
IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
vpiAutomaticScheme indicates the object is allocated as part of a frame or thread and has the lifetime of
that frame or thread. vpiDynamicScheme indicates the object was allocated in dynamic memory and may
be a class object or part thereof. For all other objects, vpiAllocScheme shall return vpiOtherScheme.

37.3.8 Managing transient objects

One may obtain a handle to an object during its lifetime, and it remains valid only as long as the object
exists. For a static object, one may therefore keep its handle indefinitely. For a transient object, one may
release its handle after use or expect that handle to be released and become invalid when the object ceases to
exist.

The life of a transient object may be tracked through various callbacks, depending on the specific type of
object. The callbacks are described on the object model diagrams and/or the function reference for
vpi_register_cb(), as appropriate. The relevant callbacks are as follows:

cbCreateObj, cbReclaimObj, cbStartofFrame, cbEndOfFrame, cbStartOfThread, cbEndOfThread, and
cbEndOfObject.

37.4 Key to data model diagrams

This subclause contains the keys to the symbols used in the data model diagrams. Keys are provided for
objects and classes, traversing relationships, and accessing properties.
973
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
37.4.1 Diagram key for objects and classes

37.4.2 Diagram key for accessing properties

class defn

obj defn

class

object

obj defn

object

class

obj1

obj2

Object definition:

Bold letters in a solid enclosure indicate an object definition. The
properties of the object are defined in this location.

Unnamed class:

A dotted enclosure with no name is an unnamed class. It is sometimes
convenient to group objects although they shall not be referenced as a
group elsewhere; therefore, a name is not indicated.

Object reference:

Normal letters in a solid enclosure indicate an object reference.

Class definition:

Bold italic letters in a dotted enclosure indicate a class definition,
where the class groups other objects and classes. Properties of the
class are defined in this location. The class definition can contain an
object definition.

Class reference:

Italic letters in a dotted enclosure indicate a class reference.

obj

obj

object

String properties are accessed with routine vpi_get_str(). String
properties are of type PLI_BYTE8 *.

For example:
PLI_BYTE8 *name = vpi_get_str(vpiName, obj_h);

Integer and Boolean properties are accessed with the routine vpi_get().
These properties are of type PLI_INT32.

For example: Given handle obj_h to an object of type vpiObj, test if
the object is a vector, and get the size of the object.
PLI_INT32 vect_flag = vpi_get(vpiVector, obj_h);
PLI_INT32 size = vpi_get(vpiSize, obj_h);

Complex properties for time and logic value are accessed with the
indicated routines. See the descriptions of the routines for usage.

-> vector
bool: vpiVector

-> size
int: vpiSize

-> complex
func1()
func2()

-> name
str: vpiName
str: vpiFullName
974
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
37.4.3 Diagram key for traversing relationships

For relationships that do not have a tag, the type used for access is determined by adding “vpi” to the
beginning of the word within the enclosure, with each word’s first letter being a capital. See 37.3 for more
details on VPI access to constant names.

ref

obj

ref

obj
Tag

ref

obj

ref

obj
Tag

obj

obj

A single arrow indicates a one-to-one relationship accessed
with the routine vpi_handle().

For example: Given vpiHandle variable ref_h of type ref,
access obj_h of type Obj:
 obj_h = vpi_handle(Obj, ref_h);

A tagged one-to-one relationship is traversed similarly, using
Tag instead of Obj.

For example:
 obj_h = vpi_handle(Tag, ref_h);

A one-to-one relationship that originates from a circle is
traversed using NULL for the ref_h.

For example:
 obj_h = vpi_handle(Obj, NULL);

A double arrow indicates a one-to-many relationship accessed
with the routine vpi_scan().

For example: Given vpiHandle variable ref_h of type ref,
scan objects of type Obj:
 itr = vpi_iterate(Obj, ref_h);
 while (obj_h = vpi_scan(itr))
 /* process 'obj_h' */

A tagged one-to-many relationship is traversed similarly, using
Tag instead of Obj.

For example:
 itr = vpi_iterate(Tag, ref_h);
 while (obj_h = vpi_scan(itr))
 /* process 'obj_h' */

A one-to-many relationship that originates from a circle is
traversed using NULL for the ref_h.

For example:
 itr = vpi_iterate(Obj, NULL);
 while (obj_h = vpi_scan(itr))
 /* process 'obj_h' */
975
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
37.5 Module

Details:

1) Top-level modules shall be accessed using vpi_iterate() with a NULL reference object.

