

RETURNS

Returns the thread identifier.

RELATED INFORMATION

pthread create

19.3.40 pthread_setprio: Change the priority of a thread
SYNOPSIS

#include <oskit/threads/pthread.h>
int pthread_setprio(pthread_t tid, int newpri);

368 CHAPTER 19. POSIX THREADS: LIBOSKIT-THREADS. A

DESCRIPTION
Change the priority of a thread. If the change causes a thread to have a higher priority than the
currently running thread, a reschedule operation is performed.

PARAMETERS

tid: The thread identifier of the thread whose priority should be changed.
newpri: The new priority, which must be from PRIORITY_MIN to PRIORITY_MAX.

RETURNS
Returns zero on success. EINVAL if tid specifies an invalid thread or newpri specifies an invalid
priority.

RELATED INFORMATION

pthread create, sched_yield, pthread_setschedparam

19.3.41 pthread setschedparam: Set the scheduling parameters for a thread
SYNOPSIS

#include <oskit/threads/pthread.h>
int pthread_setschedparam (pthread_t tid, int policy, const struct sched_param *param);

DESCRIPTION

Change the scheduling parameters for a thread. The thread’s scheduling policy and priority are
changed. If the change causes a thread to have a higher priority than the currently running
thread, a reschedule operation is performed.

PARAMETERS

tid: The thread identifier of the thread whose scheduling parameters should be changed.
policy: The new scheduling policy, as defined in pthread.h

param: A pointer to the sched_param_t object representing the new scheduling parameters.

RETURNS
Returns zero on success. EINVAL if tid specifies an invalid thread or policy specifies an invalid
policy.

RELATED INFORMATION

pthread create, sched_yield, pthread_setprio

19.3.42 pthread sleep: Sleep for an interval of time
SYNOPSIS

#include <oskit/threads/pthread.h>
int pthread_sleep(oskit_s64_t milliseconds);

19.3. POSIX THREADS REFERENCE 369

DESCRIPTION

The calling thread is put to sleep for the number of milliseconds specified. The thread cannot be
woken up until the given amount of time has passed, although the thread may be canceled with
pthread_cancel

PARAMETERS

milliseconds: The number of milliseconds the thread should sleep for.

RETURNS

Returns zero on success.

RELATED INFORMATION

pthread_cancel

19.3.43 pthread_suspend: Suspend a thread
SYNOPSIS

#include <oskit/threads/pthread.h>
int pthread_suspend(pthread_t tid);

DESCRIPTION
Suspend the specified thread indefinitely. The thread may be resumed with pthread resume or
it may be canceled with pthread _cancel.

PARAMETERS

tid: The thread identifier of the thread to be suspended

RETURNS

Returns zero on success. EINVAL if tid specifies an invalid thread.

RELATED INFORMATION

pthread resume

19.3.44 sched_yield: Yield the processor
SYNOPSIS

#include <oskit/threads/pthread.h>
void sched_yield(void);

DESCRIPTION

The calling thread voluntarily yields the processor. The highest priority thread is chosen for
execution.

370 CHAPTER 19. POSIX THREADS: LIBOSKIT-THREADS. A

RELATED INFORMATION

pthread_setprio, pthread_setschedparam

19.3.45 osenv_process_lock: Lock the process lock
SYNOPSIS

#include <oskit/threads/pthread.h>
void osenv_process_lock(void);

DESCRIPTION

Attempt to lock the process lock. If the lock cannot be immediately granted, the thread is put to
sleep until it can be. The process lock is provided so that the client operating system can protect
the device driver framework from concurrent execution. It is expected than any entry into the
device framework will first take the process lock. If the thread executing inside the device driver
framework blocks by calling osenv_sleep, the process lock will be released so that another thread
may enter it safely. When the thread is woken up later, it will take the process lock again before
returning from the sleep.

Attempts to recursively lock the process lock will result in a panic. This is intended as a debugging
measure to prevent indiscriminate nesting of components that try to take the lock.

RELATED INFORMATION

osenv_process_unlock, osenv_sleep, osenv_wakeup

19.3.46 osenv_process_unlock: Unlock the process lock
SYNOPSIS

#include <oskit/threads/pthread.h>
void osenv_process_unlock(void);

DESCRIPTION

Release the process lock. If another thread is waiting to lock the process lock, it will be woken
up. The process lock is provided so that the client operating system can protect the device driver
framework from concurrent execution.

RELATED INFORMATION

osenv_process_lock, osenv_sleep, osenv_wakeup

19.4 Thread-safe Adaptors

To facilitate the use of the device driver framework within a multithreaded client operating system, a number
of adaptors are provided. An adaptor acts as COM interface wrapper on another COM interface. Adaptors
are intended to provide thread-safety with respect to the device driver framework. The thread system is
expected to provide an implementation of a process lock that is used to prevent concurrent execution inside
the device driver framework. An adaptor method simply takes the process lock, calls the appropriate method
in the underlying COM interface, and then releases the process lock when the method returns. If a thread
blocks inside a device driver (osenv_sleep), the process lock is released at that time, allowing another thread

19.4. THREAD-SAFE ADAPTORS 371

to enter the driver set. When the original thread is woken up, it will reacquire the process lock before being
allowed to return from the sleep. Thus, only one thread is allowed to operate inside the driver set at a time.

Implementationally, an adaptor is a COM interface that maintains a reference to the original, non thread-
safe COM interface. Operations using the adaptor behave just like the original, invoking the corresponding
method in the original. It should be noted that the query, addref, and release methods all operate on the
adaptor itself. When the last reference to an adaptor is released, the reference to the underlying COM
interface is released. As an example, consider the oskit_dir_t adaptor as it is used when mounting the root
filesystem in a multithreaded client operating system. In order to provide a thread-safe implementation to
the C library, the root directory that is passed to fs_init is first wrapped up in a thread-safe adaptor. All
subsequent references to the corresponding filesystem go through the adaptor, and are thus thread-safe. A
sample code fragment follows:

#include <oskit/c/fs.h>
#include <oskit/com/wrapper.h>
#include <oskit/threads/pthread.h>

oskit_error_t
mountroot (oskit_dir_t *fsroot)
{
oskit_dir_t *wrappedroot;
oskit_error_t err;

rc = oskit_wrap_dir(fsroot,
(void (*)(void *))osenv_process_lock,
(void (*)(void *))osenv_process_unlock,
0, &wrappedroot);
if (re)
return rc;

/* Don’t need the root anymore, the wrapper has a ref. */
oskit_dir_release(fsroot);

return fs_init(wrappedroot);

}

The adaptor prototypes are found in <oskit/com/wrapper.h>, and have a common format. Each one
takes the COM interface to be wrapped up, and returns the adaptor. Additional arguments are the process
lock and unlock routines, as well as an optional cookie to be passed to the lock and unlock routines. It should
be noted that the process lock is specific to the thread implementation, and thus the adaptor interface is
intended to be as generic as possible. For the pthread interface, the process lock does not need a cookie
value.

19.4.1 oskit_wrap_socket: Wrap an oskit_socket in a thread-safe adaptor
SYNOPSIS

#include <oskit/com/wrapper.h>
oskit_error_t oskit_wrap_socket(struct oskit_socket *in, void (*lock)(void *), void (*un-

lock)(void *), void *cookie, struct oskit_socket **out);
DESCRIPTION

Create and return an oskit_socket thread-safe adaptor.

PARAMETERS

in: The oskit_socket COM interface to be wrapped.
lock: The process lock routine.

unlock: The process unlock routine.

372 CHAPTER 19. POSIX THREADS: LIBOSKIT-THREADS. A

cookie: A cookie to be passed to the lock and unlock routines.

out: The oskit_socket adaptor COM interface.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

19.4.2 oskit wrap_stream: Wrap an oskit_stream in a thread-safe adaptor
SYNOPSIS

#include <oskit/com/wrapper.h>
oskit_error_t oskit_wrap_stream(struct oskit_stream *in, void (*lock)(void *), void (*un-

lock)(void *), void *cookie, struct oskit_stream **out);
DESCRIPTION

Create and return an oskit_dir thread-safe adaptor.

PARAMETERS

in: The oskit_stream COM interface to be wrapped.

lock: The process lock routine.

unlock: The process unlock routine.

cookie: A cookie to be passed to the lock and unlock routines.

out: The oskit_stream adaptor COM interface.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

19.4.3 oskit_wrap-asyncio: Wrap an oskit_asyncio in a thread-safe adaptor
SYNOPSIS

#include <oskit/com/wrapper.h>

oskit_error_t oskit_wrap_asyncio(struct oskit_asyncio *in, void (*lock)(void *), void
(*unlock)(void *), void *cookie, struct oskit_asyncio **out);

DESCRIPTION

Create and return an oskit_dir thread-safe adaptor.

PARAMETERS

in: The oskit_asyncio COM interface to be wrapped.

lock: The process lock routine.

unlock: The process unlock routine.

cookie: A cookie to be passed to the lock and unlock routines.

out: The oskit_asyncio adaptor COM interface.

19.4. THREAD-SAFE ADAPTORS

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

19.4.4 oskit_wrap-sockio: Wrap an oskit_sockio in a thread-safe adaptor
SYNOPSIS

#include <oskit/com/wrapper.h>
oskit_error_t oskit_wrap_sockio(struct oskit_sockio *in, void (*lock)(void *), void (*un-

lock)(void *), void *cookie, struct oskit_sockio **out);
DESCRIPTION

Create and return an oskit_dir thread-safe adaptor.

PARAMETERS

in: The oskit_sockio COM interface to be wrapped.

lock: The process lock routine.

unlock: The process unlock routine.

cookie: A cookie to be passed to the lock and unlock routines.

out: The oskit_sockio adaptor COM interface.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

19.4.5 oskit_wrap_posixio: Wrap an oskit_posixio in a thread-safe adaptor
SYNOPSIS

#include <oskit/com/wrapper.h>
oskit_error_t oskit_wrap_posixio(struct oskit_posizio *in, void (*lock)(void *), void

(*unlock)(void *), void *cookie, struct oskit_posixio **out);
DESCRIPTION

Create and return an oskit_dir thread-safe adaptor.

PARAMETERS

in: The oskit_posixio COM interface to be wrapped.

lock: The process lock routine.

unlock: The process unlock routine.

cookie: A cookie to be passed to the lock and unlock routines.

out: The oskit_posixio adaptor COM interface.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

373

374 CHAPTER 19. POSIX THREADS: LIBOSKIT-THREADS. A

19.4.6 oskit wrap_file: Wrap an oskit_file in a thread-safe adaptor
SYNOPSIS

#include <oskit/com/wrapper.h>

oskit_error_t oskit_wrap_file(struct oskit_file *in, void (*lock)(void *), void (*unlock)(void
*), void *cookie, struct oskit_file **out);
DESCRIPTION

Create and return an oskit_dir thread-safe adaptor.

PARAMETERS

in: The oskit_file COM interface to be wrapped.

lock: The process lock routine.

unlock: The process unlock routine.

cookie: A cookie to be passed to the lock and unlock routines.

out: The oskit_file adaptor COM interface.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

19.4.7 oskit wrap_dir: Wrap an oskit_dir in a thread-safe adaptor
SYNOPSIS

#include <oskit/com/wrapper.h>

oskit_error_t oskit_wrap_dir(struct oskit_dir *in, void (*lock)(void *), void (*unlock)(void
*), void *cookie, struct oskit-dir **out);
DESCRIPTION

Create and return an oskit_dir thread-safe adaptor.

PARAMETERS

in: The oskit_dir COM interface to be wrapped.

lock: The process lock routine.

unlock: The process unlock routine.

cookie: A cookie to be passed to the lock and unlock routines.

out: The oskit dir adaptor COM interface.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

19.4. THREAD-SAFE ADAPTORS 375

19.4.8 oskit wrap_filesystem: Wrap an oskit filesystem in a thread-safe adap-
tor

SYNOPSIS

#include <oskit/com/wrapper.h>
oskit_error_t oskit_wrap_filesystem(struct oskit_filesystem *in, void (*lock)(void *),

void (*unlock)(void *), void *cookie, struct oskit_filesystem **out);
DESCRIPTION

Create and return an oskit_dir thread-safe adaptor.

PARAMETERS

in: The oskit_filesystem COM interface to be wrapped.
lock: The process lock routine.

unlock: The process unlock routine.

cookie: A cookie to be passed to the lock and unlock routines.

out: The oskit_filesystem adaptor COM interface.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

19.4.9 oskit wrap_openfile: Wrap an oskit openfile in a thread-safe adaptor
SYNOPSIS

#include <oskit/com/wrapper.h>

oskit_error_t oskit_wrap_openfile(struct oskit_openfile *in, void (*lock)(void *), void
(*unlock)(void *), void *cookie, struct oskit_openfile **out);
DESCRIPTION

Create and return an oskit_dir thread-safe adaptor.

PARAMETERS
in: The oskit_openfile COM interface to be wrapped.
lock: The process lock routine.
unlock: The process unlock routine.
cookie: A cookie to be passed to the lock and unlock routines.

out: The oskit_openfile adaptor COM interface.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

376 CHAPTER 19. POSIX THREADS: LIBOSKIT-THREADS. A

19.4.10 oskit_wrap_blkio: Wrap an oskit_blkio in a thread-safe adaptor
SYNOPSIS

#include <oskit/com/wrapper.h>
oskit_error_t oskit_wrap_blkio(struct oskit_blkio *in, void (*lock)(void *), void (*un-

lock)(void *), void *cookie, struct oskit_blkio **out);
DESCRIPTION

Create and return an oskit_blkio thread-safe adaptor.

PARAMETERS

in: The oskit_blkio COM interface to be wrapped.

lock: The process lock routine.

unlock: The process unlock routine.

cookie: A cookie to be passed to the lock and unlock routines.

out: The oskit blkio adaptor COM interface.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

19.4.11 oskit_wrap.-absio: Wrap an oskit_absio in a thread-safe adaptor
SYNOPSIS

#include <oskit/com/wrapper.h>
oskit_error_t oskit_wrap_absio(struct oskit_absio *in, void (*lock)(void *), void (*un-

lock)(void *), void *cookie, struct oskit_absio **out);
DESCRIPTION

Create and return an oskit_absio thread-safe adaptor.

PARAMETERS

in: The oskit_absio COM interface to be wrapped.

lock: The process lock routine.

unlock: The process unlock routine.

cookie: A cookie to be passed to the lock and unlock routines.

out: The oskit_absio adaptor COM interface.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

19.5 InterThread Communication

This section describes the “interthread” communication primitives provided by the pthread library.

19.5. INTERTHREAD COMMUNICATION 377

19.5.1 oskit_ipc_send: Send a message to another thread
SYNOPSIS
#include <oskit/threads/pthread.h>

#include <oskit/threads/ipc.h>

oskit_error_t OSkit_ipC_Send(pthread_t dst, void *msg, oskit_size_t msg_size, oskit_s32_t
timeout);

DESCRIPTION

Send a message to another thread. The destination thread is specified by its pthread_t. The
sending thread blocks until the receiving thread notices the message and actually initiates a
receive operation for it. Control returns to the caller only when the receiver has initiated the
receive.

The timeout value is currently ignored.

PARAMETERS

dst: The pthread t of the destination thread.
msg: The message buffer.

msg-size: The size of the message, in bytes.
timeout: A timeout value. Currently ignored.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

19.5.2 oskit_ipc_recv: Receive a message from a specific thread
SYNOPSIS

#include <oskit/threads/pthread.h>
#include <oskit/threads/ipc.h>

oskit_error_t OSkit_ipC_reCV(pthread_t src, void *msg, oskit_size_t msg_size, oskit_size t
*actual, oskit_s32_t timeout);

DESCRIPTION

Receive a message from another thread. The sending thread is specified by its pthread_t. If the
specified sending thread has not attempted to send a message to current thread, the thread is
blocked until such time as the sender initiates a send operation to the current thread. However, if
the sender is blocked trying to send a message to the current thread, the message is immediately
received and the sender is woken up.

The timeout value is either zero or non-zero. A zero value means do not wait, but simply check
to see if a message from the sender is pending. A non-zero value means wait forever.

PARAMETERS

src: The pthread_t of the sending thread.

msg: The message buffer.

msg_size: The size of the message buffer, in bytes.

actual: The location in which to place the number of bytes received.

timeout: A timeout value. Currently only zero and non-zero values are legal. zero means no
wait, non-zero means wait forever.

378 CHAPTER 19. POSIX THREADS: LIBOSKIT-THREADS. A

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

19.5.3 oskit_ipc_wait: Receive a message from any thread
SYNOPSIS

#include <oskit/threads/pthread.h>
#include <oskit/threads/ipc.h>

oskit_error_t oskit_ipc_wait(pthread_t *src, void xmsg, oskit_size_t msg_size, oskit_size_t
*actual, oskit_s32_t timeout);

DESCRIPTION

This function operates identically to oskit_ipc_recv, except that the sending thread does not
need to be a specific thread. The first thread that attempts to send to the current thread will
succeed. The pthread_t of that thread is returned to the caller in src.

PARAMETERS

sre: The location in which to place the pthread_t of the sending thread.
msg: The message buffer.

msg_size: The size of the message buffer, in bytes.

actual: The location in which to place the number of bytes received.

timeout: A timeout value. Currently only zero and non-zero values are legal. zero means no
wait, non-zero means wait forever.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

19.5.4 oskit_ipc_call: make a synchronous IPC call to another thread
SYNOPSIS

#include <oskit/threads/pthread.h>
#include <oskit/threads/ipc.h>

oskit_error_t oskit_ipc_call(pthread t dst, void *sendmsg, oskit_size_t sendmsg_size,
void *recumsg, oskit_size_t recumsg_size, oskit_size_t *actual, oskit_s32_t timeout);

DESCRIPTION

Make a synchronous IPC call to another thread, and wait for a reply. The destination thread is
specified by its pthread_t. The sending thread is blocked until the receiving thread replies to the
IPC using oskit_ipc_reply. The send buffer and the reply buffer are specified separately, with
the actual number bytes contained in the reply returned in the location pointed to by actual.

19.5. INTERTHREAD COMMUNICATION 379

PARAMETERS

dst: The pthread_t of the destination thread.

sendmsg: The message buffer to send.

sendmsg_size: The size of the send message buffer, in bytes.

recvmsg: The message receive buffer.

recomsg_size: The size of the receive message buffer, in bytes.

actual: The location in which to place the number of bytes contained in the reply message.

timeout: A timeout value. Currently ignored.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

19.5.5 oskit_ipc_reply: reply to a synchronous IPC invocation
SYNOPSIS

#include <oskit/threads/pthread.h>
#include <oskit/threads/ipc.h>

oskit_error_t oskit_ipc_reply(pthread t src, void *msg, oskit_size_t msg_size);

DESCRIPTION

Reply to a synchronous IPC invocation made with oskit_ipc_call. The destination thread is
specified by its pthread t, and it must be blocked in a call operation, waiting for the reply
message. If the destination thread is canceled before the reply is made, this call with return
OSKIT_ECANCELED.

PARAMETERS

dst: The pthread t of the destination thread.
msg: The message buffer.

msg_size: The size of the message, in bytes.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

380 CHAPTER 19. POSIX THREADS: LIBOSKIT-THREADS. A

Chapter 20

Memory Debugging Utilities:
liboskit memdebug.a

20.1 Introduction

The Memory Debug Utilities Library is a set of functions which replace the standard OSKit memory allo-
cation functions, see Section 9.5, of the minimal C library. The replacement routines detect problems with
memory allocation, and can print out file and line information, along with a back-trace to the offending
allocation.

All of the standard functions are covered: malloc, memalign, calloc, realloc, free, and smalloc,
smemalign, and sfree.

To use the library, just include -1memdebug on the linker command line before the standard C library (or
wherever it is the standard allocation routines are coming from).

The memdebug library implements a fence-post style malloc debug library. It detects the following
problems:

e Over-runs and under-runs. Over-runs and under-runs of allocated memory blocks are detected by
“fence-posts” at each end of every allocated block of memory.

e Allocation/release style mismatches. Mismatches between malloc style and smalloc style allo-
cations and the respective free function are detected. This type of error is corrected by the library
and only a warning is printed.

e Memory use after it is free’d. Memory is wiped to a recognizable (nonzero) bit pattern on
allocation and when it is freed, to force bugs to show up when memory is used after it is freed. (See
below for which values are used where.)

e Incorrect size passed to sfree. The sfree size is checked against that used when the block is
created.

e free called on bad blocks. Freeing of blocks that were never allocated or were already released is
detected.

Whenever a problem is encountered a back-trace (in the form of program counter values) is dumped (back-
tracing from the allocation of the memory). File and line number information from where the allocation call
was made are also printed (if available). If the failure was detected in a call to free, the file and line of that
call are printed. This is called a “bogosity dump.”

When correctable errors are detected (e.g., sfree’ing a malloc’d block, or sfree’ing with the wrong size
block). the correct thing will be done, and the program will continue as normal (except for the bogosity
dump).

Note that file and line number information is only available if you’re using the macro wrappers for the
allocators defined in malloc_debug.h. The call stack trace is always available.

381

382 CHAPTER 20. MEMORY DEBUGGING UTILITIES: LIBOSKIT_MEMDEBUG . A

One of the shortcomings of the library is that errors are only detected during explicit calls into the
library, and not at the time that they happen. The memdebug_sweep function will check the validity of all
allocated blocks, and by judiciously sprinkling calls throughout your code you can narrow down memory
trashing problems. Similarly, the memdebug ptrchk function will run a sanity check on a single pointer.
Both functions, when printing “bogosity dumps” will also print the file and line at which they were called.

To help detect leaks of unfreed memory, use memdebug mark and memdebug _check. memdebug mark tags
all allocated blocks, and then memdebug_check will check for untagged blocks. In this way, you can “mark”
all blocks as okay and at a later point when all memory allocated after the mark should have been released,
insert a “check”. The library will print a bogosity dump for any allocation that is untagged.

To help detect accesses after memory is released, or accesses to uninitialized memory, the library sets all
bytes of an allocation to:

e Oxaa after an smalloc-style allocation.
e Oxbb after a malloc-style allocation.
e 0xdd after free.

e Oxee after sfree.

20.1.1 Memdebug Library Configuration

There are several configuration options in the library-private memdebug.h header file. The NO_MEM FATAL
#define controls whether errors in an allocation are fatal (via panic) or if they return 0. The #define
ALLOW_MORALLY_QUESTIONABLE PRACTICE controls the library’s handling of malloc(0) and free(NULL).
While both of these constructs are technically legal, they usually signal errors in the caller; the option
merely controls whether a message is printed or not. The MALLOC_O_RET_NULL option controls the behavior
of malloc(0), either returning NULL or returning a valid, unique (per-allocation) pointer.

20.1.2 Memdebug Library Internals

The default malloc and the provided memdebug alloc can have different policies. memdebug alloc uses the
LMM library directly to provide memory, in the same way as the default 1ibc malloc. But malloc can be
replaced, and memdebug_alloc will not change.

When allocating memory on small alignment boundaries, those boundaries will actually be bumped up to
the alignment necessary for the leading fence-post of the allocation. Thus, when running under memdebug
data may be aligned at a larger granularity than when running without memdebug.

All of the routines use memdebug printf to print all output. This function should always be defined
such that it guarantees that it will never cause any memory to be allocated. You should override this if you
cannot guarantee that vifprintf calls will not allocate memory.

The allocation management routines all call mem lock and mem unlock to protect access to the global
malloc_lmm. See the minimal C library’s section on Memory Allocation (Section 9.5) for more information
on these functions.

20.1.3 External Dependencies

The memdebug library uses several functions, and one global variable that it does not define. Outside of
memory allocation primitives, it uses panic for flagging internal consistency failures, and memset for wiping
swaths of memory. The default implementation of memdebug printf requires vprintf.

For memory allocation primitives, the memdebug library depends on 1mm alloc_aligned and lmm free
from the LMM library (see Section 16). The same LMM pool, malloc_lmm, used by the default implemen-
tations of malloc, et al is used by the memdebug library. Additionally, calls to mem_lock and mem unlock
are made around accesses to malloc 1lmm. A call to morecore is made when any allocation function returns
0. (morecore, mem lock, mem unlock, and the malloc_lmm are described in more detail in the Memory
Allocation section of the Minimal C Library chapter, Section 9.5.)

20.2. DEBUGGING VERSIONS OF STANDARD ROUTINES 383

20.2 Debugging versions of standard routines

The functions listed below are defined as macros in the header file oskit/memdebug.h, they are also defined as
simple wrappers in the library. The macro versions provide the library with file and line number information.
They are drop-in replacements for the allocation functions described in Section 9.5.

malloc: void *xmalloc(size_t size);

realloc: void *realloc(void *buf, size_t new_size);

calloc: void xcalloc(size t nelt, size_t elt_size);

memalign: void *memalign(size_t alignment, size_t size);
free: void free(void *buf);

smalloc: void *smalloc(size t size);

smemalign: void *smemalign(size_t alignment, size_t size);

sfree: void sfree(void *buf, size_t size);

384 CHAPTER 20. MEMORY DEBUGGING UTILITIES: LIBOSKIT_MEMDEBUG . A

20.3 Additional Debugging Utilities

These routines provide additional features useful for tracking down memory leaks and dynamic memory
corruption.

memdebug_mark: Mark all currently allocated blocks
memdebug_check: Look for blocks allocated since mark that haven’t been freed
memdebug_ptrchk: Check validity of a pointer’s fence-posts

memdebug_sweep: Check validity of all allocated block’s fence-posts
These routines are internal to the memdebug library, but may be worth overriding in your system.

memdebug_printf: A standard printf-style routine that can be guaranteed to not allocate any memory.
memdebug_bogosity: Dumps information about an allocation block when an error in the block is detected.

memdebug_store_backtrace: Stores a back-trace (the call-stack) in a provided buffer.

20.3.1 memdebug mark: Mark all currently allocated blocks.
SYNOPSIS

#include <oskit/memdebug.h>
void memdebug_mark(void);

DESCRIPTION

This function walks the list of all allocated objects and “marks” them. This is useful so that you
can determine what was allocated before a certain point in your program.

Objects only have one bit to keep track of marks, so calling memdebug mark more than once may
not have the effect you would like.

RELATED INFORMATION

memdebug_sweep

20.3.2 memdebug_check: Look for blocks allocated since mark that haven’t been
freed.

SYNOPSIS

#include <oskit/memdebug.h>
void memdebug_check(void);

DESCRIPTION
This functions walks the list of all allocated blocks and for each block that is not marked (by
memdebug mark, it prints a bogosity dump.

For example, at the beginning of a server loop call memdebug mark, then when the server loop
is about to iterate, call memdebug_check to make sure that the loop didn’t leave any allocated
objects lying about.