2) If a module is an element within a module array, the vpiIndex transition is used to access the index within the array.
If a module is not part of a module array, this transition shall return NULL.

module

clocking block

expr

instance array

vpiDefaultClocking

vpiIndex

port

interface

interface array

process

module

module array

mod path

tchk

def param

io decl

vpiInternalScope

cont assign

scope

primitive

primitive array

alias stmt

clocking block

-> top module
bool: vpiTopModule

-> decay time
int: vpiDefDecayTime

module array

expr

distribution

vpiDefaultDisableIff

clocking block
vpiGlobalClocking
976
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
37.6 Interface

Details:

1) If an interface is an element within an instance array, the vpiIndex transition is used to access the index within the
array. If an interface is not part of an instance array, this transition shall return NULL.

37.7 Modport

37.8 Interface task or function declaration

Details:

1) vpi_iterate() can return more than one task or function declaration for modport tasks or functions with an access
type of vpiForkJoinAcc, because the task or function can be imported from multiple module instances.

2) Possible return values for the vpiAccessType property for an interface tf decl are vpiForkJoinAcc and
vpiExternAcc.

interface

interface tf decl

modport

mod path

cont assign

clocking block

interface

interface array

vpiInstance

expr

instance array

vpiIndex

process

clocking block
vpiDefaultClocking

expr

distribution

vpiDefaultDisableIff

clocking block
vpiGlobalClocking

modportinterface io decl

-> name
str: vpiName

task

function

interface tf decl

-> access type
int: vpiAccessType
977
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
37.9 Program

Details:

1) If a program is an element within an instance array, the vpiIndex transition is used to access the index within the
array. If a program is not part of an instance array, this transition shall return NULL.

program

cont assign

clocking block

interface

interface array

vpiInstance

expr

instance array

vpiIndex

process

clocking block
vpiDefaultClocking

expr

distribution

vpiDefaultDisableIff
978
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
37.10 Instance

Details:

1) The vpiTypedef iteration shall return the user-defined typespecs that have typedefs explicitly declared in the
instance.

2) vpiModule shall return a module if the object is inside a module instance, otherwise it shall return NULL.

3) vpiInstance shall always return the immediate instance (package, module, interface, or program) in which the
object is instantiated.

4) vpiMemory shall return array variable objects rather than vpiMemory objects.

-> array member
bool: vpiArray (deprecated)
bool: vpiArrayMember

-> cell
bool: vpiCellInstance

-> default net type
int: vpiDefNetType

-> definition location
int: vpiDefLineNo
str: vpiDefFile

-> definition name
str: vpiDefName

-> delay mode
int: vpiDefDelayMode

-> name
str: vpiName
str: vpiFullName

-> protected
bool: vpiProtected

-> timeprecision
int: vpiTimePrecision

-> timeunit
int: vpiTimeUnit

-> unconnected drive
int: vpiUnconnDrive

-> configuration
str: vpiLibrary
str: vpiCell
str: vpiConfig

-> default lifetime
bool: vpiAutomatic

-> top
bool: vpiTop

vpiTypedef

vpiRegArraymodule

program

interface

instance

-> compile unit
bool: vpiUnit

package

program

program array

array net

variables

array var

array var

named event

named event array

spec param

assertion

typespec

vpiMemory

vpiReg
logic var

task func

instance item

net

class defn

parameters
vpiParameter
979
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
5) vpiFullName for objects that exist within a compilation unit shall begin with “$unit::”. As a result, the full
name for objects within a compilation unit may be ambiguous. vpiFullName for a package shall be the name of the
package and should end with “::”; this syntax disambiguates between a module and a package of the same name.
vpiFullName for objects that exist in a package shall begin with the name of the package followed by “::”. The
separator :: shall appear between the package name and the immediately following name component. The
“.” separator shall be used in all cases except package and class defn.

6) The following items shall not be accessible via vpi_handle_by_name():

— Imported items

— Objects that exist within a compilation unit

7) Passing a NULL handle to vpi_get() with properties vpiTimePrecision or vpiTimeUnit shall return the smallest
time precision of all modules in the instantiated design.

8) The properties vpiDefLineNo and vpiDefFile can be affected by the `line compiler directive. See 22.12 for more
details on the `line directive.

9) For details on lifetime and memory allocation properties, see 37.3.7.
980
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
37.11 Instance arrays

Details:

1) Traversing from the instance array to expr shall return a simple expression object of type vpiOperation with a
vpiOpType of vpiListOp. This expression can be used to access the actual list of connections to the instance array
in the SystemVerilog source code

2) vpi_iterate(vpiRange, instance_array_handle) shall return the set of instance array ranges beginning with the
leftmost range of the array declaration and iterating through the rightmost range. Using the vpiLeftRange/
vpiRightRange properties returns the bounds of the leftmost dimension of a multidimensional array.

interface array

expr

expr

vpiLeftRange

range

instance array

instance

vpiRightRangeprimitive array

program array

module array

expr

-> access by index
vpi_handle_by_index()
vpi_handle_by_multi_index()

-> name
str: vpiName
str: vpiFullName

->size
int; vpiSize

param assign

primitive

expr
vpiDelay

gate array

primitive array

switch array

udp array

module
981
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
37.12 Scope

Details:

1) An unnamed begin or unnamed fork shall be a scope if, and only if, it directly contains a block item declaration
such as a variable declaration or type declaration. A named begin or named fork shall always be a scope.