20.3. ADDITIONAL DEBUGGING UTILITIES 385

RELATED INFORMATION

memdebug_bogosity, memdebug mark

20.3.3 memdebug ptrchk: Check validity of a pointer’s fence-posts
SYNOPSIS

#include <oskit/memdebug.h>
int memdebug_ptrcheck(void* ptr);

DESCRIPTION

This function runs a host of sanity checks on a given pointer. Of course, these only work if the
pointer, ptr is one returned by a memdebug-wrapped allocator. For any errors a bogosity dump
is printed.

PARAMETERS

ptr: A pointer to a memory block allocated by some memdebug wrapped allocator.

RETURNS
Returns -1 if the fence posts are trashed so badly that the information in them cannot be trusted.
Returns 1 if there was a problem detected but it is not “fatal”. Returns 0 if everything is A-okay.
RELATED INFORMATION

memdebug_bogosity

20.3.4 memdebug_sweep: Check validity of all allocated block’s fence-posts
SYNOPSIS

#include <oskit/memdebug.h>
void memdebug_sweep(void);

DESCRIPTION

This function walks the list of all allocated blocks and calls memdebug_ptrchk on each entry.

RELATED INFORMATION

memdebug_ptrchk

20.3.5 memdebug printf: A printf-style routine guaranteed not to allocate mem-
ory

SYNOPSIS

#include <oskit/memdebug.h>
int memdebug_printf(const char *fmt, ...);

386 CHAPTER 20. MEMORY DEBUGGING UTILITIES: LIBOSKIT_MEMDEBUG . A

DESCRIPTION
Works just like standard libc printf, but this function must be guaranteed to not allocate any
memory while it runs.

PARAMETERS

fmt: The standard printf format string.

The standard printf arguments for the specific format string.

RETURNS

Returns the standard printf return value.

20.3.6 memdebug_bogosity: Prints a memdebug bogosity message
SYNOPSIS

#include <oskit/memdebug.h>
void memdebug_bogosity(memdebug mhead *head);

DESCRIPTION

Prints a bogosity dump given the first fence-post of an allocation. Uses memdebug printf for all
output.

This routine is called by all others in the library to dump information about an allocation.

PARAMETERS
head: The head fence-post for the given allocation. Contains the back-trace, file and line number
information, and allocation-style information.
RELATED INFORMATION

memdebug _printf

20.3.7 memdebug_store_backtrace: Stores call-stack trace in provided buffer
SYNOPSIS

#include <oskit/memdebug.h>
void memdebug_store_backtrace(unsigned *backtrace, int maz_len);

DESCRIPTION
Stores a machine-specific back-trace in the provided buffer. In conjunction with the object code
and the nm utility, the back-trace can provide a function call stack.

PARAMETERS

backtrace: A buffer of at least max _len unsigned ints.

mazx_len: Size of back-trace buffer.

Chapter 21

Profiling Support: liboskit gprof.a

21.1 Introduction

The gprof program and associated libc and kernel routines provide a mechanism to produce an execution
profile of an oskit-based kernel. The gprof program is linked right into the kernel, performing its data
reduction and analysis just before the kernel exits and producing output to the console device. See gprof(1)
for more information.

21.2 Caveats

The application to be profiled must be called “a.out”.

It is expected that the current behavior of generating ASCII output to the console device will be changed
in the future. For example, the interface might be modified to allow specification of an oskit_stream object
(Section 4) to which the binary “gmon.out” data would be written. Typically, this object would refer to a
persistent file or a network connection with another machine.

See Section 21.4 for line-by-line instructions on using gprof in the OSKit, including some non-obvious
linking magic.

21.3 API reference

21.3.1 profil: Enable, disable, or change statistical sampling
SYNOPSIS

#include <oskit/c/sys/gmon.h>
#include <oskit/c/sys/profile.h>

int profil(char *xsamples, int size, int offset, int scale);

DESCRIPTION

This function enables or disables the statistical sampling of the program counter for the kernel.
If profiling is enabled, at RTC clock tick (see below), the program counter is recorded in the
samples buffer. This function is most frequently called by moncontrol().

PARAMETERS

samples: A buffer containing size bytes which is divided into a number of bins. A bin represents
a range of addresses in which the PC was found when the profiling sample was taken.

size: The size in bytes of the samples array.

387

388 CHAPTER 21. PROFILING SUPPORT: LIBOSKIT-GPROF. A

offset: The lowest address at which PC samples should be taken. In the oskit, this defaults to
the location of the _start symbol.

scale: The scale determines the granularity of the bins. A scale of 65536 means each bin gets
2 bytes of address range. A scale of 32768 gives 4 byte, etc. A scale value of 0 disables
profiling.
RETURNS

Returns 0 if all is OK, or -1 on error. Sets errno to the reason for failure.

21.3.2 moncontrol: enable or disable profiling
SYNOPSIS

#include <oskit/c/sys/gmon.h>
#include <oskit/c/sys/profile.h>

void moncontrol(int mode);

DESCRIPTION

If mode is non-zero (true), enables profiling. If mode is zero, disables profiling.

PARAMETERS

mode: Determines if profiling should be enabled or disabled

21.3.3 monstartup: Start profiling for the first time
SYNOPSIS

#include <oskit/c/sys/gmon.h>

#include <oskit/c/sys/profile.h>

void monstartup(unsigned long *lowpc, unsigned long *highpc);

DESCRIPTION

monstartup initiates profiling of the kernel; it should only be called once. Note that by default,
monstartup is called by basemultiboot main when profiling is enabled with configure. If you
wish to delay profiling until a later time, disable the monstartup call in base multiboot main,
and place your own call to monstartup later in your code.

PARAMETERS

lowpe: The lowest address for which statistics should be collected. Usually the location of the
_start symbol.

highpc: The highest address for which statistics should be collected. Usually the location of the
etext (end of text segment) symbol.

21.4. USING GPROF 389

21.4 Using gprof

1. Configure your sources with —enable-profiling
2. When you link your program, link against:

(a) the _p versions of all libraries you would normally use
(b) the .po versions of all .o files you would use ezcept crtn.o and multiboot.o (if you use them)

(c) Insert “-loskit_gprof -loskit kern p -loskit_c_p” immediately after the existing
“~loskit kernp -loskit_c_p.” That’s right, another instance of the kern and C libs. If
you use the FreeBSD C library, do the analogous thing. If the above doesn’t work, try including
the libs more times (yes, this is bogus).

(d) Be sure to include the following libraries:

e oskit_dev.p

e oskit_lmm_p

3. Run mkbsdimage multiboot_kernel multiboot_kernel:a.out
or
mkmbimage multiboot_kernel multiboot_kernel:a.out

This step is necessary so gprof can access the kernel’s symbol table via the bmodfs.
4. Run the kernel (if created as above, it would be named Image).

5. Profiling output will be spit out at its exit.

21.5 Files

e gprof/* The gprof directory contains the files necessary for the gprof program itself.
e libc/gmon/gmon.c contains moncontrol() and monstartup().
e libc/gmon/mcount.c contains the C-language _mcount routine.

e libc/x86/mcount_md.S contains the asm routines which are linked into functions compiled with -pg
(mcount for C-language functions). The __mcount routine must be called manually by your assembly
functions, though this call is handled automatically if you use the ENTRY () macro.

e oskit/c/sys/gmon.h
e oskit/c/sysprofile.h The profiling headers.

e kern/x86/pc/profil.c The profil() system call (architecture-dependent).

21.6 Changing parameters and other FAQs

21.6.1 The sampling rate

The default sampling rate is 8192 Hz, using the RTC as the source of the sampling interrupts. You can
adjust this by modifying one #define in gmon.h:

Redefine #define PROFHZ xxxx to the sampling rate.

The rate you select must be a power of 2 between 128 and 8192.

21.6.2 How can I temporarily disable gprof’s output while still linking it in?

in base_console.c, change int enable_gprof = 1; to = 0.

390 CHAPTER 21. PROFILING SUPPORT: LIBOSKIT-GPROF. A

21.6.3 Why isn’t there a command line option for it?

The FreeBSD boot manager won’t pass in the -p flag.

21.6.4 Why don’t my assembly routines register properly with mcount?

You need to hand-code stubs for them which call __mcount. Sorry. The compiler only autogenerates the
_mcount stubs for C routines. The call to __mcount is performed for you if you use the oskit ENTRY()
macro.

21.6.5 Why is the call graph wrong when a routine was called from an assembly
function?

If you don’t use one of the oskit ENTRY macros, then your function’s symbol may not be declared properly.
If you want to do it by hand, then declare the symbol:

.globl symbol_name
.type symbol_name,@function

Note that this is taken care of for you by the macros in asm.h if you simply declare a function with
ENTRY (x) or NON_GPROF_ENTRY (x).

21.6.6 What will gprof break?

Gprof takes over the RTC (irq 8). If you have code which uses the oskit interrupt request mechanism to
grab irq 8, it won’t work. If your code just steals irq 8 by replacing the interrupt handler for it, you’ll break

gprof.
Gprof installs some atexit handlers for the kernel 'main’. These are installed in base_ multiboot main.c.

Chapter 22

Disk Partition Interpreter:
liboskit diskpart.a

22.1 Introduction

The OSKit includes code that understands the various partitioning schemes used to divide disk drives into
smaller pieces for use by filesystems. This code enables the use of various (possibly nested) partitioning
schemes in an easy manner without requiring knowledge of which partitioning scheme was used, or how
these partitioning schemes work. E.g., you don’t need to understand or know the format of a VTOC to use
the partitioning, as the library does all of it for you.

22.2 Supported Partitioning Schemes
Supported partitioning schemes are:

e BSD Disklabels

e IBM-PC BIOS/DOS partitions (including logical)

e VTOC labels (Mach).

¢ OMRON and DEC label support based on old Mach code is provided, although it is completely
untested.

22.3 Example Use

22.3.1 Reading the partition table

This shows how the partitioning information can be extracted in user-mode (running under Unix). In the
kernel, it would likely be necessary to pass a driver_info structure to a device-specific read function. In
this case, driver_info is simply a filename string.

/* This is the testing program for the partitioning code. */
#include <oskit/diskpart/diskpart.h>

#include <stdio.h>

#include <fcntl.h>

#define FILENAME "/dev/sdOc"

/* We pass in a fixed-size table; this defines how big we want it. */

391

392 CHAPTER 22. DISK PARTITION INTERPRETER: LIBOSKIT_DISKPART. A

#define MAX_PARTS 30
diskpart_t part_array[MAX_PARTS];

/*

In this case, we are defining the disk size to be 10000 sectors.
Normally, this would be the number of physical sectors on the
disk. If the ‘disk’ is a ‘file’, it would be better to get the
equivalent number of sectors from the file size.

This is only used to fill in the whole-drive partition entry.

* X X X X

*/
#define DISK_SIZE 10000

/%

* This is the function pointer I pass to the partition code
* to read sectors on the drive.

*/

int my_read_fun(void *driver_info, int sector, char *buf);

int
main(int argc, char *argv([])
{

int numparts;

char *filename;

if (argc == 2)
filename

argv[1];
else
filename = FILENAME;

/* call the partition code */
numparts = diskpart_get_partition(filename, my_read_fun, part_array,
MAX_PARTS, DISK_SIZE);

printf ("%d partitions found\n",numparts);
/* diskpart_dump(part_array, 0); */

static int
my_read_fun(void *driver_info, int sector, char *buf)
{

char *filename = driver_info;

int fd = open(filename, 0_RDONLY, 0775);
lseek(fd, SECTOR_SIZE * sector, SEEK_SET);
read (fd, buf, SECTOR_SIZE);

close(fd);

/* Should bzero the result if read error occurs */
return(0) ;

22.4. RESTRICTIONS 393

22.3.2 Using Partition Information

The routine diskpart_lookup_bsd_compat is an example of how the old partition naming can be used even
with the new nested structure. This takes two integers representing the slice and partition. The behavior is
intended to be similar to diskpart_lookup_bsd_string (below), using integers as parameters.

While this ‘hack’ allows two levels of nesting (slice and partition), it is not general enough to support
arbitrary nesting. Arbitrary nesting support is most easily achieved by passing string names to a lookup
function which can follow the structure down the partition specifications. For example, ‘sdOeab’ would be
used to specify the second partition in the first partition inside the fifth top-level partition on the first SCSI
disk. Since the lookup routine doesn’t need to know about the disk, ‘eab’ would be the partition name
passed to the lookup routine. This naming scheme would work well as long as there are not more than 26
partitions at any nesting layer.

diskpart_lookup_bsd_string does a string lookup using the FreeBSD style slice names. FreeBSD con-
siders the DOS partitioning to be slices. A slice can contain a BSD disklabel, and if it does, then partitions
can be inside the slice. If the third DOS partition contains a disklabel, then ‘s3a’ would be partition ‘a’
inside the disklabel. The slice name without a partition would mean the entire slice. Note also that ‘a’ would
alias to partition ‘a’ in the first BSD slice. If there is no BSD slice, then ‘a’ would be aliased to ‘s1’ instead.
However, to avoid confusion, if slice-naming is used, aliases should only be used to point inside a BSD slice.

22.4 Restrictions

This is a list of known restrictions/limitations of the partitioning library.

22.4.1 Endian

The partitioning code only recognizes labels created with the same endian-ness as the machine it is running
on. While it is quite possible to detect an endian conflict and interpret the information in the label, the
information stored in the partitions will probably not be very useful, as most filesystems expect the numeric
representations to remain constant.

22.4.2 Nesting

Strict nesting, in which a child is not allowed to extend outside the parent, is not enforced, or even checked
by the library. This allows greater flexibility in the use of nested partitions, while also placing greater respon-
sibility on the user’s shoulders to ensure that the partition information on the disk is correct. Enforcement
of strict nesting, should it be desired, is left to the user.

Due to previous constraints, the search routine does not yet do a recursive search for all possible nestings,
although all ‘sensible’ ones are searched manually. This is a change that will be incorporated as soon as
nesting of this type exists and it can be utilized by something.

22.4.3 Lookup

A general lookup routine is not yet part of the library. The diskpart_lookup routine is only able to do one
layer of nesting. More general support may be added in the future, or it may be left to the user to determine
a naming scheme to access the subpartitions.

Also, the lookup routines currently assume a sector size of 512 bytes.

22.5 API reference

22.5.1 diskpart_get_partition: initialize an array of partition entries
SYNOPSIS

#include <oskit/diskpart/diskpart.h>

394 CHAPTER 22. DISK PARTITION INTERPRETER: LIBOSKIT_DISKPART. A

int diskpart_get_partition(void *driver_info, int (*diskpart_read_func)(), struct diskpart
*array, int array_size, int disk_size);

DESCRIPTION

This function initializes an array of struct diskpart entries. The caller must provide a pointer
to a struct diskpart array, and a function to read the disk.

PARAMETERS

driver_info: A pointer to an initialized structure of user-defined type which is passed unmodified
to diskpart_read_func.

diskpart_read_func: A function pointer provided by the user which can read a sector given
driver_info.

array: Array of struct diskpart.
array-size: integer containing the number of allocated entries in the array.

disk_size: Size of the whole disk, in sectors.

RETURNS

Returns an integer count of the number of partition entries that were filled by the library. If
there were more partitions found than space available, this will be array_size. Empty partitions
(unused entries in a BSD disklabel, for example) occupy an entry the same as ‘used’ entries.

For example, a PC-DOS partition with a single filled entry would still report 4 partitions, as that
is the size of the DOS partition table.
RELATED INFORMATION

diskpart_read func

22.5.2 diskpart_read func: read a disk sector (user-provided callout)
SYNOPSIS

#include <oskit/diskpart/diskpart.h>
int diskpart_read_func(void *driver_info, int sector, char *buf);

DESCRIPTION

This function is called from diskpart_get_partition and diskpart_get_type whenever they
need to read data from the target disk.

PARAMETERS

driver_info: The parameter passed to diskpart_get_partition and diskpart_get_type. Used
to pass data through the diskpart library to this read routine.

sector: The sector to read.

buf: Memory location where the sector should be read in to. The buffer must be at least
SECTOR_SIZE bytes.

RETURNS

Returns zero on success, non-zero to indicate an error.

22.5. API REFERENCE 395

22.5.3 diskpart_blkio_get_partition: initialize an array of partition entries
SYNOPSIS

#include <oskit/diskpart/diskpart.h>

int diskpart_blkio_get_partition(oskit blkio t *block_io, struct diskpart *array,
int array_size);

DESCRIPTION
This function initializes an array of struct diskpart entries. The caller must provide a pointer
to a struct diskpart array.

This function is a version of diskpart_get_partition using an OSKit “Block I/O” interface in
place of an explicit callback function.

PARAMETERS

block_io: An oskit_blkio_t that represents the disk whose partitions we are interested in.
array: Array of struct diskpart.

array-size: integer containing the number of allocated entries in the array.

RETURNS

Returns an integer count of the number of partition entries that were filled by the library. If
there were more partitions found than space available, this will be array_size. Empty partitions
(unused entries in a BSD disklabel, for example) occupy an entry the same as ‘used’ entries.

For example, a PC-DOS partition with a single filled entry would still report 4 partitions, as that
is the size of the DOS partition table.

RELATED INFORMATION

The OSKit Block I/O Interface (section 5.3).

22.5.4 diskpart_fill entry: initialize a single partition entry
SYNOPSIS

#include <oskit/diskpart/diskpart.h>

void diskpart_fill entry(struct diskpart *array, int start, int size, struct diskpart
*xsubs, int nsubs, short type, short fsys);

DESCRIPTION

This function initializes a single partition entry.

PARAMETERS

array: Pointer to the struct diskpart entry to be filled

start: Starting sector on the disk for the partition.

size: Number of sectors in the partition.

subs: Pointer to its first child partition.

nsubs: Number of sub-partitions.

type: Partition type, as defined in diskpart.h

fsys: Filesystem in the partition (if known), as defined in diskpart.h

396 CHAPTER 22. DISK PARTITION INTERPRETER: LIBOSKIT_DISKPART. A

22.5.5 diskpart_dump: print a partition entry to stdout
SYNOPSIS

#include <oskit/diskpart/diskpart.h>
void diskpart_dump(struct diskpart *array, int level);

DESCRIPTION

This function prints a partition entry with indentation and labeling corresponding to its nesting
level. It also recursively prints any child partitions on separate lines, with level+1.

This provides valuable diagnostic messages for debugging disk or filesystem problems.

PARAMETERS

array: A pointer to the first entry to be printed. It and any sub-partitions are printed.

level: int representing current level. This controls indentation and naming of the output.
diskpart_dump called with the root struct diskpart entry and 0 will print the entire
table.

RETURNS

Returns nothing, but does write to stdout.

22.5.6 diskpart_lookup_bsd_compat: search for a partition entry
SYNOPSIS

#include <oskit/diskpart/diskpart.h>

struct diskpart xdiskpart_lookup_bsd_compat(struct diskpart *array, short slice,
short part);

DESCRIPTION

This function is a sample lookup routine which finds a partition given a slice number and partition
number.

This demonstrates how a two-level naming scheme can be implemented using integers. This
was first used in Mach 4 (UK22) to provide support for FreeBSD slices as well as backwards-
compatibility with previous naming methods.

PARAMETERS

array: This should be the pointer to the start of the array.

slice: Slice 0 is used as a ‘compatibility slice’, in that it is aliased to a BSD partition, if it exists.
This allows users to not specify the slice for compatibility.

part: Partition 0 is used to represent the whole slice, and Partition 0, Slice 0 is the whole drive.

RETURNS

Returns a pointer to the corresponding partition entry, or zero if it is invalid.

22.5. API REFERENCE 397

22.5.7 diskpart_lookup_bsd_string: search for a partition entry
SYNOPSIS

#include <oskit/diskpart/diskpart.h>
struct diskpart *diskpart_lookup_bsd_string(struct diskpart *array, char *name);

DESCRIPTION

This function is a sample lookup routine which finds a partition given a FreeBSD style slice
string. If no slice number is given, it defaults to the first BSD partition, and then to the whole
disk if no BSD partition is found.

PARAMETERS

array: This should be the pointer to the start of the array.
name: A case-insensitive, NULL-terminated, ASCII string containing an optional Slice specifier
followed by an optional partition. [s<num>][<part>], where part is a valid partition in the
BSD slice specified by num (or default).
RETURNS

Returns a pointer to the corresponding partition entry, or zero if it is invalid.

22.5.8 diskpart_blkio_lookup_bsd_string: search for a partition entry
SYNOPSIS

#include <oskit/diskpart/diskpart.h>

struct diskpart *diskpart_blkio_lookup_bsd_string(struct diskpart *array, char
*name, oskit _blkio_t *block_io, [out] oskit_blkio_t **out_block_io);

DESCRIPTION

This is similar to (and uses) diskpart_lookup_bsd_string but returns an OSKit “Block I/0”
interface for the partition; i.e., operations on the returned oskit_blkio_t are restricted to the
bounds of the partition.

PARAMETERS

array: This should be the pointer to the start of the array.

name: A case-insensitive, NULL-terminated, ASCII string containing an optional Slice specifier
followed by an optional partition. [s<num>][<part>], where part is a valid partition in the
BSD slice specified by num (or default).

block_io: The oskit_blkio_t whose partitions we are interested in.

out_block_io: A pointer to the new oskit_blkio_t.

RETURNS

Returns a pointer to the corresponding partition entry, or zero if it is invalid.

RELATED INFORMATION

diskpart_lookup.bsd _string, the OSKit Block I/O Interface (section 5.3).

398 CHAPTER 22. DISK PARTITION INTERPRETER: LIBOSKIT_DISKPART. A

22.5.9 diskpart_get_type: Search for type type partitions
SYNOPSIS

#include <oskit/diskpart/diskpart.h>

int diskpart_get_type(struct diskpart *array, char *buf, int start, void *driver_info,
int (*diskpart-read_func)(), int max_part);

DESCRIPTION

This function finds type type partitions if they are on the disk. These routines would not normally
be invoked directly. However, the API is documented here so that diskpart_lookup can be
extended easily for future or additional labeling schemes.

Currently defined functions are: pcbios, disklabel, vtoc, dec, and omron.

They should return immediately if diskpart_read func returns non-zero, and return that error
code.

PARAMETERS

array: Pointer to the start of preallocated storage.
buf: Pointer to a sector-sized scratch area.
start: Offset from start of disk the partition starts.

driver_info: A pointer to an initialized structure of user-defined type which is passed unmodified
to diskpart_read_func.

diskpart_read_func: A function pointer provided by the user which can read a sector given
driver_info.

maz_part: Maximum number of partition entries that can be filled. This will generally be equal
to the number of pre-allocated entries that are available.
RETURNS

Returns the number of partition entries of that type found. If none were found, it returns 0.

If the return value is equal to max_part then it is possible that there were more partitions than
space for them. It is up to the user to ensure that adequate storage is passed to diskpart_get partitions.

RELATED INFORMATION

diskpart_read func

Chapter 23

File System Reader:
liboskit fsread.a

23.1 Introduction

The fsread library provides simple read-only access to Linux ext2fs, BSD FFS, and MINIX filesystems and
is useful for small programs, such as boot loaders, that need to read files from the local disk but don’t have
the space for or need the features of the larger OSKit filesystem libraries.

Typically this library is used with the disk partitioning library (Section 22) and one of the driver libraries.

23.2 External dependencies

This depends on several memory and string routines from the OSKit C library, more specifically it depends
on

e free, malloc
® memcpy, memmove, memset
e oskit blkio_iid, oskit_iunknown_iid

e strcmp, strcpy, strncpy

23.3 Limitations

e Absolute symbolic links are interpreted relative to the root of the FS, since the FS readers have no
notion of a “global root.”

e For ext2fs, the “sb” mount option is not supported, the super block is assumed to be at block 1.

e The MINIX support has not been tested in the OSKit. but worked in a previous incarnation in Mach.

23.4 API reference

Each of these functions takes an oskit_blkio_t (Section 5.3) interface to the underlying device and a
pathname relative to the root directory of the file system, and if the specified file can be found, returns
an oskit_blkio_t object that can be used to read from that file. The blkio object returned will have a
block size of 1, meaning that there are no alignment restrictions on file reads. The blkio object passed,
representing the underlying device, can have a block size greater than 1, but if it is larger than the file
system’s block size, file system interpretation will fail. Also, any absolute symlinks followed during the open
will be interpreted as if this is the root file system.

399

400 CHAPTER 23. FILE SYSTEM READER: LIBOSKIT FSREAD. A

23.4.1 fsread open: Open a file on various filesystems
SYNOPSIS

#include <oskit/fs/read.h>
oskit_error_t fsread _open(oskit_blkio_t *device, const char *path, [out] oskit_blkio_t

*xout_file);
DESCRIPTION

Tries to open a file named by path in the filesystem on device. If successful, returns a blkio into
out_file that can be used to read the file.

This function is just a wrapper that calls the various filesystem-specific fsread functions, failing
if none of them recognize the filesystem.
PARAMETERS

device: An oskit blkio_t (Section 5.3) representing a device containing a filesystem.

path: A pathname indicating an existing file to open. This pathname is taken relative to the
root of the filesystem

out_file: Upon success, this is set to an oskit _blkio_t that can be used to read from the file.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

23.4.2 fsread FSTYPE open: Open a file on the FSTYPE filesystem
SYNOPSIS

#include <oskit/fs/read.h>
oskit_error_t fsread FSTYPFE open(oskit blkio t *device, const char *path, [out]

oskit_blkio_t **out_file);
DESCRIPTION

Tries to open a file named by path in the FSTYPE filesystem on device. If successful, returns a
blkio into out_file that can be used to read the file.

FSTYPE can be one of ext2, ffs, minix.

PARAMETERS

device: An oskit_blkio_t (Section 5.3) representing a device containing a FSTYPE filesystem.

path: A pathname indicating an existing file to open. This pathname is taken relative to the
root of the filesystem

out_file: Upon success, this is set to an oskit_blkio_t that can be used to read from the file.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

Chapter 24

Executable Program Interpreter:
liboskit_exec.a

The OSKit provides a small library that can recognize and load program executables in a variety of formats.
It is analogous to the GNU Binary File Descriptor (BFD) library, except that it only supports loading linked
program executables rather than general reading and writing of all types of object files. For this reason, it
is much smaller and simpler than BFD.

Furthermore, as with the other OSKit components, the executable interpreter library is designed to be
as generic and environment-independent as possible, so that it can readily be used in any situation in which
it is useful. For example, the library does not directly do any memory allocation; it operates purely using
memory provided to it explicitly. Furthermore, it does not make any assumptions about how a program’s
code and data are to be written into the proper target address space; instead it uses generic callback functions
for this purpose. All of the library functions are pure, not containing or relying on any global shared state.