Example:

begin
begin : BLK

var logic v; // This declaration is not local to the unnamed begin
v = 1'b1;

end
end

In this example, the block BLK is a scope, but the unnamed begin is not a scope because it does not directly contain
a block item declaration.

2) A for statement shall be a scope if, and only if, the vpiLocalVarDecls property returns TRUE. In this case, the
scope of each loop control variable shall be the for statement.

concurrent assertion

stmt

named event

scope

variables

instance

named begin

vpiReg

task func

begin

named fork

fork

class defn

class obj

named event array

logic var

array var

scope

instance item

vpiRegArray

vpiInternalScope

vpiImport

array var
vpiMemory

-> name
str: vpiName
str: vpiFullName

typespec
vpiTypedef

clocking block

gen scope

for

foreach stmt

class typespec

vpiParameter
parameters

property decl

sequence decl

let decl

-> join type
int: vpiJoinType

virtual interface var
982
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
3) The scope of each loop control variable in a foreach stmt shall be the foreach stmt.

4) The vpiImport iterator shall return all objects imported into the current scope via import declarations. Only objects
actually referenced through the import shall be returned, rather than items potentially made visible as a result of the
import. Refer to 26.3 for more details.

5) A task func can have zero or more statements (see 13.3, 13.4). If the number of statements is greater than 1, the
vpiStmt relation shall return an unnamed begin that contains the statements of the task or function. If the number
of statements is zero, the vpiStmt relation shall return NULL.

6) The vpiJoinType property indicates what type of join statement terminates the fork-join block. It shall return one
of the values vpiJoin, vpiJoinNone, or vpiJoinAny.

7) The vpiVirtualInterfaceVar iteration is supported only within elaborated contexts and is not supported within
lexical contexts such as class defns (see 37.29). If the scope declares an array of virtual interfaces, the
vpiVirtualInterfaceVar iteration shall return each element of the array separately. However, the vpiVariables
iteration shall return the array declaration as a single vpiArrayVar.

37.13 IO declaration

Details:

1) vpiDirection returns vpiRef for pass by ref ports or arguments.

2) A ref obj type handle shall be returned for the vpiExpr of an io decl if it is passed by reference or if the io decl is an
interface or a modport. If the io decl is a virtual interface, vpiExpr shall return a vpiVirtualInterfaceVar.

3) If the vpiExpr of an io decl is a ref obj and if the vpiActual of the ref obj is an interface or modport declaration,
then the vpiDirection of the io decl shall be undefined. The vpiDirection shall also be undefined if the vpiExpr is
a virtual interface var.

4) The vpiRange, vpiLeftRange, and vpiRightRange relations for an io decl shall be the same as for the
corresponding typespec (see 37.23).

instance

udp defn
vpiExpr

io decl
interface tf decl

vpiLeftRange

ref obj

task func
nets

variables

expr

expr

range

typespec

-> direction
int: vpiDirection

-> name
str: vpiName

-> scalar
bool: vpiScalar

-> sign
bool: vpiSigned

-> size
int: vpiSize

-> vector
bool: vpiVector

vpiRightRange

module
983
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
37.14 Ports

Details:

1) vpiPortType shall be one of the following three types: vpiPort, vpiInterfacePort, or vpiModportPort. Port type
depends on the formal, not on the actual.

2) vpi_get_delays() and vpi_put_delays() delays shall not be applicable for vpiInterfacePort.

3) vpiHighConn shall indicate the hierarchically higher (closer to the top module) port connection.

4) vpiLowConn shall indicate the lower (further from the top module) port connection.

5) vpiLowConn of a vpiInterfacePort shall always be vpiRefObj.

6) Properties vpiScalar and vpiVector shall indicate if the port is 1 bit or more than 1 bit. They shall not indicate
anything about what is connected to the port.

7) Properties vpiIndex and vpiName shall not apply for port bits.

8) If a port is explicitly named, then the explicit name shall be returned. If not, and a name exists, then that name shall
be returned. Otherwise, NULL shall be returned.

9) vpiPortIndex can be used to determine the port order. The first port has a port index of zero.

10) vpiLowConn shall return NULL if the module or interface or program port is a null port (e.g., “module M();”).
vpiHighConn shall return NULL if the instance of the module, interface, or program does not have a connection to
the port.