All of the executable loading functions take pointers to two callback functions as parameters; the library
calls these functions, which the client OS must provide, to load data from the executable and map or copy
it into the address space of the program being loaded. Since all loading is done through these callback
functions, the OSKit’s executable interpreter code can be used to load executables either into the same
address space as the program currently running (e.g., loading a kernel from a boot loader) or into a different
address space. The prototypes and semantics of these callback functions are defined below, in Section 24.2.

401

402 CHAPTER 24. EXECUTABLE PROGRAM INTERPRETER: LIBOSKIT EXEC.A

24.1 Header Files

This section describes the header files provided with the OSKit’s executable interpreter library. For normal
use of the library, only exec.h is needed; however, the other headers are provided as a convenience for clients
that need to do their own executable interpretation.

24.1.1 exec.h: definitions for executable interpreter functions
DESCRIPTION

This header file contains all the function prototypes for the executable loading functions described
below, and all other symbol definitions required to use the executable program interpreter func-
tions. Ths exec.h header file also defines the following error codes, returned from the executable
loading functions:

EX_NOT_EXECUTABLE: Indicates that the file is not in any recognized executable format.

EX_WRONG_ARCH: Indicates that the file is in a recognized executable file format, but it is an
executable for a different processor architecture.

EX_CORRUPT: Indicates that the file appears to be an executable file in a recognized format, but
something is seriously wrong with it (e.g., the file was truncated or mangled).

EX BAD LAYQUT: Indicates that something is wrong with the memory or file image layout de-
scribed by the executable file.

24.1.2 a.out.h: semi-standard a.out file format definitions
DESCRIPTION

This header file defines a set of structures and symbols describing a.out-format object and
executable files. Since the a.out format is extremely nonstandard and varies widely even across
different operating systems for the same processor architecture, this header file only provides a
minimal, “least-common-denominator” set of definitions that applies to all the a.out variants
we know of. Therefore, actually interpreting a.out files requires considerably more information
than is provided in this header file; for more information, see the source code for the OSKit’s
a.out interpreter, in exec/x86/aout.c.

An a.out file contains a simple fixed-size header, represented by the following structure:

struct exec {

unsigned long amagic; /* Magic number */
unsigned long a_text; /* Size of text segment */
unsigned long a data; /* Size of initialized data */
unsigned long a bss; /* Size of uninitialized data */
unsigned long a_syms; /* Size of symbol table */
unsigned long a_entry; /* Entry point */
unsigned long a trsize; /* Size of text relocation */
unsigned long a.drsize; /* Size of data relocation */

};
The a_magic field typically contain one of the following traditional magic numbers:
OMAGIC: Used for relocatable object files (.0’s).

NMAGIC: Originally used for executable files before demand-loading; current systems generally
no longer use this.

ZMAGIC: This is the standard magic number for demand-loadable executable files; however, the
exact meaning of this magic number varies from system to system.

24.1. HEADER FILES 403

QMAGIC: An alternate demand-loadable format, in which the a.out header itself is actually part
of the text segment.

In addition, this header defines the nlist structure which describes the format of a.out symbol
table entries:

struct nlist {

long n_strx; /* Offset of symbol name in the string table */
unsigned char n_type; /* Symbol/relocation type */
char n_other; /* Miscellaneous info */
short n_desc; /* Miscellaneous info */
unsigned long n.value; /* Symbol value */

b

24.1.3 elf.h: standard 32-bit ELF file format definitions
DESCRIPTION

This header file contains a number of structure and symbol definitions describing the data struc-
tures used in ELF files. Since these names and their meanings are fairly well standardized, they
are not described here; instead, see the ELF specification for details.

404 CHAPTER 24. EXECUTABLE PROGRAM INTERPRETER: LIBOSKIT EXEC.A

24.2 Types

This section describes the types and other symbols which the client OS must interact with in order to use
the executable interpreter library. These symbols are defined in oskit/exec/exec.h.

24.2.1 exec_read_func_t: executable file reader callback
SYNOPSIS

#include <oskit/exec/exec.h>

typedef int exec_read_func_t(void *handle, oskit_addr_t file_ofs, void *buf, oskit_size_t
size, [out] oskit_size_t *actual);

DESCRIPTION

This type describes the function prototype of the read callback function which the client OS
must supply to the executable interpreter; it is used by the executable interpreter library to read
“metadata” from the executable file such as the executable file’s header (as opposed to the actual
executable data itself). It is basically analogous in purpose and semantics to the standard POSIX
read function.

PARAMETERS

handle: This is simply the opaque pointer value originally passed by the client in the call to
the executable interpreter; the client’s callbacks typically use it to locate any state relevant
to the executable being loaded. The actual use or meaning of this parameter is completely
opaque to the executable interpreter library.

file_ofs: This parameter indicates the offset in the file at which to start reading.
buf: The buffer into which to read data.

size: The maximum amount of data to read from the file. Less than this much data may be
read if end-of-file is reached during the read.

actual: The client callback returns the amount of data actually read in this parameter. It should
be equal to the requested size unless the end-of-file was reached.

RETURNS

Returns 0 on success, or an error code on failure. The error code may be either one of the EX_
error codes defined in exec.h, or it may be a caller-defined error code, which the executable
interpreter code will simply pass directly back through to the original caller.

24.2.2 exec_read_exec_func_t: executable file reader callback
SYNOPSIS

#include <oskit/exec/exec.h>

typedef int exec_read_exec_func_t(void *handle, oskit_addr_t file_ofs, oskit_size_t
file_size, oskit_addr_t mem_addr, oskit_size_t mem_size, exec_sectype_t section_type);

24.2. TYPES 405

DESCRIPTION

This type describes the function prototype of the read_exec callback function which the client
OS must supply to the executable interpreter; it is used by the executable interpreter library to
read actual executable code and data from the executable file to be copied or mapped into the
loaded program’s image. It is also used to indicate to the client where debugging information
can be found in the executable, and what format it is in. The executable interpreter generally
calls this function once for each “section” it finds in the executable file, indicating where in the
executable file to load or map from and where in the resulting program image to copy or map
to. The actual executable data itself never actually “passes through” the generic executable
interpreter itself; instead, the interpreter merely “directs” the loading process, giving the client
OS ultimate flexibility in the way the loading is performed. In fact, the client’s callback function
does not even necessarily need to “load” the executable: for example, if the client merely wants
to determine the memory layout described by the executable file, it can provide a callback that
does not actually load anything but instead just records the information passed by the executable
interpreter.

Note that not all sections in an executable file are necessarily relevant to the loaded program image
itself: for example, the executable interpreter also calls this callback when it encounters debug
sections that the client may be interested in. Therefore, to avoid choking on such sections, the
client’s implementation of this callback function should always check the section_type parameter
and ignore sections for which EXEC_SECTYPE_ALLOC is not set and it doesn’t otherwise know how
to deal with.

PARAMETERS

handle: This is simply the opaque pointer value originally passed by the client in the call to
the executable interpreter; the client’s callbacks typically use it to locate any state relevant
to the executable being loaded. The actual use or meaning of this parameter is completely
opaque to the executable interpreter library.

file_ofs: This parameter indicates the offset in the file at which the section’s data begins. This is
only valid for sections that have file data: for example, for BSS sections, which are allocated
but not loaded, this parameter is undefined.

file_size: Size of the section’s data in the executable file, or zero for sections that have no file
data, such as BSS sections.

mem_addr: The address in the loaded program’s address space at which this section should
be loaded. This address is found in or deduced from the executable file’s metadata, and
generally indicates the address for which this section of the program was linked. For sections
that are not allocated in the program image (sections without the EXEC_SECTYPE_ALLOC flag),
this parameter is undefined and should be ignored.

mem._size: The amount of memory to allocate for this section in the loaded program’s address
space. This is usually equal to file_size, but may be larger, in which case the remaining
portion of the section past the end of the data actually loaded from the file must be initialized
to zero.

section_type: Indicates the type of this section; it is a mask of the flag bits described below in
Section 24.2.3.

RETURNS

Returns 0 on success, or an error code on failure. The error code may be either one of the EX_
error codes defined in exec.h, or it may be a caller-defined error code, which the executable
interpreter code will simply pass directly back through to the original caller.

406 CHAPTER 24. EXECUTABLE PROGRAM INTERPRETER: LIBOSKIT EXEC.A

24.2.3 exec_sectype_t: section type flags word
SYNOPSIS

#include <oskit/exec/exec.h>

typedef int exec_sectype_t;

DESCRIPTION

The following flag definitions describe the section_type value that the executable program
interpreter library passes back to the client in the read_exec callback:

EXEC_SECTYPE READ: Indicates that the pages into which this section is loaded should be given
read permission.

EXEC_SECTYPE WRITE: Indicates that the pages into which this section is loaded should be given
write permission.

EXEC_SECTYPE EXECUTE: Indicates that the pages into which this section is loaded should be
given execute permission.

EXEC_SECTYPE PROT_MASK: This is a bit mask containing the above three bits; it can be used to
isolate the protection information in the section type flags word.

EXEC_SECTYPE_ALLOC: This bit indicates that this section’s virtual address range is valid and
the corresponding region should be allocated in the loaded program’s virtual address space.
Most normal program sections include both EXEC_SECTYPE_ALLOC and EXEC_SECTYPE_LOAD,
indicating that the section should be allocated and loaded. However, a section with only
EXEC_SECTYPE_ALLOC corresponds to an uninitialized data or “BSS” section: the section’s
address range is allocated and zero-filled. Sections that don’t include EXEC_SECTYPE_ALLOC
typically contain debugging, symbol table, relocations, or other information not normally
loaded with the program.

EXEC_SECTYPE_LOAD: This bit indicates that at least some of the section’s virtual address range
should be initialized by loading it from the executable program image, as specified in the
file_ofs and file_size parameters to the read_exec function above. Implies EXEC_SECTYPE_ALLOC.

EXEC_SECTYPE DEBUG: Indicates that this section contains debugging information, such as symbol
table or line number information. The specific type of debugging information it contains is
indicated by other bits defined below.

EXEC_SECTYPE_AOUT_SYMTAB: Indicates that this section is the symbol table section from an
a.out executable. Implies EXEC_SECTYPE _DEBUG.

EXEC_SECTYPE_AQUT_STRTAB: Indicates that this section is the string table section from an a.out
executable. Implies EXEC_SECTYPE _DEBUG.

24.2.4 exec_info_t: executable information structure
SYNOPSIS

#include <oskit/exec/exec.h>

struct exec_info {

exec_format_t format; /* Executable file format */
oskit_addr t entry; /* Entrypoint address */
oskit_addr_t init.dp; /* Initial data pointer */

}; typedef struct exec_info exec_info_t;

24.2. TYPES 407

DESCRIPTION

Each of the executable interpreter functions described below fills in a caller-provided structure
of this type after successfully loading an executable. This structure contains miscellaneous in-
formation about the executable: in particular, information needed to actually start the program
running.

format: The file format in which the executable was expressed.

entry: The entrypoint address of the executable, which is where it should start running.

init_dp: This value is only relevant on some architectures (and in particular not the x86); it is
a secondary address, typically loaded into another processor register when the program is
started and used as a “data pointer” for accessing global data.

408 CHAPTER 24. EXECUTABLE PROGRAM INTERPRETER: LIBOSKIT EXEC.A

24.3 Function Reference

This section describes the actual functions exported to the client OS by the executable interpreter library,
liboskit_exec.a.

24.3.1 exec_load: detect the type of an executable file and load it
SYNOPSIS

#include <oskit/exec/exec.h>

int exec_load(exec_read func_t *read, exec_read exec_func_t *read_evec, void *handle,
[out] exec_info_t *info);

DESCRIPTION

This is the primary entrypoint to the executable interpreter: it automatically detects the type
of an executable file and loads it using the specified callback functions. This function simply
calls, in succession, each of the format-specific executable loader functions that apply to the
architecture for which the OSKit was compiled, until one succeeds or returns an error other than
EX_NOT_EXECUTABLE.

PARAMETERS

read: Specifies the metadata reader callback function, as described in Section 24.2.1.
read_exec: Specifies the executable data reader callback function, as described in Section 24.2.2.

handle: An opaque pointer value which the executable interpreter simply passes through to the
callback functions.

info: A pointer to an exec_info structure which the executable interpreter will fill with infor-
mation about the loaded executable.

RETURNS

Returns 0 on success, or an error code on failure. The error code may be either one of the EX_
error codes defined in exec.h, or it may be a caller-defined error code returned by one of the
callback functions and passed through to the client.

24.3.2 exec_load_elf: load a 32-bit ELF executable file
SYNOPSIS

#include <oskit/exec/exec.h>

int exec_load_elf(exec_read func_t *read, exec read_exec_func_t *read_ezec, void *han-
dle, [out] exec_info_t *info);
DESCRIPTION

This function recognizes, interprets, and loads executables in the ELF (Executable and Linkable
File) format.

24.3. FUNCTION REFERENCE

PARAMETERS

read: Specifies the metadata reader callback function, as described in Section 24.2.1.

read_ezec: Specifies the executable data reader callback function, as described in Section 24.2.2.

handle: An opaque pointer value which the executable interpreter simply passes through to the
callback functions.

info: A pointer to an exec_info structure which the executable interpreter will fill with infor-
mation about the loaded executable.

RETURNS

Returns 0 on success, or an error code on failure. The error code may be either one of the EX_
error codes defined in exec.h, or it may be a caller-defined error code returned by one of the
callback functions and passed through to the client.

24.3.3 exec_load_aout: load an a.out-format executable file
SYNOPSIS

#include <oskit/exec/exec.h>

int exec_load_aout(exec_read func_t *read, exec_read_exec_func_t *read_evec, void *han-
dle, [out] exec_info_t *info);

DESCRIPTION

This function recognizes, interprets, and loads executables in the traditional Unix a.out file
format. Unfortunately, there are many variants of the a.out format, even on a single proces-
sor architecture, each with similar but incompatible interpretations. Furthermore, there is no
completely reliable and unambiguous way to differentiate between many of these formats: they
often use the same magic numbers even though they have very different meanings. However, by
using some hairy but fairly reliable heuristics, tthe OSKit’s a.out loader for the x86 architec-
ture simultaneously supports Linux, NetBSD, FreeBSD, and Mach executables, in the OMAGIC,
NMAGIC, QMAGIC, and several ZMAGIC variants. Thus, at least for executables linked on one of
these systems, the OSKit’s loader should “just work.” Nevertheless, the a.out format is very
outdated at best, and we strongly recommend anyone using the OSKit to use a more modern
and powerful executable format such as ELF.

PARAMETERS

read: Specifies the metadata reader callback function, as described in Section 24.2.1.
read_exec: Specifies the executable data reader callback function, as described in Section 24.2.2.

handle: An opaque pointer value which the executable interpreter simply passes through to the
callback functions.

info: A pointer to an exec_info structure which the executable interpreter will fill with infor-
mation about the loaded executable.

RETURNS

Returns 0 on success, or an error code on failure. The error code may be either one of the EX_
error codes defined in exec.h, or it may be a caller-defined error code returned by one of the
callback functions and passed through to the client.

409

410 CHAPTER 24. EXECUTABLE PROGRAM INTERPRETER: LIBOSKIT EXEC.A

Chapter 25

Linux File Systems:
liboskit_linux fs.a

The Linux filesystem library consists of the Linux virtual and real filesystem code along with glue code to
export the OSKit filesystem interface (See Chapter 7).

The header file <oskit/fs/linux filesystems.h> determines which of the real Linux real filesystems,
e.g. ext2, is09660, are compiled into 1iboskit linux fs.a. All the filesystems listed in that file will
compile, but only ext2, msdos, vfat, and 1509660 have been tested.

The Linux filesystem library provides two additional interfaces:

fs_linux_init: Initialize the Linux fs library.

fs_linux-mount: Mount a filesystem via the Linux fs library

25.0.4 fs_linux_init: Initialize the Linux fs library
SYNOPSIS

#include <oskit/fs/linux.h>
oskit_error_t fs_linux_init(void);

DIRECTION

client OS — filesystem library

DESCRIPTION

This function initializes the Linux fs library, and must be invoked prior to the first call to
fs_linux mount. This function only needs to be invoked once by the client operating system.

All filesystems listed in <oskit/fs/linux filesystems.h> are initialized.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

25.0.5 fs_linux mount: Mount a filesystem via the Linux fs library
SYNOPSIS

#include <oskit/fs/linux.h>

oskit_error_t fs_linux_mount(oskit_blkio_t *xbio, oskit_u32_t flags, oskit filesystem t
**out_fs);

411

412 CHAPTER 25. LINUX FILE SYSTEMS: LIBOSKIT_LINUX_FS.A

DIRECTION

client OS — filesystem library

DESCRIPTION

This function looks in the partition described by bio for a filesystem superblock, calls the cor-
responding filesystem mount code, and returns a handle to an oskit filesystem_t for this
filesystem.

This function may be used multiple times by a client operating system to mount multiple file
systems.

Note that this function does not graft the filesystem into a namespace; oskit_dir _reparent or
other layers may be used for that purpose.

Typically, this interface is not exported to clients, and is only used by the client operating system
during initialization.

This function is a wrapper for Linux’s mount_root.

PARAMETERS

bio: Describes the partition containing a filesytem. Can be the whole disk like that returned from
oskit_linux block_open, or a subset of one like what is given by diskpart_blkio_lookup_bsd_string.

flags: The mount flags. These are formed by or’ing the following values:

OSKIT_FS_RDONLY Read only filesystem
OSKIT_FS_NOEXEC Can’t exec from filesystem
OSKIT_FS_NOSUID Don’t honor setuid bits on fs
OSKIT_FS_NODEYV Don’t interpret special files

out_fs: Upon success, is set to point to an oskit_filesystem_t for this filesystem.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

Chapter 26

NetBSD File Systems:
liboskit netbsd fs.a

The NetBSD filesystem library consists of the NetBSD filesystem code and a collection of glue code which
encapsulates the NetBSD code within the OSKit filesystem framework.
The NetBSD filesystem library provides two additional interfaces:

fs netbsd_-init: Initialize the NetBSD fs library.

fs_netbsd.mount: Mount a filesystem via the NetBSD fs library

26.0.6 fs_netbsd_init: Initialize the NetBSD fs library
SYNOPSIS

#include <oskit/fs/netbsd.h>
oskit_error_t fs_netbsd_init(void);

DIRECTION

client OS — filesystem library

DESCRIPTION
This function initializes the NetBSD fs library, and must be invoked prior to the first call to
fs_netbsdmount. This function only needs to be invoked once by the client operating system.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

26.0.7 fs_netbsd mount: Mount a filesystem via the Netbsd fs library
SYNOPSIS

#include <oskit/fs/netbsd.h>

oskit_error_t fs_netbsd_mount(oskit_blkio_t *bio, oskit_u32_t flags, oskit_filesystem_t
**out_fs);

413

414 CHAPTER 26. NETBSD FILE SYSTEMS: LIBOSKIT_NETBSD_FS. A

DIRECTION

client OS — filesystem library

DESCRIPTION
This function mounts a FFS filesystem from the partition described by bio, and returns a handle
to an oskit_filesystem_t for this filesystem.

This function may be used multiple times by a client operating system to mount multiple file
systems.

Note that this function does not graft the filesystem into a namespace; oskit_dir_reparent or
other layers may be used for that purpose.

Typically, this interface is not exported to clients, and is only used by the client operating system
during initialization.

PARAMETERS

bio: Describes the partition containing a filesytem. Can be the whole disk like that returned from
oskit_linux block_open, or a subset of one like what is given by diskpart_blkio_lookup_bsd_string.
flags: The mount flags. These are formed by or’ing the following values:

OSKIT_FS_RDONLY Read only filesystem
OSKIT_FS_NOEXEC Can’t exec from filesystem
OSKIT_FS_NOSUID Don’t honor setuid bits on fs
OSKIT_FS_NODEYV Don’t interpret special files

out_fs: Upon success, is set to point to an oskit_filesystem_t for this filesystem.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

Chapter 27

FreeBSD Networking:
liboskit freebsd net.a

A note of caution. The design of the networking framework is nowhere near where it should be. However,
we, the OSKit developers, felt that networking is important and decided to release what we have.

The current implementation has been tested with only the most frequently used calls for TCP and UDP
over a single ethernet interface, with a default router on the subnet to which the interface is connected. XXX
We have done a simple router test with two interfaces.

27.1 Introduction

This chapter describes the use and implementation of the FreeBSD TCP/IP networking stack.

Note: The file unsupported/startnetwork.c has example code of how to quickly start up your net-
work. Then you may use the socket et al functions in the C library, as demonstrated in socket_bsd.c
in the example directory. The file socket_com.c contains the same example but uses the COM interfaces
without C library support.

Limitation/pecularity of the current implementation:

We have not yet implemented “principals” as described in the filesystem framework. All opera-
tions run with full privileges.

oskit_socket_t instances created by the networking stack do not currently implement the fol-
lowing methods': getsockopt, recvmsg/sendmsg

Also, the local loopback interface does not work because it is not properly set up. If you
try to connect to 127.0.0.1 or to the local TP address, you’ll see a division by zero trap in
freebsd/src/sys/netinet/ip_output.c:302because the if mtu field is uninitialized. Required
fix is to call the required ”ifconfig” functions for the loopback interface.

LAn OSKIT_E_NOTIMPL error code will be returned.

415

416 CHAPTER 27. FREEBSD NETWORKING: LIBOSKIT_FREEBSD_NET. A

27.2 Header Files

27.2.1 freebsd.h: definitions for the FreeBSD-derived networking code
SYNOPSIS

#include <oskit/net/freebsd.h>

DESCRIPTION

Contains function definitions for the functions needed to initialize and use the FreeBSD network-
ing stack.

It defines some convenience functions to initialize the code, to set up an interface and to establish
a default route. It defines struct oskit _freebsd net_ether_if which is opaque to OS clients.

27.3. INTERFACES 417

27.3 Interfaces

27.3.1 oskit_freebsd net_init: initialize the networking code
SYNOPSIS

#include <oskit/net/freebsd.h>
oskit_error_t oskit_freebsd_net_init([out] oskit_socket_factory_t **outfact);

DIRECTION

OS — Network stack

DESCRIPTION

This function initializes the FreeBSD networking code.

PARAMETERS
outfact: *outfact will contain a oskit_socket factory_t * which can be used according to the
specifications in the OSKit socket_factory COM interface in Chapter 8.
RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

Limitation/pecularity of the current implementation:

oskit_freebsdnet_init will always succeed, and may panic otherwise.

27.3.2 oskit_freebsd net open_ether_if: find and open an ethernet interface
SYNOPSIS

#include <oskit/net/freebsd.h>

oskit_error_t oskit_freebsd_net_open_ether _if(struct oskit_etherdev *dev, [out] struct
oskit_freebsd_net_ether_if ** out_eif);

DIRECTION

OS — Network stack

DESCRIPTION
This function is a convenience function to open an ethernet device and create the necessary
oskit netio_t instances to “connect” the netio device drivers to the protocol stack.

Note: The code uses the following internal structure to keep track of an ethernet interface, defined
in oskit/net/freebsd.h

struct oskit_freebsd_net_ether_if {

oskit_etherdev_t *dev; /* ethernet device

oskit netio_t *send_nio; /* netio for sending packets

oskit netio_t *recv_nio; /* netio for receiving packets
oskit_devinfot info; /* device info

unsigned char haddr [0SKIT_ETHERDEV_ADDR SIZE]; /* MAC address

struct ifnet *ifp; /* actual interface seen by BSD code

418 CHAPTER 27. FREEBSD NETWORKING: LIBOSKIT_FREEBSD_NET. A

ifp is the actual interface as seen by the BSD code. recv_nio points to the netio COM interface
receiving packets from the ethernet device dev and passing them to the BSD networking code.
send_nio is the netio used by the code to send packets. haddr contains the MAC address, and
info the device info associated with dev.

PARAMETERS

dev: The ethernet device to be used with the interface. Note that the FreeBSD net library will
take this reference over.

out_eif: *out_eif points to an oskit_freebsd net_ether_if structure on success.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

27.3.3 oskit_freebsd net open first ether_if: find and open first ethernet in-
terface

SYNOPSIS

#include <oskit/mnet/freebsd.h>
oskit_error_t oskit_freebsd_net_open_first_ether _if([out] struct oskit_freebsd_net_ether_if

** out_eif);
DIRECTION

0OS — Network stack

DESCRIPTION

This function is a convenience function to find and open the first ethernet device? and to create
an associated oskit_freebsd net_ether_if structure.
Limitation/pecularity of the current implementation:

It leaks references to other ethernet devices, if any.

PARAMETERS

out_eif: *out_eif points to an oskit_freebsd net_ether_if structure on success.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

27.3.4 oskit_freebsd net_close_ether_if: close an ethernet interface
SYNOPSIS

#include <oskit/net/freebsd.h>
void oskit_freebsd_net_close_ether_if(struct oskit_freebsd_net_ether_if *eif);

DIRECTION

0OS — Network stack

2according to osenv_device_lookup using an oskit_etherdev_iid

27.3. INTERFACES 419

DESCRIPTION

The function closes the interface and frees the oskit_freebsd_net_ether_if structure.

This is currently done by releasing the two netio instances and the oskit_etherdev_t instance
in struct oskit freebsd net_ether if.
PARAMETERS

eif : Interface to be closed.

27.3.5 oskit_freebsd net_ifconfig: configure an interface
SYNOPSIS

#include <oskit/net/freebsd.h>
oskit_error_t oskit_freebsd_net _ifconfig(struct oskit_freebsd_net_ether_if *eif, char *name,

char *ipaddr, char *netmask);
DIRECTION

0OS — Network stack

DESCRIPTION

This is a temporary convenience function which does the setup usually performed by FreeBSD’s
ifconfig(8) command. This function is equivalent to the following command:

ifconfig deO inet 155.99.214.164 1link2 netmask 255.255.255.0

with 155.99.214.164 being the IP address to be used by the ethernet interface, 265.255.255.0
the netmask of the local subnet, and de0 the (arbitrary) name of the interface.
PARAMETERS

eif: A structure describing the physical interface as returned by oskit_freebsd net_open_ether_if.

name: The name of the interface. Should be a 3 byte string of the "abn" where a and b are
letters and n is a number. Use different names for different interfaces.

ipaddr: The address to be used by the interface in "xxx.xxx.xxx.xxx" notation.

netmask: The netmask of the subnet to be used by the interface in "xxx.xxx.xxx.xxx" notation.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

27.3.6 oskit_freebsd net_add_default_route: set a default route
SYNOPSIS

#include <oskit/net/freebsd.h>
oskit_error_t oskit_freebsd_net_add_default_route(char *gateway);

DIRECTION

OS — Network stack

420 CHAPTER 27. FREEBSD NETWORKING: LIBOSKIT_FREEBSD_NET. A

DESCRIPTION

This function sets a default route.

Limitation/pecularity of the current implementation:

Take a look at the implementation in freebsd/net/bsdnet_add_default_route.c.

PARAMETERS

gateway: The IP address of the default gateway to be set in "xxx.xxx.xxx.xxx" notation.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

Chapter 28

BOOTP Support: 1liboskit_bootp.a

28.1 Introduction

The OSKit provides a small library that allows OSKit clients to contact a BOOTP server to obtain the
information necessary to configure their network parameters, such as IP address or hostname. The imple-
mentation is based on RFC 1048/1533.

28.2 External Dependencies

The current implementation requires the user to provide an implementation of the oskit_etherdev interface.
Such interfaces are supported by the OSKit’s device driver components. It also requires access to the system
clock. The library obtains access to the system clock by calling oskit_clock_init It releases its reference
after the BOOTP protocol has finished. Additionally, bootp_dump uses printf.

28.3 API reference

The following sections describe the functions exported by the BOOTP library in detail. All of these functions,
as well as the types necessary to use them, are declared in the header file <oskit/net/bootp.h>.

421

422 CHAPTER 28. BOOTP SUPPORT: LIBOSKIT-BOOTP. A

28.3.1 Dbootp_net_info: BOOTP protocol information structures

SYNOPSIS

struct bootp_addr_array {
struct in_addr *addr; /* array of addresses */
int len; /* number of addresses */

};

struct bootp_net_info {
oskit_u32_t flags; /* which fields are valid */
struct in_addr ip; /% client IP address */
struct in_addr netmask; /* subnet mask */
struct in_addr server; /* server that replied */
struct bootp_addr_array gateway; /* gateways */
struct bootp_addr_array dns_server; /* DNS server address */
struct bootp_addr_array time_server; /* time server address */
struct bootp_addr_array log_server; /* log server address */
struct bootp_addr_array lpr_server; /* LPR server address */
oskit_s32_t time_offset; /* offset from UTC */
char *hostname; /* client hostname */
char *server_name; /* name of replying server */
char *bootfile_name; /% boot file name */
char *domainname; /* domain name */
unsigned char server_hwaddr [ETHER_ADDR_SIZE]; /* server address */

};

DESCRIPTION

The first field of the struct bootpmet_info structure, flags, denotes which of the other fields
are valid. flags is an ORed combination of the flag values below. Each flag corresponds to a field
in the structure with the same name (in lower case).

All other fields are of one of three types:

1. An IP address encoded as a struct in_addr,
2. A string encoded as a char *,
3. A list of IP addresses encoded in a struct bootp-addr_array.

The following table gives an overview of the flags that are currently supported and the types of
the corresponding fields.

Field Type Function

BOOTP_NET_IP IP address IP address

BOOTP_NET_NETMASK IP address netmask

BOOTP_NET_GATEWAY IP address gateway

BOOTP_NET_SERVER IP address server that answered BOOTP request
BOOTP_NET_DNS_SERVER List of IP addrs | domain name servers
BOOTP_NET_TIME_SERVER List of IP addrs | time servers

BOOTP_NET_LOG_SERVER List of IP addrs | log servers

BOOTP_NET_LPR_SERVER List of IP addrs | LPR servers

BOOTP_NET_TIME_OFFSET unsigned int see below

BOOTP_NET_HOSTNAME string hostname

BOOTP_NET_SERVER NAME string name of the BOOTP server
BOOTP_NET_BOOTFILE NAME | string bootfile name
BOOTP_NET_DOMAINNAME string DNS domain name
BOOTP_NET_SERVER_ADDR unsigned char[6] | Ethernet MAC address of BOOTP server

28.3. API REFERENCE 423

The time_offset field specifies the time offset of the local subnet in seconds from Coordinated
Universal Time (UTC). It is a signed 32-bit integer, positive numbers indicate west of the Prime
Meridian.

28.3.2 bootp_gen: Generate a BOOTP protocol request
SYNOPSIS

#include <oskit/net/bootp.h>

int bootp_gen(oskit_etherdev_t *dev, [in/out] struct bootpnet_info *info, int retries,
int timeout);

DESCRIPTION

This function broadcasts retries BOOTP request packets, waiting timeout milliseconds for a
reply.

The only field of info that is used as input for the request is the ip field corresponding to
BOOTP_NET_IP. See RFC 1048 for more explanation. Users should set this field if they know their
IP address; BOOTP_NET_IP needs to be set in flags if this is the case.

Lists of IP addresses and strings are dynamically allocated as needed, users of boopt_gen should
pass the info struct to bootp_free to deallocate them.

PARAMETERS

dev: A pointer to an oskit_etherdev device interface.
info: The BOOTP info to be used.
retries: Number of BOOTP request packets that are sent.

timeout: Timeout in milliseconds.

RETURNS
Returns zero on success, 0SKIT_ETIMEDQOUT if the operation timed out, or another error code as
specified in <oskit/error.h>

RELATED INFORMATION

bootpmnet_info

28.3.3 Dbootp: Generate a BOOTP protocol request (simple interface)
SYNOPSIS

#include <oskit/net/bootp.h>
int bootp(oskit_etherdev_t *dev, [in/out] struct bootpnet_info *info);

DESCRIPTION

This function performs a BOOTP request with a timeout of 200 milliseconds (1/5 of a second)
with five retries using bootp_gen.

The only field of info that is used as input for the request is the ip field corresponding to
BOOTP_NET_IP. See RFC 1048 for more explanation. Users should set this field if they know their
IP address; BOOTP_NET_IP needs to be set in flags if this is the case.

Lists of IP addresses and strings are dynamically allocated as needed, users of boopt_gen should
pass the info struct to bootp_free to deallocate them.

424 CHAPTER 28. BOOTP SUPPORT: LIBOSKIT-BOOTP. A

PARAMETERS

dev: A pointer to an oskit_etherdev device interface.
info: The BOOTP info to be used.

RETURNS

Returns zero on success, or an error code specified in <oskit/error.h> on error.

RELATED INFORMATION

bootpmnet_info

28.3.4 bootp_free: Free the result of a BOOTP request
SYNOPSIS

#include <oskit/met/bootp.h>
void bootp_free([in/out] struct bootp net_info *info);

DESCRIPTION

The function frees data structures that were allocated during a call to bootp_gen.

PARAMETERS

info: The BOOTP info to be freed.

RELATED INFORMATION

bootp_gen, bootp_net_info

28.3.5 bootp_dump: Dump the result of a BOOTP via printf
SYNOPSIS

#include <oskit/met/bootp.h>
void bootp_dump(struct bootpnet_info *info);

DESCRIPTION

This function prints the contents stored in a bootp_net_info structure to via printf.

PARAMETERS

info: The BOOTP info to be printed.

RELATED INFORMATION

bootpmnet_info, printf

Chapter 29

HPFQ: Hierarchical Network Link
Sharing: liboskit hpfq.a

29.1 Introduction

This short section outlines the Hierarchical Packet Fair Queuing (H-PFQ) network link-sharing implemen-
tation in the OSKit. The actual H-PFQ algorithm implemented is called H-WF2Q and is described in
the SIGCOMMO96 paper by Bennet and Zhang. A working understanding of this paper would be useful in
understanding the use of this library.

Be aware that this is a first-cut implementation and is not thoroughly tested nor tuned.

This library allows the user to hierarchically schedule outgoing traffic from different sessions through a
single link. Each session is guaranteed a percentage of its parent’s bandwidth, relative to its siblings. This
is done by creating a scheduling tree where interior nodes correspond to one-level PF(Q schedulers, and leaf
nodes corresond to oskit netio objects for the sessions they represent (see Section 5.5). The root node
corresponds to the physical link being shared. The definition of session is up to the user, who controls
what is sent to the leaf node oskit netio’s. Typical session types are real-time traffic, traffic from different
organizations, or protocol types. Note, however, that this more general issue of packet classification is not
part of this library.

Currently, only one link can be managed at a time, because of the oskit_pfq_root global variable. This
will be fixed in a future version.

29.2 Configuration

The H-PFQ library depends on certain modifications to the OSKit Linux device driver set (Section 30) that
are enabled only when the OSKit is configured with the --enable-hpfq configure option. This configure
option enables H-PFQ-specific code in the Linux driver set.

This library will not work correctly with an improperly configured Linux driver set. Similarly, a
Linux driver set configured with --enable-hpfq will only work correctly for non-H-PFQ applications if
oskit_pfq_root is NULL.

29.3 Usage

The basic procedure of using this library is to first create a scheduling hierarchy according to the user’s needs,
and then to retrieve the oskit_netio’s from the leaf nodes for use by the various sessions. The sessions can
then send on these oskit_netio’s and the data will flow to the root according to the policies and allocations
in place.

There are no restrictions on the format of the data sent to the leaf oskit_netio’s, but it must be what
the oskit metio corresponding to the root expects. In the common case of oskit netio’s created by the

425

426 CHAPTER 29. HPFQ: HIERARCHICAL NETWORK LINK SHARING: LIBOSKIT_HPFQ.A

Linux driver library, this data will simply be Ethernet frames.

The creation of the hierarchy is done by first creating a root node and setting the global variables
oskit_pfq.root and oskit_pfq reset_path appropriately (see Section 29.4). Then various intermediate
and/or leaf nodes are created and attached to the root with appropriate share values. This process is then
repeated as needed for the children of any intermediate nodes.

In this library, share values are floating point numbers that represent a percentage of the parent’s band-
width allocated to the child. For example, a child with share value 0.45 is guaranteed 45% of the parent’s
bandwidth when the child has data to send, assuming the parent has not over-subscribed its bandwidth.

On a given level of the hierarchy, only the relative differences between share values is important, however
for simplicity it is recommended that share values on a given level add up to 1.

A more subtle implication of this relative-differences fact, is that parents can over-subscribe their band-
width to their children. More specifically, there is no guarantee that a session with a share value of, say 50%
will actually receive that amount of the parent’s bandwidth. To see this, consider the case of an intermediate
node with two children, each allocated 50% of the bandwidth. Another child may be added with a share
value of 50%, but it will in reality only receive 33%. This is more generally termed a problem of admission
control, and is not currently dealt with in this library.

29.4 API reference

The following sections describe the functions exported by the H-PFQ library in detail. All of these functions,
as well as the types necessary to use them, are declared in the header file <oskit/hpfq.h>.

This API reference is split into two parts. The first part describes the external requirements for the
library and the actual functions exported, which are basically constructors for pfq_sched and pfq_leaf
objects. The second part describes the pfq_sched and pfq-leaf COM interfaces.

29.5 External Requirements and Constructors

This section describes the external requirements of the library and the actual functions exported, which
consist of “constructor” functions to create pfq_sched and pfq-leaf COM objects.

29.5.1 oskit_pfq.root: the root node scheduler
SYNOPSIS

#include <oskit/hpfq.h>
extern pfq_sched_t *oskit_pfq_root;

DESCRIPTION

This variable is not directly used by the H-PFQ library but is used to communicate between the
Linux driver set and the program using the H-PFQ library.

The client of the H-PFQ library is responsible for setting this variable to point to the root node of
its scheduling hierarchy before any sessions attempt to send to their respective leaf oskit netio
objects.

If this variable is set to the NULL value, then the Linux driver library will not call back to the
H-PFQ code and thus will behave like a Linux driver set not configured for H-PFQ.

Note that this implies that only one link can be managed at a time. This will be fixed in a future
version.

29.5. EXTERNAL REQUIREMENTS AND CONSTRUCTORS 427

29.5.2 oskit_pfq reset_path: pointer to the reset_path function
SYNOPSIS

#include <oskit/hpfq.h>
extern void (xoskit_pfq_reset_path) (pfq_sched t *);

DESCRIPTION

This variable is not directly used by the H-PFQ library but is used to communicate between the
Linux driver set and the program using the H-PFQ library.

The client of the H-PFQ library is responsible for setting this variable to point to the pfq_reset_path
function before any sessions attempt to send to their respective leaf oskit_netio objects.

29.5.3 pfq_sff _create root: create a root node implementing SFF
SYNOPSIS

#include <oskit/hpfq.h>
oskit_error_t pfq_sff create_root(oskit netio_t *link, pfq_sched_t *xout_sched);

DESCRIPTION

Creates a root PFQ node implementing the Smallest Finish time First (SFF) scheduling policy.

PARAMETERS

link: The link that the scheduling tree intends to manage.

out_sched: A pointer to the pfq_sched object representing the root of the hierarchy.
This can be then used with future pfq-sched methods to add children, etc.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

29.5.4 pfq_ssf_create_root: create a root node implementing SSF
SYNOPSIS

#include <oskit/hpfq.h>
oskit_error_t pfq_ssf create_root(oskit netio_t link, pfq_sched t **out_sched);

DESCRIPTION

Creates a root PFQ node implementing the Smallest Start time First (SSF) scheduling policy.

PARAMETERS

link: The link that the scheduling tree intends to manage.

out_sched: A pointer to the pfq_sched object representing the root of the hierarchy.
This can be then used with future pfq_sched methods to add children, etc.

428 CHAPTER 29. HPFQ: HIERARCHICAL NETWORK LINK SHARING: LIBOSKIT_HPFQ.A

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

29.5.5 pfq_sff _create: create an intermediate node implementing SFF
SYNOPSIS

#include <oskit/hpfq.h>
oskit_error_t pfq_sff_create(pfq_sched t **xout_sched);

DESCRIPTION
Creates an intermediate PFQ node implementing the Smallest Finish time First (SFF) scheduling
policy.

PARAMETERS

out_sched: A pointer to the pfq_sched object representing the the created intermediate node.
This can be then used with future pfq-sched methods to add children, etc.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

29.5.6 pfq_ssf _create: create an intermediate node implementing SSF
SYNOPSIS

#include <oskit/hpfq.h>
oskit_error_t pfq_ssf create(pfq_sched t *xxout_sched);

DESCRIPTION
Creates an intermediate PFQ node implementing the Smallest Start time First (SSF) scheduling
policy.

PARAMETERS

out_sched: A pointer to the pfq_sched object representing the the created intermediate node.
This can be then used with future pfq-sched methods to add children, etc.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

29.5.7 pfq_leaf create: create a leaf node
SYNOPSIS

#include <oskit/hpfq.h>
oskit_error_t pfq_leaf_create(pfq_leaf_t **out_leaf);

29.5. EXTERNAL REQUIREMENTS AND CONSTRUCTORS 429

DESCRIPTION

Create a leaf PFQ node.

The oskit netio that can be used by the session corresponding to this leaf can be retreived by
calling pfq-leaf_get_netio, described elsewhere in this document.
PARAMETERS

out_leaf: A pointer to the pfq_leaf object representing the the created intermediate node.
This can be then used with future pfq-leaf methods to set the share value, etc.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

430 CHAPTER 29. HPFQ: HIERARCHICAL NETWORK LINK SHARING: LIBOSKIT_HPFQ.A

29.6 pfqg_sched: Interface to PFQ Schedulers

This section describes the pfq_sched COM interface to PFQ scheduler objects. Note that the child pa-
rameter to these methods is declared as a pfq_sched. However, pfq_leaf inherits from pfq_sched and thus
may be used as a child parameter when suitably cast.

The pfq_sched interface inherits from IUnknown and has the following additional methods:

add_child: Add a child to this node
remove_child: Remove a child from this node

set_share: Set the bandwidth share given to this node

29.6.1 pfqg-sched.-add child: add a child to a root or intermediate node
SYNOPSIS

#include <oskit/hpfq.h>
oskit_error_t pfq_sched_add_child(pfq_sched_t *sched, pfq_sched_t *child, f1loat share);

DESCRIPTION
This method attaches a child pfq_sched object to a parent and assigns it an initial share of the
parent. The share can be later adjusted with the set_share method if needed.

PARAMETERS

sched: The parent pfq_sched object.
child: The child being added.

share: The initial share value of the child. See Section 29.3 for details on share values.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

29.6.2 pfq_sched remove_child: remove a child from a root or intermediate node
SYNOPSIS

#include <oskit/hpfq.h>
oskit_error_t pfq_sched_remove_child(pfq_sched_t *sched, pfq_sched_t *child);

DESCRIPTION

This method removes a child from a parent pfq_sched object.

PARAMETERS

sched: The parent pfq_sched object losing a child.
child: The child to be orphaned.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

29.6. PFQ_SCHED: INTERFACE TO PFQ SCHEDULERS 431

29.6.3 pfq_sched set_share: allocate a percentage of the parent’s bandwidth
SYNOPSIS

#include <oskit/hpfq.h>
oskit_error_t pfq_sched_set_share(pfq_sched t *sched, pfq_sched_t *child, float share);

DESCRIPTION
This method adjusts the share value of a pfq_sched object. See Section 29.3 for details on share
values.

PARAMETERS

sched: The parent pfq_sched object.
child: The child getting their share adjusted.

share: The new share value of the child.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

432 CHAPTER 29. HPFQ: HIERARCHICAL NETWORK LINK SHARING: LIBOSKIT_HPFQ.A

29.7 pfqg_leaf: Interface to PFQ Leaf Nodes

This section describes the pfq_-leaf COM interface to PFQ leaf objects.
The pfq-leaf interface inherits from pfq_sched and the following additional method:

get netio: Get the oskitnetio corresponding to this leaf

Note that since pfq_leaf inherits from pfq_sched, it may be used in place of a pfq_sched object when
suitably cast.

29.7.1 pfq_leaf_add child: add a child to a root or intermediate node
SYNOPSIS

#include <oskit/hpfq.h>
oskit_error_t pfq_leaf_add_child(pfq_leaf_t *sched, pfq_sched_t *child, float share);

DESCRIPTION

This does not make sense for leaf nodes and is thus not implemented.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

29.7.2 pfq_leaf remove_child: remove a child from a root or intermediate node
SYNOPSIS

#include <oskit/hpfq.h>
oskit_error_t pfq_leaf remove_child(pfq_leaf_t *sched, pfq_sched_t *child);

DESCRIPTION

This does not make sense for leaf nodes and is thus not implemented.

29.7.3 pfq_leaf set_share: allocate a percentage of the parent’s bandwidth
SYNOPSIS

#include <oskit/hpfq.h>
oskit_error_t pfq_leaf_set_share(pfq_leaf_t *sched, pfq_sched_t *child, float share);

DESCRIPTION

This does not make sense for leaf nodes and is thus not implemented.

29.7.4 pfq_leaf get netio: get the oskit_netio corresonding to this leaf
SYNOPSIS

#include <oskit/hpfq.h>
oskit_error_t pfq_leaf_get_netio(pfq leaf_t xleaf, oskit netio_t **out_netio);

29.7. PFQ_LEAF: INTERFACE TO PFQ LEAF NODES 433

DESCRIPTION
Retrieves a pointer to an oskit_netio that can be used to send data by the session corresponding
to this leaf.

PARAMETERS

leaf: The leaf who’s oskit netio is of interest.

out_netio: A pointer to the oskit_netio object that can be used to send data by the session
corresponding to this leaf.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

434 CHAPTER 29. HPFQ: HIERARCHICAL NETWORK LINK SHARING: LIBOSKIT_HPFQ.A

Chapter 30

Linux Driver Set:
liboskit_linux dev.a

The Linux device driver library consists of various native Linux device drivers coupled with glue code to ex-
port the OSKit interfaces such as blkio, netio, and bufio (See Chapter 5). See the source file 1inux/dev/README
for a list of devices and their status.

The header files oskit/dev/linux_ethernet.h and oskit/dev/linux scsi.h determine which network
and SCSI drivers are compiled into liboskit_linux_dev.a. Those files also influence driver probing; see the
oskit_linux_init routines below.

435

436 CHAPTER 30. LINUX DRIVER SET: LIBOSKIT_LINUX_DEV.A

30.1 Initialization and Registration

There are several ways to initalize this library. One can either initialize all the compiled-in drivers (oskit_-
linux_init_devs, initialize a specific class of drivers (oskit_linux_init_ethernet), or initialize specific
drivers (e.g., oskit_linux_init_scsi ncr53c8xx).

These initialization functions initialize various glue code and register the appropriate device(s) in the
device tree, to be probed with oskit_dev_probe.

30.1.1 oskit_linux_init_devs: Initialize and register all known drivers
SYNOPSIS

#include <oskit/dev/linux.h>
void oskit_linux_init_devs(void);

DESCRIPTION

This function initializes and registers all known drivers. The known drivers are: the IDE disk
driver, and all drivers listed in the <oskit/dev/linux_ethernet.h> and <oskit/dev/linux_scsi.h>
files.

Once drivers are registered, their devices may be probed via oskit_dev_probe.

30.1.2 oskit_linux_init_net: Initialize and register known network drivers
SYNOPSIS

#include <oskit/dev/linux.h>
void oskit_linux_init_net(void);

DESCRIPTION

This function initializes and registers all available network drivers. Currently this means Ethernet
drivers only, but in the future there may be other network drivers supported such as Myrinet.
The known Ethernet drivers are listed in the <oskit/dev/linux_ethernet.h> file.

Once drivers are registered, their devices may be probed via oskit_dev_probe.

30.1.3 oskit_linux_init_ethernet: Initialize and register known Ethernet net-
work drivers

SYNOPSIS

#include <oskit/dev/linux.h>
void oskit_linux_init_ethernet(void);

DESCRIPTION

This function initializes and registers all available Ethernet network drivers. The known Ethernet
drivers are listed in the <oskit/dev/linux_ethernet.h> file.

Once drivers are registered, their devices may be probed via oskit_dev_probe.

30.1. INITIALIZATION AND REGISTRATION 437

30.1.4 oskit_linux_init_scsi: Initialize and register known SCSI disk drivers
SYNOPSIS

#include <oskit/dev/linux.h>
void oskit_linux_init_scsi(void);

DESCRIPTION

This function initializes and registers all available SCSI disk drivers. The known SCSI drivers
are listed in the <oskit/dev/linux scsi.h> file.

Once drivers are registered, their devices may be probed via oskit_dev_probe.

30.1.5 oskit_linux_init_ide: Initialize and register known IDE disk drivers
SYNOPSIS

#include <oskit/dev/linux.h>
void oskit_linux_init_ide(void);

DESCRIPTION

This function initializes and registers all available IDE disk drivers. There is currently only one
IDE driver.

Once drivers are registered, their devices may be probed via oskit_dev_probe.

30.1.6 oskit_linux_init_scsi_name: Initialize and register a specific SCSI disk
driver

SYNOPSIS

#include <oskit/dev/linux.h>
void oskit_linux_init_scsi_name(void);

DESCRIPTION

This function initializes and registers a specific SCSI disk driver. The name must be one from
the name field of the drivers listed in the <oskit/dev/linux_scsi.h> file.

Once drivers are registered, their devices may be probed via oskit_dev_probe.

30.1.7 oskit_linux_init_ethernet_name: Initialize and register a specific Ether-
net network driver

SYNOPSIS

#include <oskit/dev/linux.h>
void oskit_linux_init_ethernet_name(void);

DESCRIPTION

This function initializes and registers a specific Ethernet network driver. The name must be one
from the name field of the drivers listed in the <oskit/dev/linux_ethernet.h> file.

Once drivers are registered, their devices may be probed via oskit_dev_probe.

438 CHAPTER 30. LINUX DRIVER SET: LIBOSKIT_LINUX_DEV.A

30.2 Obtaining object references

Once the desired drivers are initialized, registered, and probed, one can obtain references to their blkio,
netio, etc interfaces (See Chapter 5) two different ways.

The first way is to look them up via their Linux name, e.g., “sd0” for a SCSI disk, or “eth0” for a
Ethernet device. This is described here as it is specific to Linux.

The second, and preferred, way is to use osenv_device_lookup to find a detected device with the desired
interface, such as oskit_etherdev_iid (See Chapter 12).

30.2.1 oskit_linux block open: Open a disk given its Linux name
SYNOPSIS

#include <oskit/dev/linux.h>
oskit_error_t oskit_linux_block_open(const char *name, unsigned flags, [out] oskit blkio_t

**0ut_i0);
DESCRIPTION

This function takes a Linux name of a disk, e.g., “sd0” or “wd1”, and returns an oskit_blkio_t
that can be used to access the device.

The oskit_blkio interface is described in Chapter 5.

PARAMETERS

name: The Linux name of the device e.g., “sd0” or “wdl”.
flags: Formed by or’ing the following values:

OSKIT_DEV_OPEN_READ
OSKIT _DEV_OPEN_WRITE
OSKIT_DEV_OPEN_ALL

out_io: Upon success, is set to point to an oskit_blkio_t that can be used to access the device.

RETURNS

Returns 0 on success, or an error code specified in <oskit/error.h>, on error.

30.2.2 oskit_linux_block_open_kdev: Open a disk given its Linux kdev
30.2.3 oskit_linux.netdev_find: Open a netcard given its Linux name

30.2.4 oskit_linux net_open: Open a netcard given its Linux name

30.3. INTRODUCTION 439

The rest of this chapter is very incomplete. Some of the internal details of the Linuz driver emulation
are described, but not the aspects relevant for typical use of the library.

30.3 Introduction

XXX

Much of the data here on Linux device driver internals is out-of-date with respect to the newer device
drivers that are now part of the OSKit. This section documents drivers from Linux 1.3.6.8 or earlier; the
current OSKit drivers are from Linux 2.0.29, so parts of this section are likely no longer correct.

XXX Library can be used either as one component or can be used to produce many separate components,
depending on how it is used.

30.4 Partially-compliant Drivers

There are a number of assumptions made by some drivers: if a given assumption is not met by the OS
using the framework, then the drivers that make the assumption will not work, but other drivers may still
be usable. The specific assumptions made by each partially-compliant driver are listed in a table in the
appropriate section below; here is a summary of the assumptions some of the drivers make:

e Kernel memory can be allocated from interrupt handlers.
e Drivers can allocate contiguous chunks of physical memory larger than one page.

e (x86) Drivers can allocate memory specifically in the low 16MB of memory accessible to the PC’s
built-in DMA controller.

e Drivers can sleep uninterruptibly.
e Drivers can access the clock timer and DMA registers directly.

e “Poll-and-Yield:” polls for short periods of time and yields the CPU without explicitly going to sleep.

30.5 Internals

The following sections document all the variables and functions that Linux drivers can refer to. These
variables and functions are provided by the glue code supplied as part of the library, so this information
should not be needed for normal use of the library under the device driver framework. However, they are
documented here for the benefit of those working on this library or upgrading it to new versions of the Linux
drivers, or for those who wish to “short-cut” through the framework directly to the Linux device drivers in
some situations, e.g., for performance reasons.

30.5.1 Namespace Management Rules

For an outline of our namespace management conventions, see Section 4.7.2 in our SOSP paper,
http://www.cs.utah.edu/projects/flux/papers.html#SOSKIT.

30.5.2 Variables

current: This is a global variable that points to the state for the current process. It is mostly used by
drivers to set or clear the interruptible state of the process.

jiffies: Many Linux device drivers depend on a global variable called jiffies, which in Linux contains
a clock tick counter that is incremented by one at each 10-millisecond (100Hz) clock tick. The device
drivers typically read this counter while polling a device during a (hopefully short) interrupt-enabled
busy-wait loop. Although a few drivers take the global clock frequency symbol HZ into account when

440 CHAPTER 30. LINUX DRIVER SET: LIBOSKIT_LINUX_DEV.A

determining timeout values and such, most of the drivers just used hard-coded values when using the
jiffies counter for timeouts, and therefore assume that jiffies increments “about” 100 times per
second.

irq2dev.map: This variable is an array of pointers to network device structures. The array is indexed by
the interrupt request line (IRQ) number. Linux network drivers use it in interrupt handlers to find the
interrupting network device given the IRQ number passed to them by the kernel.

blk_dev: This variable is an array of “struct blk_dev_struct” structures. It is indexed by the major device
number. Each element contains the I/O request queue and a pointer to the I/O request function in the
driver. The kernel queues I/O requests on the request queue, and calls the request function to process
the queue.

blk_size: This variable is an array of pointers to integers. It is indexed by the major device number. The
subarray is indexed by the minor device number. Each cell of the subarray contains the size of the
device in 1024 byte units. The subarray pointer can be NULL, in which case, the kernel does not check
the size and range of an I/O request for the device.

blksize size: This variable is an array of pointers to integers. It is indexed by the major device number.
The subarray is indexed by the minor device number. Each cell of the subarray contains the block size
of the device in bytes. The subarray can be NULL, in which case, the kernel uses the global definition
BLOCK _SIZE (currently 1024 bytes) in its calculations.

hardsect_size: This variable is an array of pointers to integers. It is indexed by the major device number.
The subarray is indexed by the minor device number. Each cell of the subarray contains the hardware
sector size of the device in bytes. If the subarray is NULL, the kernel uses 512 bytes in its calculations.

read_ahead: This variable is an array of integers indexed by the major device number. It specifies how
many sectors of read-ahead the kernel should perform on the device. The drivers only initialize the
values in this array; the Linux kernel block buffer code is the actual user of these values.

wait_for_request: The Linux kernel uses a static array of I/O request structures. When all I/O request
structures are in use, a process sleeps on this variable. When a driver finishes an I/O request and frees
the I/O request structure, it performs a wake up on this variable.

EISA bus: If this variable is non-zero, it indicates that the machine has an EISA bus. It is initialized bye
the Linux kernel prior to device configuration.

high memory: This variable contains the address of the last byte of physical memory plus one. It is initialized
by the Linux kernel prior to device configuration.

intr_count: This variable gets incremented on entry to an interrupt handler, and decremented on exit. Its
purpose is let driver code determine if it was called from an interrupt handler.

kstat: This variable contains Linux kernel statistics counters. Linux drivers increment various fields in it
when certain events occur.

tq-timer: Linux has a notion of “bottom half” handlers. These handlers have a higher priority than
any user level process but lower priority than hardware interrupts. They are analogous to software
interrupts in BSD. Linux checks if any “bottom half” handlers need to be run when it is returning to
user mode. Linux provides a number of lists of such handlers that are scheduled on the occurrence of
specific events. tq_timer is one such list. On every clock interrupt, Linux checks if any handlers are
on this list, and if there are, immediately schedules the handlers to run.

timer_active: This integer variable indicates which of the timers in timer_table (described below) are
active. A bit is set if the timer is active, otherwise it is clear.

timer_table: This variable is an array of “struct timer_struct” elements. The array is index by global
constants defined in jlinux/timer.h;. Each element contains the duration of timeout, and a pointer to
a function that will be invoked when the timer expires.

30.5. INTERNALS 441

system_utsname: This variable holds the Linux version number. Some drivers check the kernel version to
account for feature differences between different kernel releases.

30.5.3 Functions

autoirg setup: int autoirq_setup(int waittime);

This function is called by a driver to set up for probing IRQs. The function attaches a handler on each
available TRQ, waits for waittime ticks, and returns a bit mask of IRQs available IRQs. The driver
should then force the device to generate an interrupt.

autoirq report: int autoirq_report(int waittime);

This function is called by a driver after it has programmed the device to generate an interrupt. The
function waits waittime ticks, and returns the IRQ number on which the device interrupted. If no
interrupt occurred, 0 is returned.

register blkdev: int register_blkdev(unsigned major, const char *name, struct file_operations
*fops);
This function registers a driver for the major number major. When an access is made to a device with

the specified major number, the kernel accesses the driver through the operations vector fops. The
function returns 0 on success, non-zero otherwise.

unregister blkdev: int unregister_blkdev(unsigned major, const char *name);
This function removes the association between a driver and the major number major, previously
established by register_blkdev. The function returns 0 on success, non-zero otherwise.

getblk: struct buffer head *getblk(kdev_t dev, int block, int size);
This function is called by a driver to allocate a buffer size bytes in length and associate it with device
dev, and block number block.

brelse: void brelse(struct buffer_head *bh);
This function frees the buffer bh, previously allocated by getblk.

bread: struct buffer head *bread(kdev_t dev, int block, int size);

This function allocates a buffer size bytes in length, and fills it with data from device dev, starting at
block number block.

block write: int block_write(struct inode *inode, struct file *file, const char *buf, int count);

This function is the default implementation of file write. It is used by most of the Linux block drivers.
The function writes count bytes of data to the device specified by i_rdev field of inode, starting at
byte offset specified by f-pos of file, from the buffer buf. The function returns 0 for success, non-zero
otherwise.

block read: int block_read(struct inode *inode, struct file *file, const char *buf, int count);

This function is the default implementation of file read. It is used by most of the Linux block drivers.
The function reads count bytes of data from the device specified by i_rdev field of inode, starting at byte
offset specified by f.pos field of file, into the buffer buf. The function returns 0 for success, non-zero
otherwise.

check disk_change: int check_disk_change(kdev_t dev);

This function checks if media has been removed or changed in a removable medium device specified by
dev. It does so by invoking the check_media_change function in the driver’s file operations vector. If a
change has occurred, it calls the driver’s revalidate function to validate the new media. The function
returns 0 if no medium change has occurred, non-zero otherwise.

442 CHAPTER 30. LINUX DRIVER SET: LIBOSKIT_LINUX_DEV.A

request_dma: int request_dma(unsigned drq, const char *name);
This function allocates the DMA request line drq for the calling driver. It returns 0 on success, non-zero
otherwise.

free_dma: void free_dma(unsigned drq);

This function frees the DMA request line drq previously allocated by request_dma.

disable_irq: void disable_irq(unsigned irg);

This function masks the interrupt request line irq at the interrupt controller.

enable irq: void enable_irq(unsigned irg);
This function unmasks the interrupt request line irq at the interrupt controller.

request_irq: int request_irq(unsigned int irg, void (*handler)(int, struct), unsigned long flags,
const char *device);
This function allocates the interrupt request line irg, and attach the interrupt handler handler to it.
It returns 0 on success, non-zero otherwise.

free_irq: void free_irq(unsigned int irg);

This function frees the interrupt request line irg, previously allocated by request_irgq.

kmalloc: void *kmalloc(unsigned int size, int priority);

This function allocates size bytes memory. The priority argument is a set of bitfields defined as follows:

GFP_BUFFER: Not used by the drivers.
GFP_ATOMIC: Caller cannot sleep.
GFP_USER: Not used by the drivers.
GFP_KERNEL: Memory must be physically contiguous.
GFP_NOBUFFER: Not used by the drivers.
GFPNFS: Not used by the drivers.
GFPDMA: Memory must be usable by the DMA controller. This means, on the x86, it must be below
16 MB, and it must not cross a 64K boundary. This flag implies GFP_KERNEL.
kfree: void kfree(void *p);

This function frees the memory p previously allocated by kmalloc.

vmalloc: void *vmalloc(unsigned long size);
This function allocates size bytes of memory in kernel virtual space that need not have underlying
contiguous physical memory.
check region: int check_region(unsigned port, unsigned size);
Check if the I/O address space region starting at port and size bytes in length, is available for use.
Returns 0 if region is free, non-zero otherwise.
request_region: void request_region(unsigned port, unsigned size, const char *name);
Allocate the I/O address space region starting at port and size bytes in length. It is the caller’s
responsibility to make sure the region is free by calling check_region, prior to calling this routine.
release_region: void release_region(unsigned port, unsigned size);

Free the I/O address space region starting at port and size bytes in length, previously allocated by
request_region.

30.6. BLOCK DEVICE DRIVERS 443

add_wait_queue: void add_wait_queue(struct wait_queue **q, stuct wait_queue *wait);

Add the wait element wait to the wait queue gq.

remove wait_queue: void remove_wait_queue(struct wait_queue **q, struct wait_queue *wait);

Remove the wait element wait from the wait queue gq.

down: void down(struct semaphore *sem);

Perform a down operation on the semaphore sem. The caller blocks if the value of the semaphore is
less than or equal to 0.

sleep_on: void sleep_on(struct wait_queue **q, int interruptible);

Add the caller to the wait queue ¢, and block it. If interruptible flag is non-zero, the caller can be
woken up from its sleep by a signal.

wake up: void wake_up(struct wait_queue **q);

Wake up anyone waiting on the wait queue q.

wait_on buffer: void wait_on_buffer(struct buffer_head *bh);

Put the caller to sleep, waiting on the buffer bh. Called by drivers to wait for I/O completion on the
buffer.

schedule: void schedule(void);
Call the scheduler to pick the next task to run.

add_timer: void add_timer(struct timer_list *timer);

Schedule a time out. The length of the time out and function to be called on timer expiry are specified
in timer.

del_timer: int del_timer(struct timer_list *timer);

Cancel the time out timer.

30.5.4 Directory Structure

The 1inux subdirectory in the OSKit source tree is organized as follows. The top-level linux/dev directory
contains all the glue code implemented by the Flux project to squash the Linux drivers into the OSKit
driver framework. linux/fs contains our glue for Linux filesystems, and 1inux/shared contains glue used
by both components. In general, everything ezcept the code in the 1linux/src directory was written by us,
whereas everything under 1inux/src comes verbatim from Linux. Each of the subdirectories of linux/src
corresponds to the identically named subdirectories of in the Linux kernel source tree.

Of course, there are a few necessary deviations from this rule: a few of the Linux header and source files
are slightly modified, and a few of the Linux header files (but no source files) were completely replaced. The
header files that were heavily modified include:

linux/src/include/linux/sched.h: Linux task and scheduling declarations

30.6 Block device drivers
30.7 Network drivers

Things drivers may want to do that make emulation difficult:
o Call the 16-bit BIOS.

e Use the system DMA controller.

444 CHAPTER 30. LINUX DRIVER SET: LIBOSKIT_LINUX_DEV.A

| Name | Description || V=P | jiffies | P+Y | current | |
cmd640.c | CMD640 IDE Chipset
floppy Floppy drive *
ide-cd.c IDE CDROM
ide.c IDE Disk
rz1000.c | RZ1000 IDE Chipset
sd.c SCSI disk *
sr.c SCSI CDROM
triton.c Triton IDE Chipset *

Table 30.1: Linux block device drivers

Assume kernel virtual addresses are equivalent to physical addresses.

Assume kernel virtual addresses can be mapped to physical addresses merely by adding a constant
offset.

e Implement timeouts by busy-waiting on a global clock-tick counter.

Busy-wait for interrupts. XXX This means that the OS must allow interrupts during execution of
process-level driver code, and not just when all process-level activity is blocked.

30.8 SCSI drivers

The Linux SCSI driver set includes both the low-level SCSI host adapter drivers and the high-level SCSI
drivers for generic SCSI disks, tapes, etc.

30.8. SCSI DRIVERS

Name | Description || V=P | jiffies | P+Y | current | |
3c¢501.c 3Com 3c¢501 ethernet *
3c503.c NS8390 ethernet *
3c505.c 3Com Etherlink Plus (3C505) *
3c507.c 3Com EtherLink16 *
3c509.c 3c509 EtherLink3 ethernet *
3cH9x.c 3Com 3¢590/3c595 ” Vortex” *
ac3200.c Ansel Comm. EISA ethernet *
apricot.c Apricot * *
at1700.c Allied Telesis AT1700 *
atp.c Attached (pocket) ethernet *
dedx5.c DEC DE425/434/435/500 *
de600.c D-link DE-600 *
de620.c D-link DE-620 *
depca.c DEC DEPCA & EtherWORKS *
€2100.c Cabletron E2100 *
eepro.c Intel EtherExpress Pro/10 *
eexpress.c | Intel EtherExpress *
eth16i.c ICL EtherTeak 16i & 32 *
ewrk3.c DEC EtherWORKS 3 *
hp-plus.c HP PCLAN/plus *
hp.c HP LAN *
hp100.c HP10/100VG ANY LAN *
lance.c AMD LANCE * *
ne.c Novell NE2000 *
nis2.c N15210 (182586 chip) %
ni65.c NI6510 (am7990 ‘lance’ chip) * *
seeq8005.c | SEEQ 8005 *
sk_gl6.c Schneider & Koch G16 *
smc-ultra.c | SMC Ultra *
tulip.c DEC 21040 * *
wavelan.c | AT&T GIS (NCR) WaveLAN *
wd.c Western Digital WD80x3 *
znet.c Zenith Z-Note *

Table 30.2: Linux network drivers

445

446 CHAPTER 30. LINUX DRIVER SET: LIBOSKIT LINUX DEV.A

| Name | Description || V=P | jiffies | P+Y | current | |
53c7,8xx.c NCR 53C7x0, 53C8x0 * *
AM53C974.c AM53/79C974 (P Cscsi) *
BusLogic.c BusLogic MultiMaster adapters * *
NCRb53c406a.c | NCR53c406a * *
advansys.c AdvanSys SCSI Adapters * *
ahalb2x.c Adaptec AHA-152x *
ahalb42.c Adaptec AHA-1542 * *
ahal740.c Adaptec AHA-1740 *
aic7xxx.c Adaptec AICTxxx * *
eata.c EATA 2.x DMA host adapters *
eata_dma.c EATA/DMA host adapters * *
eata_pio.c EATA /PIO host adapters *
fdomain.c Future Domain TMC-16x0 *
in2000.c Always IN 2000 *
NCR5380.c Generic NCR5380 * *
pasl6.c Pro Audio Spectrum/Studio 16
qlogic.c Qlogic FAS408 *
scsi.c SCSI middle layer * *
scsi_debug.c SCSI debug layer *
seagate.c ST01,ST02, TMC-885 *
t128.c Trantor T128/128F /228
ul4-34f.c UltraStor 14F/34F * *
ultrastor.c UltraStor 14F/24F /34F *
wd7000.c WD-7000 * *

Table 30.3: Linux SCSI drivers

Chapter 31

FreeBSD Driver Set:
liboskit _freebsd dev.a

31.1 Introduction

This chapter is woefully incomplete. The OSKit FreeBSD device library provides an infrastructure
for using unmodified FreeBSD 2.1.7 device drivers.

31.2 Supported Devices

The FreeBSD device library currently supports only the system console and a few ISA-based serial port
interfaces all exporting the oskit_ttystream interface. Only the system console and PS/2 mouse have been
tested.

Following is a list of supported drivers. The tag is the name used by the device library to refer to the
devices (see Section 12.3 for details on device naming).

sc PC system console.
sio PC serial port.
cx ISA bus Cronyx-Sigma serial port adapter.
cy ISA bus Cyclades Cyclom-Y serial board.
rc ISA bus RISCom/8 serial board.
si ISA bus Specialix serial line multiplexor.
mse Bus mouse.

psm PS/2 mouse.

447

448 CHAPTER 31. FREEBSD DRIVER SET: LIBOSKIT_FREEBSD_DEV. A
31.3 Header Files

31.3.1 freebsd.h: common device driver framework definitions

SYNOPSIS

#include <oskit/dev/freebsd.h>

DESCRIPTION

Contains common definitions and function prototypes for the OSKit’s FreeBSD device interfaces
described in the next section.

31.4. INTERFACES 449

31.4 Interfaces

31.4.1 oskit_freebsd_ init: Initialize and FreeBSD device driver support pack-
age

SYNOPSIS

#include <oskit/dev/freebsd.h>
void oskit_freebsd_init(void);

DIRECTION

OS — Component

DESCRIPTION

Initializes the support code for FreeBSD device drivers.

Currently the oskit_freebsd init_driver routines take care of invoking any required freebsd
device initialization functions, including this one. This may change in the future.

31.4.2 oskit_freebsd init devs: Initialize and register all FreeBSD device
drivers

SYNOPSIS

#include <oskit/dev/freebsd.h>
void oskit_freebsd_init_devs(void);

DIRECTION

OS — Component

DESCRIPTION

Initialize and register all available FreeBSD device drivers.

Warning messages will be printed with osenv_log for drivers which cannot be initialized but the
initialization process will continue.
RELATED INFORMATION

osenv_log

31.4.3 oskit_freebsd init_isa: Inmitialize and register all FreeBSD ISA bus de-
vice drivers

SYNOPSIS

#include <oskit/dev/freebsd.h>
void oskit_freebsd_init_isa(void);

DIRECTION

0OS — Component

450 CHAPTER 31. FREEBSD DRIVER SET: LIBOSKIT_FREEBSD_DEV. A

DESCRIPTION

Initialize and register all available FreeBSD ISA bus device drivers. See
<oskit/dev/freebsd_isa.h> for the currently available devices.

Warning messages will be printed with osenv_log for drivers which cannot be initialized but the
initialization process will continue.

Currently the oskit freebsd init_driver routines take care of invoking any required freebsd
device initialization functions, including this one. This may change in the future.
RELATED INFORMATION

osenv_log

31.4.4 oskit_freebsd init_driver: Initialize and register a single FreeBSD de-
vice driver

SYNOPSIS

#include <oskit/dev/freebsd.h>
oskit_error_t oskit_freebsd_init_driver(void);

DIRECTION

OS — Component

DESCRIPTION

Initialize a single FreeBSD device driver. Possible values for driver are listed in Section 31.2.

RETURNS

Returns 0 on success, an error code specified in <oskit/dev/error.h> on error.

31.5. “BACK DOOR” INTERFACES 451

31.5 “Back door” Interfaces

“Back door” interfaces are intended for users which have some builtin knowledge of FreeBSD internals and
want to convert that knowledge to interface-level equivalents.

31.5.1 oskit_freebsd chardev_open: Open a character device using a FreeBSD
major/minor device value

SYNOPSIS

#include <oskit/dev/freebsd.h>
oskit_error_t oskit_freebsd_chardev_open(int major, int minor, int flags, [out]

oskit_ttystream t **tty_stream);
DIRECTION

OS — Component

DESCRIPTION

Opens a character device given a FreeBSD major and minor device value. Returns a pointer
to an oskit_ttystreamt interface as though oskit_ttydev_open was called on an OSKit
oskit_ttydev_t interface.

PARAMETERS

magor: Major device number. In FreeBSD, this is the index of the device in the character device
switch.

minor: Minor device number. In FreeBSD, the interpretation of the minor device number is
device specific.

flags: POSIX open flags.

tty_stream: Returned oskit_ttystream t interface.

RETURNS

Returns 0 on success, an error from <oskit/dev/error.h> otherwise.

31.5.2 oskit_freebsd_xlate_errno: Translate a FreeBSD error number
SYNOPSIS

#include <oskit/dev/freebsd.h>
oskit_error_t oskit_freebsd_xlate_errno(int freebsd_error);

DIRECTION

OS — Component

DESCRIPTION

Translates a FreeBSD error number into an OSKit error number.

PARAMETERS

freebsd_error: The FreeBSD error code to be translated.

452 CHAPTER 31. FREEBSD DRIVER SET: LIBOSKIT_FREEBSD_DEV. A

RETURNS

Returns an equivalent error value from <oskit/dev/error.h>, or 0SKIT_E_UNEXPECTED if there
is no suitable translation.

Chapter 32

WIMPi Window Manager:

liboskit wimpi.a

32.1 Introduction

WIMP is a hierarchical windowing system based on Bellcore’s MGR. The University of Arizona’s Scout
project produced WIMP from MGR; the “WIMPi” OSKit component is a modified version of Arizona’s
work.

32.2 So how do I use this?

Due to the convoluted path the code has gone through, the programming interfaces for MGR, WIMP and
WIMPi bear only a superficial resemblance to each other at this point. Many of the functions directly
correspond to their counterparts in the Scout winMgr interface, however. For more information on those,
see in the OSKit source tree wimp/scoutdoc/{winmgr.h,wimp.tex} from the Scout distribution.

To use wimpi, you must first initialize it by calling wimpi_initialize. Once you have initialized
all the windows for your application and are ready to enter the event loop, you will then need to call
wimpi main loop with the wimpiSession variable you got from calling wimpi_initialize.

You will also need to have handlers to send input data to wimp, and to handle wimp events when
they happen. These functions are set by calling the wimp_set_input_handler and wimp_set_event _handler
functions.

You can also look at examples/x86/wimpirun.c for more information.

32.3 Dependencies

WIMPi currently depends on the video_svgalib library; see its “Dependencies” section for more information.

32.4 API reference

32.4.1 wimpi_initialize: Initialize the wimpi code
SYNOPSIS

#include <oskit/wimpi.h>

wimpiSession wimpi_initialize(void);

453

454 CHAPTER 32. WIMPI WINDOW MANAGER: LIBOSKIT_-WIMPI.A

32.4.2 wimpi main loop: Start main wimpi event loop
SYNOPSIS

#include <oskit/wimpi.h>
void wimpi_main_loop(wimpiSession session);

32.4.3 wimpi _create_toplevel: Create a top level wimpi window
SYNOPSIS

#include <oskit/wimpi.h>

wimpiToplevelWindow wimpi_create_toplevel(wimpiSession session, bool multi, int
width, int height, int z, int y, char* title, bool mapped, void* data);

32.4.4 wimpi_destroy_toplevel: Destroy a top level wimpi window
SYNOPSIS

#include <oskit/wimpi.h>
void wimpi_destroy_toplevel(wimpiToplevelWindow w);

32.4.5 wimpi kbd input: Send keyboard input to wimpi
SYNOPSIS

#include <oskit/wimpi.h>
void wimpi_kbd_input(wimpiSession session, unsigned char c);

32.4.6 wimpi mouse_input: Send mouse input to wimpi
SYNOPSIS

#include <oskit/wimpi.h>
long wimpi mouse_input(wimpiSession s, char but_state, int dz,int dy);

32.4.7 wimpi_set_event_handler: Register a callback function for event handling
SYNOPSIS

#include <oskit/wimpi.h>

wimpiEventHandler wimpi_set_event_handler(wimpiSession session,
wimpiEventHandler proc);

32.4.8 wimpi_set_input_routine: Register a callback function for input to wimpi
SYNOPSIS

#include <oskit/wimpi.h>

wimpiInputRoutine wimpi_set_input_routine(vimpiSession session,
wimpiInputRoutine proc);

32.4. API REFERENCE 455

32.4.9 wimpi_send expose_event: Send and expose event to a window
SYNOPSIS

#include <oskit/wimpi.h>
void wimpi_send_expose_event (WINDOW *win);

32.4.10 wimpi_send mouse_event: Send a mouse event to a window
SYNOPSIS

#include <oskit/wimpi.h>
void wimpi_send_mouse_event (WINDOW *win, wimpiEventType type, int button);

32.4.11 wimpi send move resize event: Send a move/resize event to a window
SYNOPSIS

#include <oskit/wimpi.h>
void wimpi_send_move_resize_event (WINDOW *win);

32.4.12 wimpi_send destroy_event: Send a destroy event to a window
SYNOPSIS

#include <oskit/wimpi.h>

void wimpi_send_destroy_event (WINDOW *win);

The following functions have direct counterparts in the scout winMgr interface #include
<scout/winmgr.h>:

32.4.13 wimpi create window: Create a sub window
SYNOPSIS

#include <oskit/wimpi.h>

wimpiWindow Wimpi_create_window (wimpiWindow parent, int z, int y, int wide, int
high, int color, int has_border);

32.4.14 wimpi_destroy_window: Destroy a sub window
SYNOPSIS

#include <oskit/wimpi.h>
void wimpi_destroy_window (wimpiWindow w);

32.4.15 wimpi_map_window: Map a sub window
SYNOPSIS

#include <oskit/wimpi.h>
void wimpi_map_window (wimpiWindow w);

456 CHAPTER 32. WIMPI WINDOW MANAGER: LIBOSKIT_-WIMPI.A

DESCRIPTION

Make a window visible on the screen.

32.4.16 wimpi_unmap_window: Unmap a sub window
SYNOPSIS

#include <oskit/wimpi.h>
void wimpi_unmap_window (wimpiWindow w);

DESCRIPTION

Remove a window from the screen.

32.4.17 wimpi_raise_window: Raise a sub window
SYNOPSIS

#include <oskit/wimpi.h>
void wimpi_raise_window (wimpiWindow w);

32.4.18 wimpi_lower_window: Lower a sub window
SYNOPSIS

#include <oskit/wimpi.h>
void wimpi_lower_ window (wimpiWindow w);

32.4.19 wimpi_set_window_background: Set a window’s background color
SYNOPSIS

#include <oskit/wimpi.h>

void wimpi_set_window_background (wimpiWindow w, int color);

32.4.20 wimpi_set_foreground: Set a window’s foreground color
SYNOPSIS

#include <oskit/wimpi.h>

void wimpi_set_foreground (wimpiWindow w, int color);

32.4.21 wimpi_clear_area: Clear a section of a window
SYNOPSIS

#include <oskit/wimpi.h>

void wimpi_clear_area (wimpiWindow w, int =, int y, int wide, int high, bool exposures);

32.4. API REFERENCE 457

32.4.22 wimpi move resize window: Move/resize a window
SYNOPSIS

#include <oskit/wimpi.h>
void wimpi_move_resize_window (wimpiWindow w, int z, int y, int wide, int high);

32.4.23 wimpi_fill rectangle: Draw a filled rectangular area in a window
SYNOPSIS

#include <oskit/wimpi.h>
void wimpi fill rectangle (wvimpiWindow w, int z, int y, int wide, int high);

32.4.24 wimpi_draw_string: Draw a string in a window
SYNOPSIS

#include <oskit/wimpi.h>
void wimpi_draw _string (wimpiWindow w, int z, int y, char *string, int length);

32.4.25 wimpi draw line: Draw a line in a window
SYNOPSIS

#include <oskit/wimpi.h>
void wimpi_draw_line (wimpiWindow w, int 20, int y0, int z1, int yI);

32.4.26 wimpi_draw_arc: Draw an arc in a window
SYNOPSIS

#include <oskit/wimpi.h>

void wimpi_draw_arc (wimpiWindow w, int z, int y, int wide, int high, int anglel, int
angle2);

32.4.27 wimpi_draw_ellipse: Draw an ellipse in a window
SYNOPSIS

#include <oskit/wimpi.h>
void wimpi_draw_ellipse (wimpiWindow w, int z, int y, int wide, int high);

32.4.28 wimpi_draw_rectangle: Draw a rectangle in a window
SYNOPSIS

#include <oskit/wimpi.h>
void wimpi_draw_rectangle (wimpiWindow w, int z, int y, int wide, int high);

458 CHAPTER 32. WIMPI WINDOW MANAGER: LIBOSKIT_-WIMPI.A

32.4.29 wimpi_put_image: Blit an image into a window
SYNOPSIS
#include <oskit/wimpi.h>

void wimpi_put_image (wimpiWindow w, int z, int y, void *data, int wide, int high,
unsigned depth);

32.4.30 wimpi_copy_area: Copy a rectangular region in a window
SYNOPSIS
#include <oskit/wimpi.h>

void wimpi_copy_area (wimpiWindow w, int src_z, int src_y, int width, int height, int
dst_z, int dst_y);

32.4.31 wimpi_set window_title: Set the title of a window
SYNOPSIS
#include <oskit/wimpi.h>

void wimpi_set_window_title (wimpiWindow w, char *title);

32.4.32 wimpi_make child window: Make a child window
SYNOPSIS
#include <oskit/wimpi.h>

void Wimpi_make_child_window (wimpiToplevelWindow w, Window parent,
wimpiToplev elWindow child);

Chapter 33

Video Support: liboskit_video.a

33.1 Introduction

Video support is currently a three-way mishmash and it’s incomplete, but it provides useful services for some
popular boards.

The first way provides the XFree86 S3 driver and its normal XFree86 interface, along with a few other
functions.

The second way provides the VGA portion of the well known “Svgalib” library for Linux.

The third way for OSKit kernels to access video (and the keyboard and mouse) is via X11 client support.
Through this support OSKit kernels can interact (like any other X client) with remote machines running an X
server. In the x11/client source directory we provide patches against both the stock XFree86 X11R6.3 and
XConsortium X11R6.3 distributions, along with helper functions specific to the OSKit. See the README’s
there.

33.2 X11 S3 Video Library

The x11video library contains a video driver supporting S3 video cards. This includes all video hardware
supported by the XF86.S3 server (see http://www.xfree86.org for more information).

33.2.1 So how do I use this?

The driver currently requires a configuration (XF86Config) file. A sample file is included in the x11/video
directory. You’ll need to make sure that it’s readable as /etc/XF86Config. This can either be done through
the BMOD (section 10.20) filesystem, or by using the FreeBSD or Linux filesystem components.

This file is a subset of a standard XF86Config file and can only contain the Monitor, Device and Screen
sections. The easiest way to get things running is when you already have an XF86Config file for that
computer/monitor configuration. In that case you can just strip out everything from it but the sections
listed above. Otherwise you’ll need to make one from scratch, or from a sample config file from an XFree86
distribution.

Currently the x11video driver only uses the default (first) entry in the Screen section. Unlike XFree86,
there is no way to change or specify color depths or resolution at runtime.

33.2.2 Dependencies

xllvideo depends on oskit_startup, oskit_unsupp, oskit_dev, oskit kern, oskit_freebsdm,
oskit_c, and oskit_lmm.

33.2.3 API reference

459

460 CHAPTER 33. VIDEO SUPPORT: LIBOSKIT_VIDEQ.A

33.2.4 s3_init_framebuffer: Initializes the s3 video code
SYNOPSIS

#include <oskit/video/s3.h>
oskit_fb_t *s3_init_framebuffer(void);

33.2.5 s3._cmap_write: Write a colormap entry
SYNOPSIS

#include <oskit/video/s3.h>
int s3_cmap_write(oskit_cmap_entry_t *c);

33.2.6 s3_cmap_read: Read a colormap entry
SYNOPSIS

#include <oskit/video/s3.h>
int s3_cmap _read(oskit_cmap_entry_t *c);

33.2.7 s3_cmap_fg_index: Return the colormap index for the foreground color
SYNOPSIS

#include <oskit/video/s3.h>
int s3_cmap_fg_index(void);

33.3 Svgalib Video Library

The video_svgalib library contains the VGA portion of the well known “svgalib” library. It does not support
the keyboard, joystick, mouse or gl functionality of svgalib.
This library and its interface may change or disappear in the future, but it’s useful for now.

33.3.1 So how do I use this?

The interface is the same as the VGA interface for Svgalib. The extensive man pages for those functions
are in oskit/video/svgalib/doc, handily formatted for you. Svgalib programs that use only the VGA
interface should work with little change: you should only have to add code to do OSKit initialization.

For an example of how to convert an svgalib program, you can look at examples/x86/svgalib.c, which
is one of the standard svgalib example programs converted to run on the oskit.

33.3.2 Dependencies

video_svgalib depends on oskit_startup, oskit_dev, oskit_kern, oskit_freebsdm, oskit_c, and
oskit_lmm.

Part V

Utilities

461

Chapter 34

Network Booting

34.1 Introduction

NetBoot is a small MultiBoot-compliant operating system, and example of OSKit use, that provides one ser-
vice: fast booting of other MultiBoot-compliant operating systems across the network while itself remaining
resident in order to regain control after the target OS exits. This avoids going back to the BIOS to boot the
next kernel and allows a reboot cycle that is often an order of magnitude faster than normal.

When NetBoot is booted it prompts for the name of an OS to fetch and boot. The booted OS is passed
a special command line flag indicating a return address that it can use to return control back to NetBoot
upon exiting. Therefore NetBoot could be thought of as a crude batch-processing operating system.

NetBoot is intended to be used as a kernel development tool, not as a mechanism for implementing
diskless workstations, although it can conceivably be used either way.

Note: the netboot described here is not to be confused with the FreeBSD netboot EPROM code of the
same name. They share some code but perform different functions.

34.2 Implementation Issues and Requirements

NetBoot is built as a MultiBoot-compliant operating system; therefore to boot it with LILO or the BSD
boot program, an appropriate image must be made with mklinuximage or mkbsdimage, respectively (see
Section 1.6.2).

NetBoot boots MultiBoot-compliant operating systems such as the example programs that come with
the OSKit. If the desired OS to boot needs MultiBoot boot-modules, they and the OS can be combined into
one MultiBoot image via the mkmbimage script included with the OSKit.

NetBoot requires a BOOTP server to be running on the local network in order to obtain the IP address,
gateway address, netmask, and hostname of the host it runs on. If no BOOTP server responds when NetBoot
is booted, it will ask to retry or exit.

The files that NetBoot fetches and boots must reside in a directory that is NFS exported to the host
running NetBoot. In the future, NetBoot may support other protocols such as TFTP.

The OS that NetBoot will not know about all of memory. This is because NetBoot stashes itself and
some other things at the top of memory and then lies to the booted OS about where the top is. This is
to allow the booted OS to return control to NetBoot upon exit; avoiding the time-consuming process of
rebooting the machine. There is currently no way to disable this feature.

34.3 Using NetBoot

When NetBoot is booted it will print something like the following:

NetBoot metakernel v2.4
... various startup output, driver probes, etc. ..

463

464 CHAPTER 34. NETWORK BOOTING

Type "help" for help.

NetBoot> _

At the NetBoot> prompt one can boot another OS, get help, or quit.

34.3.1 Booting Another OS

If NetBoot is given a pseudo URL-style name at the prompt it will fetch that file and boot it.
The format of the name is as follows:

hostname:path [args]
Where:

hostname is either an IP-address or a name of a host from which to get the OS. Currently the hostname
lookup is fake and depends on hardwired names in the NetBoot code. The OSKit includes resolver
code but that code depends on the OSKit BSD socket package, which NetBoot currently does not use.

path is the path to the desired OS. This directory must be NFS-exported to the machine running NetBoot
or the fetch will fail.
args are optional command line arguments to pass to the booted kernel.

Two args, -h and -f, are handled as toggles. These args are checked for by the default OSKit console
startup code and determine if the serial console will be used (-h) and if it runs at 115200 baud (-f).
Therefore, if NetBoot was booted with either of these args it will pass them to the booted OS, assuming
it wants to use the same console. However, the OS to fetch may be specified with either of these args
and they will be removed from the default argument list.

Another arg is placed in the booted OS’s argument string before booting. NetBoot passes a flag of the
form “-retaddr hex” to the booted OS so it can return to this address if it wants to return control to
NetBoot. This is normally done by the booted OS’s _exit routine.

34.3.2 Getting Help
Typing “help” at the NetBoot prompt will give some basic usage help.

34.3.3 Quitting
Typing “quit” or “exit” at the NetBoot prompt will make NetBoot exit.

Part VI

The Legal Stuff

465

Chapter 35

Copyrights and Licenses

35.1 Copyrights & Licenses

The OSKit is free software, also known as “open source” software. The majority of the OSKit is covered
by the standard GNU Public License (GPL), found in the file “COPYING,” which basically allows free use,
modification, and redistribution, as long as the source to the OSKit and any code linked against it is made
freely available. If this appears too constraining, alternate licensing terms for much of the OSKit may be
explored by contacting csl-dist@cs.utah.edu or calling +1-801-585-3271. Reproduction of the documentation
is limited to non-commercial uses, including academic, research, evaluation, and personal use. For alternate
terms, contacts are the same as above.

Because much of the code in the OSKit was “donated” by external projects there are a plethora of
additional copyrights and licences, but their requirements are straightforward. Some parts of the OSKit
are additionally covered by BSD/Mach/X11-style licenses which require acknowledgement and sometimes a
notice in any advertising. Finally, the separate Wimpi code is covered by the Bellcore MGR license, which
restricts commercial use.

The individual files describe the copyright and licensing restrictions. In all cases the BSD/Mach/X11-
style restrictions are no more than inclusion of a name or notice in the accompanying documentation of the
program that uses the code. For example, when linking in code from the FreeBSD project that is copyrighted
by the Regents of the University of California, accompanying documentation must include the copyright and
license notice, while advertising materials using the library must include the acknowledgement “This product
includes software developed by the University of California, Berkeley and its contributors.” Other BSD-style
license have similar requirements, but for a different copyright holder.

To help clarify matters, the Acknowledgements section, below, describes which parts of the OSKit are
covered by which license(s).

35.2 Contributors

While much of the code in the OSKit was developed outside the University of Utah, by large free operating
systems projects—most notable are the FreeBSD, Linux, Mach and NetBSD projects—the OSKit proper
was developed by members of the University of Utah’s Flux Research Group, including (in alphabetical
order): Chris Alfeld, Dave Andersen, Godmar Back, Greg Benson (U.C. Davis on location at Utah), Steve
Clawson, Bryan Ford, Shantanu Goel, Mike Hibler, Jay Lepreau, Roland McGrath, Bart Robinson, Steve
Smalley (on location at Utah), Leigh Stoller, Sai Susarla, Patrick Tullmann, and Kevin Van Maren. While
many of these made huge contributions, Bryan Ford stands out for conceiving the OSKit and doing most of
the early development and architecture. The majority of the OSKit work was done under DARPA support,
which we gratefully acknowledge. Finally, the GNU build tool chain was essential, as usual.

467

468 CHAPTER 35. COPYRIGHTS AND LICENSES

35.3 Acknowledgements

Libraries that contain source code licensed under some variation of the BSD-style license generally contain
the restriction that the copyright holders of that code be acknowledged in documentation accompanying the
program. Because not all users of the OSKit need to acknowledge all of the multitudinous authors of the
available code in the OSKit, we have broken down the acknowledgement requirements on a per-library basis.
The remainder of this chapter lists each library and the license requirements of linking in that library. Note
that some licenses only show up in files that you may not need or use in that library.

We have done our best to make this accurate and to include notices as required, but have probably missed
things. If so, let us know. The source code is the final authority.

35.3.1 1liboskit_diskpart.a

Mach Operating System
Copyright (c) 1991,1990 Carnegie Mellon University
A1l Rights Reserved.

*
*

*

*

* Permission to use, copy, modify and distribute this software and its
* documentation is hereby granted, provided that both the copyright

* notice and this permission notice appear in all copies of the

* software, derivative works or modified versions, and any portions

* thereof, and that both notices appear in supporting documentation.

*
*
*
*

CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.

35.3.2 1liboskit_exec.a

Mach Operating System
Copyright (c) 1993,1989 Carnegie Mellon University
A1l Rights Reserved.

*
*

*

*

* Permission to use, copy, modify and distribute this software and its
* documentation is hereby granted, provided that both the copyright

* notice and this permission notice appear in all copies of the

* software, derivative works or modified versions, and any portions

* thereof, and that both notices appear in supporting documentation.

*
*
*
*

CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.

Copyright (c) 1995, 1994, 1993, 1992, 1991, 1990
Open Software Foundation, Inc.

*
*
*
* Permission to use, copy, modify, and distribute this software and

* its documentation for any purpose and without fee is hereby granted,

* provided that the above copyright notice appears in all copies and

* that both the copyright notice and this permission notice appear in

* supporting documentation, and that the name of ("OSF") or Open Software
* Foundation not be used in advertising or publicity pertaining to

* distribution of the software without specific, written prior permission.
*

*

*

*

*

*

*

*

OSF DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE

INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL OSF BE LIABLE FOR ANY
SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN
ACTION OF CONTRACT, NEGLIGENCE, OR OTHER TORTIOUS ACTION, ARISING
OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE

35.3.

ACKNOWLEDGEMENTS

35.3.3 liboskit freebsd {dev,net,m}.a

Copyright (c) 1982, 1986, 1991, 1993

The Regents of the University of California. All rights reserved.

(c) UNIX System Laboratories, Inc.

All or some portions of this file are derived from material licensed
to the University of California by American Telephone and Telegraph
Co. or Unix System Laboratories, Inc. and are reproduced herein with
the permission of UNIX System Laboratories, Inc.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software
must display the following acknowledgement:

This product includes software developed by the University of
California, Berkeley and its contributors.

4. Neither the name of the University nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ‘‘AS IS’’ AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

469

Portions Copyright (c) 1993 by Digital Equipment Corporation.

Permission to use, copy, modify, and distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies, and that
the name of Digital Equipment Corporation not be used in advertising or
publicity pertaining to distribution of the document or software without
specific, written prior permission.

THE SOFTWARE IS PROVIDED "AS IS" AND DIGITAL EQUIPMENT CORP. DISCLAIMS ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL DIGITAL EQUIPMENT
CORPORATION BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

Copyright (c) David L. Mills 1993, 1994 *
*

Permission to use, copy, modify, and distribute this software and its *
documentation for any purpose and without fee is hereby granted, provided *
that the above copyright notice appears in all copies and that both the *
copyright notice and this permission notice appear in supporting *
documentation, and that the name University of Delaware not be used in *
advertising or publicity pertaining to distribution of the software *
without specific, written prior permission. The University of Delaware *
makes no representations about the suitability this software for any *
purpose. It is provided "as is" without express or implied warranty. *

470 CHAPTER 35. COPYRIGHTS AND LICENSES

Copyright 1994, 1995 Massachusetts Institute of Technology

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that both the above copyright notice and this
permission notice appear in all copies, that both the above
copyright notice and this permission notice appear in all
supporting documentation, and that the name of M.I.T. not be used
in advertising or publicity pertaining to distribution of the
software without specific, written prior permission. M.I.T. makes
no representations about the suitability of this software for any
purpose. It is provided "as is" without express or implied
warranty.

THIS SOFTWARE IS PROVIDED BY M.I.T. ‘‘AS IS’’. M.I.T. DISCLAIMS
ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; L0OSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY QOUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

* EISA bus device definitions

*

* Copyright (c) 1995 Justin T. Gibbs.

* All rights reserved.

*

* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

* 1. Redistributions of source code must retain the above copyright

* notice immediately at the beginning of the file, without modification,
* this list of conditions, and the following disclaimer.

* 2, Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in the

* documentation and/or other materials provided with the distribution.

* 3. Absolutely no warranty of function or purpose is made by the author
* Justin T. Gibbs.

* 4. Modifications may be freely made to this file if the above conditions
* are met.

Copyright (c) 1995 Gunther Schadow. All rights reserved.

*
*
* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

* 1. Redistributions of source code must retain the above copyright

* notice, this list of conditions and the following disclaimer.

* 2, Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in the

* documentation and/or other materials provided with the distribution.

* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:

* This product includes software developed by Gunther Schadow.

* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.

*
*
*
*

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ‘‘AS IS’’ AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.

ACKNOWLEDGEMENTS

IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY QUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

471

Copyright (C) 1994 by Rodney W. Grimes, Milwaukie, Oregon 97222
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer as

the first lines of this file unmodified.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software
must display the following acknowledgement:

This product includes software developed by Rodney W. Grimes.

4. The name of the author may not be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY RODNEY W. GRIMES ¢‘AS IS’’ AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL RODNEY W. GRIMES BE LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Copyright (c) 1994-1996 Greg Ungerer (gerg@stallion.oz.au).
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software
must display the following acknowledgement:

This product includes software developed by Greg Ungerer.

4. Neither the name of the author nor the names of any co-contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ‘AS IS’’ AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

472 CHAPTER 35. COPYRIGHTS AND LICENSES

Copyright (c) 1991-1995 S<F8>ren Schmidt
All rights reserved.

*
*
*
* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

* 1. Redistributions of source code must retain the above copyright

* notice, this list of conditions and the following disclaimer

* in this position and unchanged.

* 2. Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in the

* documentation and/or other materials provided with the distribution.

* 3. The name of the author may not be used to endorse or promote products
* derived from this software withough specific prior written permission

*

*

*

*

*

*

*

*

*

*

*

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ‘‘AS IS’’ AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY QUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright (c) 1993 Christopher G. Demetriou
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The name of the author may not be used to endorse or promote products
derived from this software withough specific prior written permission

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ‘‘AS IS’’ AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY QUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright (c) 1994, Garrett A. Wollman. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS °‘AS IS’’ AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

35.3. ACKNOWLEDGEMENTS 473

* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE

* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT QOF SUBSTITUTE GOODS

* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.

Copyright (c) 1993 Andrew Moore, Talke Studio
All rights reserved.

*
*

*

* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

* 1. Redistributions of source code must retain the above copyright

* notice, this list of conditions and the following disclaimer.

* 2. Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in the

* documentation and/or other materials provided with the distribution.

* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:

* This product includes software developed by the University of

* California, Berkeley and its contributors.

* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software

* without specific prior written permission.

*
*
*
*
*
*
*
*
*
*
*
*

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ¢ ‘AS IS’’ AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Copyright (C) 1992-1994 by Joerg Wunsch, Dresden
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) ‘‘AS IS’’ AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR(S) BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

* Copyright (c) 1992, 1995 Hellmuth Michaelis and Joerg Wunsch.

474 CHAPTER 35. COPYRIGHTS AND LICENSES

Copyright (c) 1992, 1993 Brian Dunford-Shore and Holger Veit.
Copyright (C) 1992, 1993 Soeren Schmidt.
All rights reserved.

For the sake of compatibility, portions of this code regarding the
X server interface are taken from Soeren Schmidt’s syscons driver.

This code is derived from software contributed to 386BSD by
Holger Veit.

This code is derived from software contributed to Berkeley by
William Jolitz and Don Ahn.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software
must display the following acknowledgement:

This product includes software developed by

Hellmuth Michaelis, Brian Dunford-Shore, Joerg Wunsch, Holger Veit
and Soeren Schmidt.

4. The name authors may not be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHORS ‘‘AS IS’’ AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY QUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

* O K K X X K X K K X X K K K K K X X ¥ K K K K K ¥ ¥ K K K X ¥ ¥ ¥ ¥ K ¥ ¥ ¥ * * *

Copyright (c) 1995 Mark Tinguely and Jim Lowe
All rights reserved.

*
*
*
* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

* 1. Redistributions of source code must retain the above copyright

* notice, this list of conditions and the following disclaimer.

* 2, Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in the

* documentation and/or other materials provided with the distribution.

* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:

* This product includes software developed by Mark Tinguely and Jim Lowe

* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.

*
*
*
*
*
*
*
*

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ‘‘AS IS’’ AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

35.3. ACKNOWLEDGEMENTS

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Copyright (c) 1995 Bruce D. Evans.
All rights reserved.

*
*

*

* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

* 1. Redistributions of source code must retain the above copyright

* notice, this list of conditions and the following disclaimer.

* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the

* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the author nor the names of contributors

* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
*
*
*
*
*
*
*
*
*
*
*

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ¢‘AS IS’’ AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Copyright (c) 1989, 1990 William F. Jolitz
Copyright (c) 1990 The Regents of the University of California.
All rights reserved.

This code is derived from software contributed to Berkeley by
William Jolitz.

*
*

*

*

*

*

*

* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

* 1. Redistributions of source code must retain the above copyright

* notice, this list of conditions and the following disclaimer.

* 2, Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in the

* documentation and/or other materials provided with the distribution.

* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:

* This product includes software developed by the University of

* California, Berkeley and its contributors.

* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software

* without specific prior written permission.

*
*
*
*
*
*
*
*
*
*
*
*

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ¢ ‘AS IS’’ AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

475

476 CHAPTER 35. COPYRIGHTS AND LICENSES

Device driver for Specialix range (SI/XIO) of serial line multiplexors.
’C’ definitions for Specialix serial multiplex driver.

Copyright (C) 1990, 1992 Specialix International,
Copyright (C) 1993, Andy Rutter <andy@acronym.co.uk>
Copyright (C) 1995, Peter Wemm <peter@haywire.dialix.com>

Derived from: Sun0S 4.x version

*
*
*
*
*
*
*
*
*
* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

* 1. Redistributions of source code must retain the above copyright

* notices, this list of conditions and the following disclaimer.

* 2. Redistributions in binary form must reproduce the above copyright

* notices, this list of conditions and the following disclaimer in the

* documentation and/or other materials provided with the distribution.

* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:

* This product includes software developed by Andy Rutter of

* Advanced Methods and Tools Ltd. based on original information

* from Specialix International.

* 4. Neither the name of Advanced Methods and Tools, nor Specialix

* International may be used to endorse or promote products derived from

* this software without specific prior written permission.

*
*
*
*
*

THIS SOFTWARE IS PROVIDED BY ‘‘AS IS’’ AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE AUTHORS BE LIABLE.

Copyright (c) 1990 The Regents of the University of California.
All rights reserved.

Copyright (c) 1994 John S. Dyson

All rights reserved.

This code is derived from software contributed to Berkeley by
William Jolitz.

*
*

*

*

*

*

*

*

* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

* 1. Redistributions of source code must retain the above copyright

* notice, this list of conditions and the following disclaimer.

* 2. Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in the

* documentation and/or other materials provided with the distribution.

* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:

* This product includes software developed by the University of

* California, Berkeley and its contributors.

* 4, Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software

* without specific prior written permission.

*
*
*
*
*
*
*
*
*
*
*
*

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ¢ ‘AS IS’’ AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

ACKNOWLEDGEMENTS

Copyright (c) 1993 Andrew Herbert.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The name Andrew Herbert may not be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY ‘‘AS IS’’ AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL I BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY QUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

477

Copyright (c) 1995 Jean-Marc Zucconi
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer

in this position and unchanged.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. The name of the author may not be used to endorse or promote products
derived from this software withough specific prior written permission

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ‘‘AS IS’’ AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright (C) 1995 by Pavel Antonov, Moscow, Russia.
Copyright (C) 1995 by Andrey A. Chernov, Moscow, Russia.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHORS ‘‘AS IS’’ AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

478 CHAPTER 35. COPYRIGHTS AND LICENSES

ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

* K X K X X X K

* Copyright (c) 1993 Daniel Boulet
*x Copyright (c) 1994 Ugen J.S.Antsilevich

x Copyright (c) 1994 Wolfgang Stanglmeier. All rights reserved.

**% Redistribution and use in source and binary forms, with or without

** modification, are permitted provided that the following conditions

** are met:

**x 1. Redistributions of source code must retain the above copyright

** notice, this list of conditions and the following disclaimer.

%% 2. Redistributions in binary form must reproduce the above copyright

** notice, this list of conditions and the following disclaimer in the

** documentation and/or other materials provided with the distribution.

*% 3. The name of the author may not be used to endorse or promote products
** derived from this software without specific prior written permission.

+x* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ‘‘AS IS’’ AND ANY EXPRESS OR

*% IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
*% OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
*x IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,

x INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
*x NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
% DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

x (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
*x THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright (c) 1995 Jason R. Thorpe.
All rights reserved.

*
*

*

* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

* 1. Redistributions of source code must retain the above copyright

* notice, this list of conditions and the following disclaimer.

* 2, Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in the

* documentation and/or other materials provided with the distribution.

* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:

* This product includes software developed for the NetBSD Project

* by Jason R. Thorpe.

* 4, The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.

*
*
*
*
*
*
*
*
*
*
*
*

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ‘‘AS IS’’ AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

ACKNOWLEDGEMENTS

Copyright (c) 1992 Terrence R. Lambert.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software
must display the following acknowledgement:

This product includes software developed by Terrence R. Lambert.

4. The name Terrence R. Lambert may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY TERRENCE R. LAMBERT ‘‘AS IS’’ AND ANY

EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE TERRENCE R. LAMBERT BE LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

479

Copyright (c) 1994 Adam Glass
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software
must display the following acknowledgement:

This product includes software developed by Adam Glass.

4. The name of the author may not be used to endorse or promote products
derived from this software without specific prior written permission

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ‘‘AS IS’’ AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY QUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright (c) 1993 Winning Strategies, Inc.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

480

CHAPTER 35. COPYRIGHTS AND LICENSES

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software
must display the following acknowledgement:

This product includes software developed by Winning Strategies, Inc.

4. The name of the author may not be used to endorse or promote products
derived from this software withough specific prior written permission

IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

*
*
*
*
*
*
*
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ‘‘AS IS’’ AND ANY EXPRESS OR
*
*
*
*
*
*
*
*
*

Copyright (c) 1995 Alex Tatmanjants <alex@elvisti.kiev.ua>
at Electronni Visti IA, Kiev, Ukraine.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ‘‘AS IS’’ AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Copyright (c) 1995
Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

must display the following acknowledgement:

This product includes software developed by Bill Paul.

4. Neither the name of the author nor the names of any co-contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ‘‘AS IS’’ AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

*
*
*
*
*
*
*
*
*
*
*
* 3. All advertising materials mentioning features or use of this software
*
*
*
*
*
*
*
*
*
*
*

35.3. ACKNOWLEDGEMENTS

* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

* SUCH DAMAGE.

Copyright (C) 1996 Peter Wemm <peter@freebsd.org>.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ¢‘AS IS’’ AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Copyright (c) 1992, 1993, 1994 Henry Spencer.
Copyright (c) 1992, 1993, 1994
The Regents of the University of California. All rights reserved.

This code is derived from software contributed to Berkeley by
Henry Spencer.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software
must display the following acknowledgement:

This product includes software developed by the University of
California, Berkeley and its contributors.

4. Neither the name of the University nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ‘‘AS IS’’ AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

481

482 CHAPTER 35. COPYRIGHTS AND LICENSES

Copyright (c) 1993, 1994 by Chris Provenzano, proven®@mit.edu
Copyright (c) 1995 by John Birrell <jb@cimlogic.com.au>
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software
must display the following acknowledgement:

This product includes software developed by Chris Provenzano.

4. The name of Chris Provenzano may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY CHRIS PROVENZAND ‘‘AS IS’’ AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL CHRIS PROVENZANO BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Copyright (c) 1994 by Chris Provenzano, proven@mit.edu
All rights reserved.

*
*
*
* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

* 1. Redistributions of source code must retain the above copyright

* notice, this list of conditions and the following disclaimer.

* 2. Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in the

* documentation and/or other materials provided with the distribution.

* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:

* This product includes software developed by Chris Provenzano.

* 4. The name of Chris Provenzano may not be used to endorse or promote

* products derived from this software without specific prior written

* permission.

*

*

*

*

*

*

*

*

*

*

*

*

THIS SOFTWARE IS PROVIDED BY CHRIS PROVENZANDO ¢‘AS IS’’ AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL CHRIS PROVENZANO BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; L0OSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Copyright (c) 1990 William F. Jolitz, TeleMuse
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

35.3. ACKNOWLEDGEMENTS 483

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software
must display the following acknowledgement:

This software is a component of "386BSD" developed by

William F. Jolitz, TeleMuse.

4. Neither the name of the developer nor the name "386BSD"

may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS A COMPONENT OF 386BSD DEVELOPED BY WILLIAM F. JOLITZ
AND IS INTENDED FOR RESEARCH AND EDUCATIONAL PURPOSES ONLY. THIS
SOFTWARE SHOULD NOT BE CONSIDERED TO BE A COMMERCIAL PRODUCT.

THE DEVELOPER URGES THAT USERS WHO REQUIRE A COMMERCIAL PRODUCT

NOT MAKE USE OF THIS WORK.

BY WILLIAM F. JOLITZ, WE RECOMMEND THE USER STUDY WRITTEN

REFERENCES SUCH AS THE "PORTING UNIX TO THE 386" SERIES

(BEGINNING JANUARY 1991 "DR. DOBBS JOURNAL", USA AND BEGINNING

JUNE 1991 "UNIX MAGAZIN", GERMANY) BY WILLIAM F. JOLITZ AND

LYNNE GREER JOLITZ, AS WELL AS OTHER BOOKS ON UNIX AND THE

ON-LINE 386BSD USER MANUAL BEFORE USE. A BOOK DISCUSSING THE INTERNALS

OF 386BSD ENTITLED "386BSD FROM THE INSIDE OUT" WILL BE AVAILABLE LATE 1992.

THIS SOFTWARE IS PROVIDED BY THE DEVELOPER ‘AS IS’’ AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE DEVELOPER BE LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* FOR USERS WHO WISH TO UNDERSTAND THE 386BSD SYSTEM DEVELOPED
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Copyright (c) 1982, 1989, 1993
The Regents of the University of California. All rights reserved.

*
*
*
* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

* 1. Redistributions of source code must retain the above copyright

* notice, this list of conditions and the following disclaimer.

* 2, Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in the

* documentation and/or other materials provided with the distribution.

* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:

* This product includes software developed by the University of

* California, Berkeley and its contributors.

* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software

* without specific prior written permission.

*
*
*
*
*
*
*
*
*

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ‘‘AS IS’’ AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

484

CHAPTER 35. COPYRIGHTS AND LICENSES

* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.

The author of this software is David M. Gay.
Copyright (c) 1991 by AT&T.

*
*
*
*
* Permission to use, copy, modify, and distribute this software for any

* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy

* or modification of this software and in all copies of the supporting

* documentation for such software.

*

*

*

*

*

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR AT&T MAKES ANY
REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

35.3.4 1liboskit_kern.a

Mach Operating System

Copyright (c) 1991,1990 Carnegie Mellon University
Copyright (c) 1991 IBM Corporation

All Rights Reserved.

*
*
*
*
*
* Permission to use, copy, modify and distribute this software and its
* documentation is hereby granted, provided that both the copyright

* notice and this permission notice appear in all copies of the

* software, derivative works or modified versions, and any portions

* thereof, and that both notices appear in supporting documentation,

* and that the name IBM not be used in advertising or publicity

* pertaining to distribution of the software without specific, written
* prior permission.

*
*
*
*

CARNEGIE MELLON AND IBM ALLOW FREE USE OF THIS SOFTWARE IN ITS "AS IS"
CONDITION. CARNEGIE MELLON AND IBM DISCLAIM ANY LIABILITY OF ANY KIND FOR
ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.

Copyright (c) 1988,1989 Prime Computer, Inc. Natick, MA 01760

A1l Rights Reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appears in all copies and
that both the copyright notice and this permission notice appear in
supporting documentation, and that the name of Prime Computer,

Inc. not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

THIS SOFTWARE IS PROVIDED "AS IS", AND PRIME COMPUTER, INC. DISCLAIMS
ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
IN NO EVENT SHALL PRIME COMPUTER, INC. BE LIABLE FOR ANY SPECIAL,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN ACTION OF CONTRACT,
NEGLIGENCE, OR OTHER TORTIOUS ACTION, ARISING OUR OF OR IN CONNECTION
WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

35.3. ACKNOWLEDGEMENTS 485

35.3.5 1liboskit_libc.a

Mach Operating System
Copyright (c) 1993 Carnegie Mellon University
A1l Rights Reserved.

*
*

*

*

* Permission to use, copy, modify and distribute this software and its
* documentation is hereby granted, provided that both the copyright

* notice and this permission notice appear in all copies of the

* software, derivative works or modified versions, and any portions

* thereof, and that both notices appear in supporting documentation.

*
*
*
*

CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.

Copyright (c) 1987, 1993
The Regents of the University of California. All rights reserved.

*
*
*
* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

* 1. Redistributions of source code must retain the above copyright

* notice, this list of conditions and the following disclaimer.

* 2. Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in the

* documentation and/or other materials provided with the distribution.

* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:

* This product includes software developed by the University of

* California, Berkeley and its contributors.

* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software

* without specific prior written permission.

*

*

*

*

*

*

*

*

*

*

*

*

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ‘‘AS IS’’ AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Copyright (c) 1991 by AT&T.

Permission to use, copy, modify, and distribute this software for any
purpose without fee is hereby granted, provided that this entire notice
is included in all copies of any software which is or includes a copy
or modification of this software and in all copies of the supporting
documentation for such software.

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR AT&T MAKES ANY
REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

Copyright (c) 1994, Garrett Wollman

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright

486 CHAPTER 35. COPYRIGHTS AND LICENSES

* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the

* documentation and/or other materials provided with the distribution.

* THIS SOFTWARE IS PROVIDED BY THE CONTRIBUTORS ‘‘AS IS’’ AND

* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE

* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

* SUCH DAMAGE.

35.3.6 liboskit_wimp.a

* Copyright (c) 1987 Bellcore

* All Rights Reserved

* Permission is granted to copy or use this program, EXCEPT that it

* may not be sold for profit, the copyright notice must be reproduced
* on copies, and credit should be given to Bellcore where it is due.

* BELLCORE MAKES NO WARRANTY AND ACCEPTS NO LIABILITY FOR THIS PROGRAM.

Scout Version 1.0

Copyright 1998 Arizona Board of Regents on behalf of

The University of Arizona

All Rights Reserved

USE & RESTRICTIONS

Permission is granted to use, copy and modify this software and any
documentation for any use, subject to the following restrictiomns:

1. The above copyright notice appears on all copies and documentation.
2. Neither this software and its name nor the names "Arizona Board
of Regents" and "The University of Arizona" shall be used in any
advertisements or publicity programs.

NO WARRANTY

This software is provided "as is" and without warranty of any kind,
express, implied or otherwise, including without limitation, any
warranty of merchantability or fitness for a special purpose. In no
event shall the Arizona Board of Regents on behalf of the University
of Arizona be liable for any special, incidental, indirect or
consequential damages of any kind, or any damages whatsoever resulting
from loss of use, data or profits, whether or not advised of the
possibility of damage, and on any theory of liability, arising out of
or in connection with the use or performance of this software.

35.3.

ACKNOWLEDGEMENTS

35.3.7 Various OSKit header files

oskit/page.h,
oskit/queue.h,
oskit/diskpart/dec.h,
oskit/diskpart/vtoc.h,
oskit/diskpart/pcbios.h,
oskit/diskpart/omron.h,
oskit/x86/asm.h,
oskit/x86/base _trap.h,
oskit/x86/eflags.h,
oskit/x86/fpreg.h,
oskit/x86/paging.h,
oskit/x86/pio.h,
oskit/x86/procreg.h,
oskit/x86/seg.h,
oskit/x86/spin lock.h,
oskit/x86/trap.h,
oskit/x86/tss.h,
oskit/x86/c/setjmp.h,
oskit/x86/c/stdarg.h,
oskit/x86/pc/keyboard.h,
oskit/x86/pc/pic.h:

/%

*

Mach Operating System
Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University.
A1l Rights Reserved.

Permission to use, copy, modify and distribute this software and its
documentation is hereby granted, provided that both the copyright
notice and this permission notice appear in all copies of the
software, derivative works or modified versions, and any portions

thereof, and that both notices appear in supporting documentation.

CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.

Carnegie Mellon requests users of this software to return to

Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
School of Computer Science
Carnegie Mellon University

Pittsburgh PA 15213-3890

any improvements or extensions that they make and grant Carnegie Mellon

the rights to redistribute these changes.

487

488 CHAPTER 35. COPYRIGHTS AND LICENSES

oskit/c/netdb.h,
oskit/c/resolv.h,
oskit/c/signal.h,
oskit/c/sys/mount.h,
oskit/c/netinet/in.h,
oskit/c/arpa/nameser.h,
oskit/c/arpa/inet.h,
oskit/diskpart/disklabel.h,
oskit/x86/c/float.h,
oskit/x86/c/limits.h,
oskit/x86/pc/isa.h,
oskit/x86/pc/pit.h,
oskit/x86/pc/rtc.h:

Copyright (c) 1980, 1983, 1988, 1993
The Regents of the University of California. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software
must display the following acknowledgement:

This product includes software developed by the University of
California, Berkeley and its contributors.

4. Neither the name of the University nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ¢ ‘AS IS’’ AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

* K K K K X X X X K X K X K K K X K K X ¥ K K K K X K ¥ ¥ ¥

oskit/exec/elf.h:
* Copyright (c) 1995, 1994, 1993, 1992, 1991, 1990
Open Software Foundation, Inc.

Permission to use, copy, modify, and distribute this software and

its documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appears in all copies and

that both the copyright notice and this permission notice appear in
supporting documentation, and that the name of ("OSF") or Open Software
Foundation not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

OSF DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE

INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL OSF BE LIABLE FOR ANY
SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN
ACTION OF CONTRACT, NEGLIGENCE, OR OTHER TORTIOUS ACTION, ARISING
OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE

* K K K K X K X X X K K K X X K X

35.3. ACKNOWLEDGEMENTS 489

35.3.8 1liboskit_netbsd_fs.a

Copyright (c) 1994, 1995 Charles M. Hannum. All rights reserved.

*
*
* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

* 1. Redistributions of source code must retain the above copyright

* notice, this list of conditions and the following disclaimer.

* 2, Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in the

* documentation and/or other materials provided with the distribution.

* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:

* This product includes software developed by Charles Hannum.

* 4, The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.

*

*

*

*

*

*

*

*

*

*

*

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ‘‘AS IS’’ AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright (c) 1990, 1993
The Regents of the University of California. All rights reserved.

*
*

*

* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

* 1. Redistributions of source code must retain the above copyright

* notice, this list of conditions and the following disclaimer.

* 2. Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in the

* documentation and/or other materials provided with the distribution.

* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:

* This product includes software developed by the University of

* California, Berkeley and its contributors.

* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software

* without specific prior written permission.

*
*
*
*
*
*
*
*
*
*
*
*

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ¢ ‘AS IS’’ AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Copyright (c) 1993 Christopher G. Demetriou
All rights reserved.

modification, are permitted provided that the following conditions

*
*
*
* Redistribution and use in source and binary forms, with or without
*
* are met:

*

1. Redistributions of source code must retain the above copyright

490 CHAPTER 35. COPYRIGHTS AND LICENSES

notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The name of the author may not be used to endorse or promote products
derived from this software without specific prior written permission

*
*
*
*
*
*
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ‘‘AS IS’’ AND ANY EXPRESS OR

* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.

* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,

* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND QN ANY

* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY QUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright (c) 1994 Christian E. Hopps
All rights reserved.

*
*
*
* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

* 1. Redistributions of source code must retain the above copyright

* notice, this list of conditions and the following disclaimer.

* 2, Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in the

* documentation and/or other materials provided with the distribution.

* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:

* This product includes software developed by Christian E. Hopps.

* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission

*
*
*
*
*
*
*
*
*
*
*

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ‘‘AS IS’’ AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY QUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Index

--disable-asserts, 28
--enable-debug, 28
--enable-doc, 29

--enable-hpfq, 28
--enable-linux-bogomips=VALUE, 29
--enable-profiling, 28
--enable-unixexamples, 28

_exit, 176, 305

a.out.h, 167, 402
abort, 173, 188

abs, 173

accept, 153
access, 133, 134, 177
acos, 312

acosh, 312
add_child, 430
add_listener, 79
add_timer, 443
add_wait_queue, 443
addref, 59

ALIGN, 199

alloca, 167
alloca.h, 167
allocate_condvar, 73
allocate_critical lock, 72
allocate_lock, 72
amm library, 325

amm alloc_func, 331
amm allocate, 332
amm deallocate, 333
amm destroy, 333
amm_dump, 333
amm_entry_end, 334
amm_entry_flags, 334
amm_entry_size, 334
amm_entry_start, 334
amm_entry_field, 334
amm find_addr, 334
amm_find_gen, 335
amm_free_func, 336
amm_init, 336
amm_init_gen, 337
amm_iterate, 338
amm_iterate_func, 339

491

amm_iterate_gen, 339
amm_join_func, 340
amm modify, 341
amm_protect, 341

amm _reserve, 342
amm_select, 343
amm_split_func, 343
anno.h, 282
anno_dump, 282
ANNO_ENTRY, 282
anno_entry, 282
anno_find_exact, 283
anno_find_lower, 283
anno_init, 284
ANNO_INTR, 284
anno_intr, 284

anno_intr_handler, 284

anno_table, 282
ANNO_TEXT, 282
ANNO_TRAP, 284
anno_trap, 284

anno_trap_handler, 284

asin, 312

asinh, 312

asm.h, 199

assert, 196
assert.h, 168
atan, 312

atan2, 312

atanh, 312

atexit, 173

atof, 173

atoi, 173

atol, 173

atop, 194
autoirq.report, 441
autoirq_setup, 441

base_console.h, 245

base_console_init, 245
base_cooked_termios, 247

base_cpu_init, 215
base_cpu_load, 216
base_cpu_setup, 215
base_cpuid, 216

492

base_critical, 197
base_critical_enter, 197
base_critical_leave, 197
base_gdt, 218
base_gdt_init, 219
base_gdt_load, 220
base_idt, 220
base_idt_load, 220
base_irq.h, 241
BASE_IRQ_COUNT, 241
base_irq_default_handler, 243
base_irq-handlers, 241
base_irq-init, 242
base_irq_inittab, 242
BASE_TRQ_MASTER BASE, 241
base_irqg nest, 243
BASE_TRQ_SLAVE BASE, 241
base_irq-softint_handler, 244
base_irq_softint_request, 243
base multiboot_find, 257

basemultiboot_init_cmdline, 256

basemultiboot_init._mem, 256
base_paging_init, 228
base_pdir_pa, 228
base_raw_termios, 247
base_stack.h, 217
base_stack_end, 217
BASE_STACK_SIZE, 217
base_stack_start, 217
base_trap_default_handler, 226
base_trap_handlers, 225
base_trap_init, 224
base_trap_inittab, 224
BASE_TSS, 218
base_tss, 221
base_tss_init, 221
base_tss_load, 222
base_vm.h, 214

bcopy, 174

bind, 154

blk_dev, 440
blk_size, 440

blksize size, 440
block read, 441

block write, 441
boolean.h, 46
boot_info, 254

bootp, 423

bootp library, 421
bootp_dump, 424
bootp_free, 424
bootp_gen, 423
bootpmet_info, 422
bread, 441

brelse, 441
broadcast, 70, 71
bzero, 174

c library, 165
calloc, 173, 180, 383
cbrt, 312

ceil, 312

CHAR BIT, 169
CHAR_MAX, 169
CHAR_MIN, 169
check_disk_change, 441
check _region, 442
chmod, 175

clone, 66

close, 177

com.h, 55

INDEX

com_cons_enable_receive_interrupt, 251

com_cons_flush, 250
com_cons_getchar, 249
com_cons_init, 249
com_cons_putchar, 250
commit, 64

compiler.h, 46
config.h, 46

connect, 154
cons_com_port, 245
copy, 83, 86

copyto, 63

cos, 312

cosh, 312
CPU_FAMILY_386, 208
CPU_FAMILY 486, 208
CPU_FAMILY_PENTIUM, 208
CPU_FAMILY_PENTIUM_PRO, 208
cpu-info, 208
cpu-info_dump, 210
cpu-info_format, 209
cpu_infomin, 210
CPU_TYPE_DUAL, 208
CPU_TYPE_ORIGINAL, 208
CPU_TYPE_OVERDRIVE, 208
CPUF_4MB_PAGES, 208
CPUF_CMOVCC, 209
CPUF_CMPXCHGSB, 209
CPUF_I0_BKPTS, 208
CPUF_LOCAL_APIC, 209
CPUF_MACHINE_CHECK_ARCH, 209
CPUF_MACHINE_CHECK_EXCP, 208
CPUF_MEM_RANGE_REGS, 209
CPUF_ON_CHIP_FPU, 208
CPUF_PAGE_ADDR_EXT, 208
CPUF_PAGE_GLOBAL_EXT, 209
CPUF_PENTIUM_MSR, 208

INDEX

CPUF_TS_COUNTER, 208
CPUF_VM86_EXT, 208
cpuid, 209

create, 138
ctype.h, 168
current, 439

DATA_ALIGN, 199
datasync, 133

debug.h, 196
debug_reg.h, 200
debugmsg, 197
del_timer, 443

dev library, 297

dev.h, 103
direct_cons_getchar, 247
direct_cons_putchar, 248
direct_cons_trygetchar, 248
disable_irq, 442

diskpart library, 391
diskpart_blkio_get_partition, 395

diskpart_blkio_lookup_bsd_string, 397

diskpart_dump, 396
diskpart_fill_entry, 395
diskpart_get_partition, 393, 394
diskpart_get_type, 398
diskpart_lookup_bsd_compat, 396
diskpart_lookup._bsd_string, 397
diskpart_read _func, 394
do_debug, 197

down, 443

drain, 92

dump_stack_trace, 197

EFL_AC, 200
EFL_AF, 200
EFL_CF, 200
EFL_DF, 200
EFL_ID, 200
EFL_IF, 200
EFL_IOPL, 200
EFL_NT, 200
EFL_OF, 200
EFL_PF, 200
EFL_RF, 200
EFL_SF, 200
EFL_TF, 200
EFL_VIF, 200
EFL_VIP, 200
EFL_VM, 200
EFL_ZF, 200
eflags.h, 200
EISA bus, 440
elf.h, 403

enable_gdb, 245
enable_irq, 442

entry, 407

erf, 312

erfc, 312

errno.h, 168

error.h, 56
EX_BAD_LAYOUT, 402
EX_CORRUPT, 402
EX_NOT_EXECUTABLE, 402
EX_WRONG_ARCH, 402

exec, 402

exec library, 401

exec.h, 402

exec_info, 406
exec_info_t, 406
exec_load, 408
exec_load_aout, 409
exec_load_elf, 408
exec_read_exec_func_t, 404
exec_read_func_t, 404
EXEC_SECTYPE_ALLOC, 406
EXEC_SECTYPE_AQUT_STRTAB, 406
EXEC_SECTYPE_AQUT_SYMTAB, 406
EXEC_SECTYPE DEBUG, 406
EXEC_SECTYPE_EXECUTE, 406
EXEC_SECTYPE_LOAD, 406
EXEC_SECTYPE_PROT_MASK, 406
EXEC_SECTYPE READ, 406
exec_sectype_t, 406
EXEC_SECTYPE_WRITE, 406
exit, 173, 188

exp, 312

expml, 312

EXT, 199

F_OK, 176

fabs, 312

FALSE, 46
far_pointer_16, 202
far_pointer_32, 202
far_ptr.h, 201

fchmod, 175

fclose, 172

fcntl.h, 169

feof, 172

fgetc, 172

fgets, 172

fill_ descriptor, 203
fill_ descriptor_base, 203
fill_ descriptor_limit, 203
fill_ gate, 203

fill irq-gate, 241
float.h, 169

493

494

floor, 312

flow, 93

flush, 93

fmod, 312

fopen, 172

format, 407
fp_reg.h, 201
fprintf, 172

fputc, 172

fputs, 172

fread, 172
free, 173, 181, 383
free_dma, 442
free_irq, 442
freebsd.h, 416, 448
freebsd_c library, 307
freebsd_dev library, 447
freebsd.m library, 311
freebsd net library, 415
frexp, 312
fs_delay, 145, 146
fs_free, 145, 150
fs_gettime, 145, 147
fs_init, 303
fs_linux_ init, 411
fs_linux mount, 411
fsmalloc, 145, 149
fs_mount, 305

fs_mount, fs_unmount, 305

fs netbsd_init, 413
fs netbsdmount, 413
fs_panic, 145, 147
fs_realloc, 145, 149
fs_release, 303
fs_tsleep, 145, 148
fs_unmount, 305
fs_vprintf, 145, 146
fs_vsprintf, 145, 146
fs_wakeup, 145, 148
fscanf, 172

fseek, 172

fsread library, 399
fsread FSTYPE open, 400
fsread_open, 400
fstat, 175

ftell, 172

furite, 172

gamma, 312

GATE_ENTRY, 203
gate_init, 212
gate_init.h, 203
gate_init_entry, 203
GATE_INITTAB_BEGIN, 203

GATE_INITTAB_END, 203
gdb_breakpoint, 275
gdb_com_port, 245
gdb_copyin, 272
gdb_copyout, 273
gdb_pc_com_init, 280
gdb_serial exit, 277
gdb_serial getchar, 278
gdb_serial_putchar, 278
gdb_serial_puts, 279
gdb_serial_recv, 280
gdb_serial_send, 280
gdb_serial signal, 276
gdb_set_trace_flag, 274
gdb_signal, 274
gdb_state, 271
gdb_trap, 271
gdb_trap_recover, 274
get_dr0, 201

get_dri, 201
get_dr2, 201
get_dr3, 201

get_dre6, 201
get_dr7, 201

get metio, 432
getattr, 91

getblk, 441
getblocksize, 80
getchar, 172
getdirentries, 141
getenv, 173
getfile, 144
getfs, 133, 136

getid, 128
getpeername, 156
getroot, 129, 130

gets, 172
getsize, 77, 80, 81
getsockname, 156

getsockopt, setsockopt, 157

GFP_ATOMIC, 442
GFP_BUFFER, 442
GFP_DMA, 442
GFP_KERNEL, 442
GFP_NFS, 442
GFP_NOBUFFER, 442
GFP_USER, 442
gprof library, 387

hardsect_size, 440
HAVE_CODE16, 46
HAVE_CR4, 46
HAVE_DEBUG_REGS, 46
HAVE _NORETURN, 47

INDEX

HAVE P2ALIGN, 46

HAVE_PACKED_STRUCTS, 46

HAVE_PURE, 47

HAVE STDCALL, 47
HAVE_WORKING_BSS, 46
here, 197
hexdump, 172, 189
hexdumpb, 189
hexdumpw, 189

high memory, 440
hpfq library, 425
hypot, 312

i16_base_gdt_init, 219
i16_base_gdt_load, 220
i16_enter_pmode, 210
i16_leave_pmode, 211
ilogb, 312

inb, 202

inb_p, 202

index, 174

init_dp, 407

inl, 202

inl_p, 202

INT_MAX, 169
INT_MIN, 169
intr_count, 440

inw, 202

inw_p, 202
iodelay, 202
irq2dev_map, 440
irq_list.h, 206
irq-master_base, 241
irqg_slave_base, 241
isalnum, 168
isalpha, 168
isascii, 168
iscntrl, 168
isdigit, 168
isgraph, 168
islower, 168

isnan, 312

ISPL, 203

isprint, 168
ispunct, 168
isspace, 168
isupper, 168
isxdigit, 168

jo, 312
j1, 312
j2, 312
jiffies, 439
jmp_buf, 171

495

kern library, 191
KERNEL_16_CS, 218
KERNEL_16_DS, 219
KERNEL_CS, 218
KERNEL DS, 218
KERNELMODE, 203
keyboard.h, 206
kfree, 442
kmalloc, 442
kstat, 440
kvtolin, 214
kvtophys, 214

ldexp, 312

LEXT, 199

lgamma, 312
liboskit_amm.a, 325
liboskit_bootp.a, 421
liboskit_c.a, 165
liboskit_dev.a, 297
liboskit_diskpart.a, 391
liboskit_exec.a, 401
liboskit freebsd.c.a, 307
liboskit freebsd dev.a, 447
liboskit_freebsdm.a, 311
liboskit_freebsd net.a, 415
liboskit_fsread.a, 399
liboskit_gprof.a, 387
liboskit_hpfq.a, 425
liboskit kern.a, 191
liboskit_linux._dev.a, 435
liboskit_ linux fs.a, 411
liboskit 1mm.a, 313
liboskit memdebug.a, 381
liboskit netbsd_fs.a, 413
liboskit_posix.a, 301
liboskit_smp.a, 291
liboskit_svm.a, 345
liboskit_threads.a, 349
liboskit_video.a, 459
liboskit_wimpi.a, 453
limits.h, 169
linear-base-va, 214
LINEAR_CS, 219

LINEARDS, 219

link, 138

lintokv, 214

linux_dev library, 435
linux_fs library, 411
listen, 155

1mm library, 313

1mm add_free, 318
lmm_add_region, 317

1mm alloc, 319

496

Imm_alloc_aligned, 320
Imm_alloc_gen, 321
Imm_alloc_page, 321
lmm avail, 323
1mm_dump, 324

lmm find free, 323
lmm _free, 322
1mm_free_page, 322
lmm_init, 317
LMM_PRI_16MB, 239
LMM_PRI_1MB, 239
LMM_PRI_HIGH, 239
lmm remove_free, 319
LMMF_16MB, 239
LMMF_1MB, 239
lock, 69
lockregion, 64
log, 312

logl10, 312

loglp, 312

logb, 312
LONG_MAX, 169
LONG_MIN, 169
longjmp, 171
lookup, 137
lookupi, 129, 131
lseek, 177

lstat, 175

machine/types.h, 47
malloc, 173, 178, 179, 383
malloc.h, 170
malloc_lmm, 178
mallocf, 182

map, 83

math.h, 171
mem_lock, 185
mem_unlock, 185
memalign, 179, 383
memalignf, 183

memcpy, 173

memdebug library, 381
memdebug_bogosity, 386
memdebug_check, 384
memdebug_mark, 384
memdebug_printf, 385
memdebug_ptrcheck, 385
memdebug_ptrchk, 385
memdebug_store_backtrace, 386
memdebug_sweep, 385
memmove, 173

memset, 173

mkdir, 140, 175

mkfifo, 175

mknod, 142, 175

mmap, 175

modf, 312

moncontrol, 388
monstartup, 388
morecore, 184
mprotect, 175

Multiboot Specification, 258
multiboot.h, 254
multiboot_addr_range, 254
multiboot_header, 254
multiboot_info, 254
multiboot main, 255
multiboot module, 254
munmap, 175
mustcalloc, 173, 180
mustmalloc, 173, 179

netbsd_fs library, 413
netdb.h, 171
nextafter, 312
nlist, 403

NMAGIC, 402

ntohl, 189

ntohs, 189

OMAGIC, 402

open, 133, 135
OSENV_AUTO_SIZE, 104
osenv_intr disable, 112
osenv_intr_enable, 112
osenv_intr_enabled, 113
osenv_io_alloc, 110
osenv_io_avail, 110
osenv_io_free, 111
osenv_irqg_alloc, 113
osenv_irq.disable, 114
osenv_irq.enable, 114
osenv_irq_free, 114
osenv_irq_pending, 115
OSENV_IRQ-SHAREABLE, 113
osenv_isabus_addchild, 125
osenv_isabus_remchild, 125
osenv_isadma_alloc, 109
osenv_isadma _free, 109
OSENV_ISADMA_MEM, 105
osenv_log, 120
osenv.mem_alloc, 105
osenv._mem_free, 106
osenv_mem_get_phys, 106
osenvmem get_virt, 107
osenv_mem map_phys, 108
osenv_mem_phys_max, 107
osenvmemflags_t, 104

INDEX

OSENV_NONBLOCKING, 105
osenv_panic, 121
OSENV_PHYS_CONTIG, 105
OSENV_PHYS_WIRED, 105
osenv_process_lock, 370
osenv_process_unlock, 370
osenv_sleep, 116
osenv_sleep_init, 116
osenv_timer_init, 118
osenv_timer_register, 118
osenv_timer_spin, 119
osenv_timer_unregister, 119
OSENV_VIRT_EQ_PHYS, 105
osenv_vlog, 120
osenv_vpanic, 120
osenv_wakeup, 117
0SENV_X861MB_MEM, 105
oskit_absio, 76
oskit_absio_getsize, 77
oskit_absio_read, 76
oskit_absio_setsize, 77
oskit_absio_write, 76
oskit_addr._t, 47
oskit_asyncio, 79
OSKIT_BEGIN_DECLS, 46
oskit_blkio, 80
oskit_blkio_getblocksize, 80
oskit_blkio_getsize, 81
oskit_blkio_read, 80
oskit blkio_setsize, 82
oskit blkio_write, 81
oskit_bmod _file_set_contents, 286
oskit_bmod_init, 286
oskit_bmod_lock, 286
oskit_bmod_unlock, 286
oskit_bool._t, 47
oskit_bufio, 83
OSKIT_COMCALL, 55
OSKIT_COMDECL, 56
OSKIT_COMDECL .U, 56
OSKIT_COMDECL.V, 56
oskit_condvar, 70
oskit_condvar_broadcast, 71
oskit_condvar_signal, 70
oskit_condvar_wait, 70
oskit_dev_init, 297
oskit_dev_t, 48

oskit. dir, 137
oskit_dir_create, 138
oskit_dir_getdirentries, 141
oskit_dir_link, 138
oskit_dir_lookup, 137
oskit_dir mkdir, 140
oskit_dir mknod, 142

oskit_dir_rename, 139
oskit_dir_reparent, 143
oskit_dir_rmdir, 140
oskit_dir_symlink, 142
oskit_dir_unlink, 139
oskit_dirent, 141
oskit_dirents, 141
0SKIT_E2BIG, 56
OSKIT_E_ABORT, 56
0SKIT_E_ACCESSDENIED, 56
0SKIT_E_FAIL, 56
OSKIT_E_INVALIDARG, 56
OSKIT_E_NOINTERFACE, 56
OSKIT_E_NOTIMPL, 56
OSKIT_E_OUTOFMEMORY, 56
OSKIT_E_POINTER, 56
0SKIT_E_UNEXPECTED, 56
OSKIT_EACCES, 56
OSKIT_EADDRINUSE, 58
OSKIT_EADDRNOTAVAIL, 58
OSKIT_EAFNOSUPPORT, 58
OSKIT_EAGAIN, 56
0SKIT_EALREADY, 58
0SKIT_EBADF, 56
0SKIT_EBADMSG, 57
0SKIT_EBUSY, 56
OSKIT_ECANCELED, 57
OSKIT_ECHILD, 56
OSKIT_ECONNABORTED, 58
OSKIT_ECONNREFUSED, 58
OSKIT_ECONNRESET, 58
OSKIT_EDEADLK, 56
OSKIT_EDESTADDRREQ, 58
0SKIT_EDOM, 56
0SKIT_EDQUOT, 58
0SKIT_EEXIST, 56
0SKIT_EFAULT, 57
OSKIT_EFBIG, 57
OSKIT_EHOSTUNREACH, 58
OSKIT_EIDRM, 58
OSKIT_EILSEQ, 58
OSKIT_EINPROGRESS, 57
0SKIT_EINTR, 57
0SKIT_EINVAL, 57
OSKIT_EIO, 57
OSKIT_EISCONN, 58
OSKIT_EISDIR, 57
0SKIT_ELOOP, 58
OSKIT_EMFILE, 57
OSKIT_EMLINK, 57
OSKIT_EMSGSIZE, 57
OSKIT_EMULTIHOP, 58
OSKIT_ENAMETOOLONG, 57
0SKIT_END_DECLS, 46

498

OSKIT_ENETDOWN, 58
OSKIT_ENETUNREACH, 58
OSKIT_ENFILE, 57
0SKIT_ENOBUFS, 58
OSKIT_ENODATA, 58
0SKIT_ENODEV, 57
OSKIT_ENOENT, 57
OSKIT_ENOEXEC, 57
OSKIT_ENOLCK, 57
OSKIT_ENOLINK, 58
0SKIT_ENOMEM, 57
0SKIT_ENOMSG, 58
OSKIT_ENOPROTOOPT, 58
OSKIT_ENOSPC, 57
OSKIT_ENOSR, 58
OSKIT_ENOSTR, 58
0SKIT_ENOSYS, 57
0SKIT_ENOTCONN, 58
OSKIT_ENQOTDIR, 57
OSKIT_ENOTEMPTY, 57
OSKIT_ENOTSOCK, 58
OSKIT_ENOTSUP, 57
0SKIT_ENOTTY, 57
OSKIT_ENXIO, 57
OSKIT_EQOPNOTSUPP, 58
OSKIT_EOVERFLOW, 58
OSKIT_EPERM, 57
OSKIT_EPIPE, 57
0SKIT_EPROTO, 58
OSKIT_EPROTONOSUPPORT, 58
O0SKIT_EPROTOTYPE, 58
OSKIT_ERANGE, 56
OSKIT_EROFS, 57
OSKIT_ERROR_CODE, 55
OSKIT_ERROR_FACILITY, 55
OSKIT_ERROR_SEVERITY, 55
oskit_error_t, 56
OSKIT_ESPIPE, 57
OSKIT_ESRCH, 57
OSKIT_ESTALE, 58
OSKIT_ETIME, 58
0SKIT_ETIMEDOQUT, 57
0SKIT_ETXTBSY, 58
OSKIT_EWOULDBLOCK, 58
OSKIT_EXDEV, 57
oskit_£32_t, 47
oskit_f64._t, 47
OSKIT_FAILED, 55

oskit file, 133

oskit file_access, 134
oskit_file_datasync, 133
oskit_file getfs, 136
oskit_file_open, 135
oskit file_readlink, 134

INDEX

oskit_file_sync, 133
oskit_filesystem, 129
oskit_filesystem getroot, 130
oskit_filesystem_ lookupi, 131
oskit_filesystem_remount, 130
oskit_filesystem statfs, 129
oskit_filesystem_sync, 130
oskit_filesystem unmount, 131
oskit_freebsd _chardev_open, 451
oskit_freebsd_init, 449

oskit _freebsd_init_devs, 449

oskit _freebsd_init_isa, 449
oskit_freebsd_init_driver, 450
oskit_freebsd net_add_default_route, 419
oskit_freebsd net_close_ether_if, 418
oskit_freebsd net_ether_if, 417
oskit_freebsd net_ifconfig, 419
oskit_freebsd net_init, 417
oskit_freebsd net_open_ether_if, 417
oskit_freebsd net_open first_ether_if, 418
oskit_freebsd xlate_errno, 451
oskit_get_call_context, 145
oskit_gid_t, 48

oskit_guid, 55

oskit_identity, 128

oskit_iid._t, 55

oskit_init_libc, 187, 309
OSKIT_INLINE, 46

oskit_ino_t, 48

oskit_ipc_call, 378

oskit_ipc_recv, 377

oskit_ipc_reply, 379

oskit_ipc_send, 377

oskit_ipc_wait, 378

oskit_iunknown, 59
oskit_linux_block open, 438
oskit_linux_block open_kdev, 438
oskit_linux_init_devs, 436
oskit_linux_init_ethernet, 436
oskit_linux_init_ethernet_name, 437
oskit_ linux_init_ide, 437
oskit_linux_init net, 436
oskit_linux_init_scsi, 437
oskit_linux_init_scsi_name, 437
oskit_linux net_open, 438
oskit_linux netdev_find, 438
oskit_lock, 69

oskit_lock_lock, 69

oskit_lockmgr, 72
oskit_lockmgr_allocate_condvar, 73
oskit_lock mgr allocate critical lock, 72
oskit_lock mgr allocate_lock, 72
oskit_lock_unlock, 69

oskit_lookup, 67, 68

INDEX

oskit_lookup_first, 67, 68
oskit mode_t, 48
oskit_msghdr, 160

oskit netio, 87
oskitnlink t, 48
OSKIT_NORETURN, 46
oskit_off_t, 48
oskit_openfile, 144
oskit_openfile getfile, 144
0SKIT_PC_ASYNC_IO, 90
0SKIT_PC_CHOWN_RESTRICTED, 90
OSKIT_PC_LINK MAX, 89
OSKIT_PC_MAX_CANON, 89
OSKIT_PC_MAX_INPUT, 89
OSKIT_PC_NAME MAX, 90
OSKIT_PC_NO_TRUNC, 90
O0SKIT_PC_PATH MAX, 90
0SKIT_PC_PIPE_BUF, 90
0SKIT_PC_PRIO_IO, 90
0SKIT_PC_SYNC_IO, 90
OSKIT_PC_VDISABLE, 90
oskit_pfq reset_path, 427
oskit_pfq_root, 426
oskit_pid-_t, 48
oskit_posixio, 88
oskit_posixio_pathconf, 89
oskit_posixio_setstat, 89
oskit_posixio_stat, 88
oskit_principal, 128
oskit_principal_getid, 128
OSKIT_PURE, 46

oskit_reg_t, 47
oskit_register, 67
oskit_s16_t, 47

oskit_s32._t, 47

oskit_s64._t, 47

oskit_s8._t, 47
OSKIT_S_FALSE, 55
OSKIT_S_OK, 55

OSKIT_S_TRUE, 55
oskit_sendsig, 288, 289
oskit_sendsig_init, 288
oskit_size._t, 47
oskit_socket, 152
oskit_socket_accept, 153
oskit_socket_bind, 154
oskit_socket_connect, 154
oskit_socket_factory_create, 152
oskit_socket_factory._t, 152
oskit_socket_getpeername, 156
oskit_socket_getsockname, 156
oskit_socket_getsockopt, 157
oskit_socket_listen, 155
oskit_socket_recvfrom, 159

499

oskit_socket_recvmsg, 159
oskit_socket_sendmsg, 160
oskit_socket_sendto, 160
oskit_socket_setsockopt, 157
oskit_socket_shutdown, 155
oskit_sreg_t, 47
oskit_ssize._t, 47
OSKIT_STAT_ATIME, 89
OSKIT_STAT_GID, 89
OSKIT_STAT_MODE, 89
OSKIT_STAT MTIME, 89
OSKIT_STAT_SIZE, 89
OSKIT_STAT_UID, 89
OSKIT_STAT UTIMES_NULL, 89
oskit_statfs, 129
OSKIT_STDCALL, 46
oskit_stream, 61
oskit_stream clone, 66
oskit_stream commit, 64
oskit_stream_copyto, 63
oskit_stream lockregion, 64
oskit_stream read, 61
oskit_stream revert, 64
oskit_stream seek, 62
oskit_stream setsize, 63
oskit_stream stat, 65
oskit_stream unlockregion, 65
oskit_stream write, 62
0SKIT_SUCCEEDED, 55
0SKIT_TCIFLUSH, 93
0SKIT_TCIOFF, 93
OSKIT_TCIOFLUSH, 93
OSKIT_TCION, 93
OSKIT_TCOFLUSH, 93
0SKIT_TCOOFF, 93
0SKIT_TCOON, 93
oskit_timespec, 147
oskit_ttystream, 91
oskit_ul6_t, 47
oskit_u32._t, 47
oskit_u64_t, 47

oskit u8._t, 47

oskit_uid._t, 48
oskit_unregister, 67
oskit_wchar_t, 48
oskit_wrap_absio, 376
oskit_wrap_asyncio, 372
oskit_wrap_blkio, 376
oskit_wrap_dir, 374
oskit_wrap_file, 374
oskit_wrap_filesystem, 375
oskit_wrap_openfile, 375
oskit_wrap_posixio, 373
oskit_wrap_socket, 371

500

oskit_wrap_sockio, 373
oskit_wrap_stream, 372
otsan, 196

outb, 202

outb_p, 202

outl, 202

outl_p, 202

outw, 202

outw_p, 202

P2ALIGN, 199

page.h, 194
page_aligned, 194
PAGE_MASK, 194
PAGE_SHIFT, 194
PAGE_SIZE, 194
paging.h, 204

paging disable, 212
paging_enable, 211
panic, 173, 188
pathconf, 88, 89
pdir_clean_range, 236
pdir_dump, 236
pdir_find_pde, 229
pdir_find pte, 230
pdir_get_pte, 231
pdir_map_page, 232
pdir_map_range, 234
pdir_prot_range, 235
pdir_unmap_page, 233
pdir_unmap_range, 235
pfq_leaf, 432
pfq_leaf_add_child, 432
pfq_leaf_create, 428
pfq-leaf_get netio, 432

pfq_-leaf _remove_child, 432

pfq_leaf _set_share, 432
pfq_sched, 430

pfq_sched_add_child, 430
pfq_sched_remove_child, 430
pfq_sched_set_share, 431

pfq_sff _create, 428

pfq_sff_create _root, 427

pfq_ssf_create, 428

pfq_ssf_create_root, 427

phys-mem-va, 214
phys_lmm.h, 239
phys_lmm_add, 240
phys_1lmm init, 240
phys_mem max, 239
PHYS_MEM_NOCACHE, 108

PHYS_MEM_WRITETHROUGH, 108

phystokv, 214
pic.h, 206

INDEX

pic_ack, 206

pic_disable_all, 206
pic_disable_irq, 206
pic_enable_all, 206
pic_enable_irq, 206

pic_init, 206

pic_test_irq, 206

pio.h, 202

poll, 79

posix library, 301

pow, 312

printf, 172

PRIORITYMAX, 350
PRIORITY.MIN, 350
PRIORITY_NORMAL, 350
proc_reg.h, 200

profil, 387

pseudo_descriptor, 203
ptab_alloc, 231

ptab_dump, 237

ptab_find pte, 229

ptab_free, 232

pthread.h, 350

pthread _attr_default, 350
pthread attr_init, 351

pthread attr_setdetachstate, 351
pthread attr_setguardsize, 353
pthread_attr_setprio, 352
pthread _attr_setschedpolicy, 354
pthread attr_setstackaddr, 352
pthread attr_setstacksize, 353
pthread_attr_t, 350
pthread_cancel, 356
PTHREAD_CANCEL_ASYNCHRONOQUS, 350
PTHREAD_CANCEL _DEFERRED, 350
PTHREAD_CANCEL DISABLE, 350
PTHREAD_CANCEL_ENABLE, 350
PTHREAD_CANCELED, 350
pthread_cleanup_push, 357
pthread cond_broadcast, 358
pthread _cond_destroy, 358
pthread cond_init, 359
pthread_cond_signal, 359
pthread _cond_t, 350

pthread cond_timedwait, 360
pthread cond_wait, 360

pthread condattr_default, 350
pthread condattr_init, 356
pthread condattr_t, 350
pthread create, 361
PTHREAD_CREATE DETACHED, 350
PTHREAD_CREATE_JOINABLE, 350
pthread_detach, 361
pthread_exit, 362

INDEX

pthread getspecific, 364
pthread_init, 350
pthread_join, 362

pthread key_create, 363
pthread key_delete, 363
PTHREAD _MUTEX DEFAULT, 350
pthread mutex_destroy, 365
PTHREAD _MUTEX_ERRORCHECK, 350
pthread mutex_init, 365
pthread mutex_lock, 365
PTHREAD _MUTEX_NORMAL, 350
PTHREAD MUTEX_RECURSIVE, 350
pthread mutex_t, 350

pthread mutex_trylock, 366
pthread mutex_unlock, 366
pthread mutexattr_default, 350
pthread mutexattr_init, 354

pthread mutexattr_setprotocol, 355

pthread mutexattr_settype, 355
pthread mutexattr_t, 350
PTHREAD PRIO_INHERIT, 350
PTHREAD_PRIO_NONE, 350
pthread resume, 367
pthread_self, 367

pthread _setcancelstate, 357
pthread _setcanceltype, 357
pthread _setprio, 367
pthread_setschedparam, 368
pthread_setspecific, 364
pthread_sleep, 368
PTHREAD_STACK_MIN, 350
pthread_suspend, 369
pthread_t, 350
pthread_testcancel, 358
ptoa, 194

push, 87

putc, 172

putchar, 172

puts, 172

QMAGIC, 403

gsort, 173

query, 59

queue.h, 195
queue_assign, 196
queue_chain_t, 195
queue_empty, 195
queue_end, 195
queue_enter, 195
queue_enter_after, 196
queue_enter_before, 195
queue_enter_first, 195
queue_entry, 195
queue_entry._t, 195

queue_first, 195
queue_head_t, 195
queue_init, 195
queue_iterate, 196
queue_last, 195
queue_next, 195
queue_prev, 195
queue_remove, 196
queue_remove_first, 196
queue_remove_last, 196
queue_t, 195

R_OK, 176

rand, 173

read, 61, 76, 80, 177
read_ahead, 440
readable, 79
readlink, 133, 134
realloc, 173, 180, 383
recvfrom, recvmsg, 159
register_blkdev, 441
release, 60

release region, 442
remainder, 312
remount, 129, 130
remove_child, 430
remove_listener, 79
remove_wait_queue, 443
rename, 139
reparent, 143
request_dma, 442
request_irq, 442
request_region, 442
revert, 64

rewind, 172

rindex, 174

rint, 312

rmdir, 140
round_page, 194
rtc.h, 207

rtcin, 207

rtcout, 207

s3_cmap_fg_index, 460
s3_cmap_read, 460
s3_cmap_write, 460
s3_init_framebuffer, 460
scalb, 312
SCHAR_MAX, 169
SCHAR_MIN, 169
SCHED_FIFO, 350
sched_param_t, 350
SCHED_RR, 350
sched_yield, 369

501

502

schedule, 443
seek, 62
SEEK_CUR, 176
SEEK_END, 176
SEEK_SET, 176

seg.h, 202

sel_idx, 203
sendbreak, 92
sendsig_trap_handler, 289
sendto, sendmsg, 160
serial_console, 245
set_b0, 201

set_bl, 201

set_b2, 201

set_b3, 201
set_dr0, 201
set_dri, 201
set_dr2, 201
set_dr3, 201
set_dr6, 201
set_dr7, 201
set_share, 430
set_system_clock, 303
setattr, 91

setjmp, 171
setjmp.h, 171
setsize, 63, 77, 80, 82
setstat, 88, 89

SEXT, 199

sfree, 182, 383
SHRT_MAX, 169
SHRT_MIN, 169
shutdown, 155
signal, 70
signal.h, 171

sin, 312

sinh, 312
sleep_omn, 443
smalloc, 181, 383
smallocf, 183
smemalign, 182, 383
smemalignf, 184

smp library, 291
smp_apic_ack, 296
smp_find_cpu, 293
smp_find_cur_cpu, 293
smp_get_num_cpus, 294
smp_init, 292
smp_init_paging, 295
smp_map_range, 294
smp_message_pass, 295
smp_message_pass_enable, 295
smp_start_cpu, 294
snprintf, 172

INDEX

spin_lock, 195
spin_lock.h, 195
spin_lock_init, 195
spin_lock_locked, 195
spin_lock_t, 195
spin_try_lock, 195
spin_unlock, 195
sprintf, 172
sqrt, 312

srand, 173
SSIZE_MAX, 170
stat, 65, 88, 175
statfs, 129
stdarg.h, 171
stddef.h, 172
STDERR_FILENQ, 176
STDIN_FILENO, 176
stdio.h, 172
stdlib.h, 173
STDOUT_FILENQ, 176
strcat, 174
strchr, 174
strcmp, 174
strcpy, 173
strcspn, 174
strdup, 174
strerror, 174
string.h, 173
strings.h, 174
strlen, 173
strncat, 174
strncmp, 174
strncpy, 174
strpbrk, 174
strrchr, 174
strspn, 174
strstr, 174
strtod, 173
strtok, 174
strtol, 173
strtoul, 173

svm library, 345
svm_alloc, 346
svm_dealloc, 346
svm_init, 345
svm_protect, 347
symlink, 142
sync, 129, 130, 133
sys/gmon.h, 174
sys/ioctl.h, 174
sys/mman.h, 175
sys/reboot.h, 175
sys/signal.h, 175
sys/stat.h, 175

INDEX

sys/termios.h, 175
sys/time.h, 176
sys/types.h, 176
sys/utsname.h, 177
sys/wait.h, 176
system_utsname, 441

tan, 312

tanh, 312
termios.h, 176
TEXT_ALIGN, 199
threads library, 349
timer_active, 440
timer_table, 440
toascii, 168
tolower, 168
toupper, 168
tq-timer, 440
trap.h, 203
trap_dump, 226
trap_dump_panic, 227
trap_state, 223
TRUE, 46
trunc_page, 194
tss.h, 204
types.h, 48

UCHAR_MAX, 169
UINT_MAX, 169
ULONG_MAX, 170
umask, 175
unistd.h, 176
unlink, 139, 177
unlock, 69
unlockregion, 65
unmap, 83, 84
unmount, 129, 131
unregister_blkdev, 441
unwire, 83, 85
USER_CS, 219
USER_DS, 219
USERMODE, 203
USHRT_MAX, 169
utime.h, 177

va_arg, 171
va_end, 171
va_list, 171
va_start, 171
viprintf, 172
video library, 459
vmalloc, 442
vprintf, 172
vsnprintf, 172
vsprintf, 172

503

W_OK, 176

wait, 70
wait_for_request, 440
wait_on_buffer, 443
wake_up, 443

wimpi library, 453
wimpi_clear_area, 456
wimpi_clear_area , 456
wimpi_copy._area, 458
wimpi_copy_area , 458
wimpi_create_toplevel, 454
wimpi_create_window, 455
wimpi_create_window , 455
wimpi_destroy_toplevel, 454
wimpi_destroy_window, 455
wimpi_destroy window , 455
wimpi_draw_arc, 457
wimpi_draw_arc , 457
wimpi_draw_ellipse, 457
wimpi_draw_ellipse , 457
wimpi_draw_line, 457
wimpi_draw_line , 457
wimpi_draw_rectangle, 457
wimpi_draw_rectangle , 457
wimpi_draw_string, 457
wimpi_draw_string , 457
wimpi fill rectangle, 457
wimpi fill rectangle , 457
wimpi_initialize, 453
wimpi_kbd_input, 454
wimpi_lower_window, 456
wimpi_lower _window , 456
wimpi main_loop, 454

wimpi make_child window, 458
wimpi make_child window , 458
wimpi_map_window, 455

wimpi map_window , 455

wimpi mouse_input, 454

wimpi move resize window, 457
wimpi move resize window , 457
wimpi_put_image, 458
wimpi_put_image , 458
wimpi_raise_window, 456
wimpi_raise_window , 456
wimpi_send_destroy_event, 455
wimpi_send_destroy_event , 455
wimpi_send_expose_event, 455
wimpi_send_expose_event , 455
wimpi_send mouse_event, 455
wimpi_send mouse_event , 455
wimpi_send move_resize_event, 455
wimpi_send.move_resize event , 455
wimpi_set_event_handler, 454
wimpi_set_foreground, 456

504

wimpi_set_foreground , 456
wimpi_set_input_routine, 454
wimpi_set_window_background, 456
wimpi_set_window_background , 456
wimpi_set_window_ title, 458
wimpi_set_window_title , 458
wimpi_unmap_window, 456
wimpi_unmap_window , 456

wire, 83, 85

write, 62, 76, 80, 81, 177

x86_desc, 203
x86_gate, 203
X_OK, 176

y0, 312
y1, 312
y2, 312

ZMAGIC, 402

INDEX