11) vpiSize for a null port shall return 0.

port

expr

instance

vpiHighConn

-> index
int: vpiPortIndex

-> name
str: vpiName

-> port type
int: vpiPortType

-> scalar
bool: vpiScalar

-> size
int: vpiSize

-> vector
bool: vpiVector

port bit

vpiParent

vpiBit

ref obj

ports

typespec

vpiLowConn

-> access by index
vpi_handle_by_index()
vpi_handle_by_multi_index()

->connected by name
bool: vpiConnByName

-> delay (mipd)
vpi_get_delays()
vpi_put_delays()

-> direction
int: vpiDirection

-> explicitly named
bool: vpiExplicitName

module
rized licensed use limited to: NO
984
Copyright © 2018 IEEE. A

AA Boulder Labs Library. Downloaded on Se
ll rights reserved.

ptember 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
37.15 Reference objects

Details:

1) A ref obj represents a declared object or subelement of that object that is a reference to an actual instantiated object.
A ref obj exists for ports with ref direction, for an interface port, a modport port, or for formal task function ref
arguments. The specific cases for a ref obj are as follows:

— A variable, named event, named event array that is the lowconn of a ref port

— Any subelement expression of the above

— A local declaration of an interface or modport passed through a port or any net, variable, named event, named
event array of those

— A ref formal argument of a task or function, or subelement expression of it

2) A ref obj may be obtained when walking port connections (lowConn, highConn), when traversing an expression
that is a use of such ref obj, or when accessing the io decl of an instance or task or function.

3) The name of ref obj can be different at every instance level it is being declared. The vpiActual relationship always
returns the actual instantiated object if the ref obj is bound to an actual object at the time of the query.

4) The vpiParent relationship allows the traversal of a ref obj that is a subelement of a ref obj. In the following
example, r[0] is a ref obj whose parent is the ref obj r. The vpiActual for the ref obj r[0] would return the var
bit a[0], and the vpiActual of the ref obj r would return the variable a.

module top;
logic [2:0] a;
m u1 (a);

endmodule
module m (ref [2:0] r);

initial
r[0] = 1'b0;

endmodule

ref obj

variables

ports

vpiHighConn

-> name
str: vpiName
str: vpiFullName

-> generic
bool: vpiGeneric

-> definition name
str: vpiDefName

vpiLowConn

ref obj

typespec

vpiParent

vpiPortInst ports

interface

interface array

modport

nets

named event

named event array

vpiActual

part select

instance

task func
985
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
5) The vpiGeneric property shall return TRUE if the ref obj is a reference to a generic interface and FALSE if the ref
obj is a reference to an interface that is not a generic interface. The vpiGeneric property shall return vpiUndefined
for all other kinds of ref obj.

6) The vpiDefName property when applied to a ref obj that is an actual of an interface or modport shall return the
interface definition name or modport name.

7) The vpiTypespec relation returns NULL for a ref obj that vpiActual is a not a net, variable, or part select.

Example: Passing an interface or modport through a port:

interface simple ();
logic req, gnt;
modport slave (input req, output gnt);
modport master (input gnt, output req);

endinterface

module top();

interface simple i;

child1 i1(i);
child2 i2(i.master);

endmodule

/***********************************
for the port of i1,

the vpiHighConn relationship returns a handle of type vpiRefObj. The
vpiActual relationship applied to the ref obj returns a handle of type
vpiInterface.

for the port of i2 ,
the vpiHighConn relationship returns a handle of type vpiRefObj. The
vpiActual relationship applied to the ref obj returns a handle of type
vpiModport.

**/

module child1(interface simple s);
c1 c_1(s);
c1 c_2(s.master);

endmodule

/****************************
for the port of module child1,

the vpiLowConn relationship returns a handle of type vpiRefObj. The
vpiActual relationship applied to the ref obj returns a handle of type
vpiInterface.

for that refObj,
the vpiPort relationship returns the port of child1.
the vpiPortInst iteration returns handles to s, s.master.
the vpiActual relationship returns a handle to i.

for the port of instance c_1 :
vpiHighConn returns a handle of type vpiRefObj. The vpiActual relationship
applied to the ref obj handle returns a handle of type vpiInterface.

for the port of instance c_2 :
vpiHighConn returns a handle of type vpiRefObj. The vpiActual relationship
applied to the ref obj handle returns a handle of type vpiModport.

**/
986
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
37.16 Nets

ports

vpiHighConnvpiLowConn

prim term

path term

tchk termnet bit

array net

nets

net drivers

cont assign

range

expr

expr

vpiParent

expr

net

vpiIndex

-> access by index
vpi_handle_by_index()
vpi_handle_by_multi_index()

-> array member
bool: vpiArray (deprecated)
bool: vpiArrayMember

-> constant selection
bool: vpiConstantSelect

-> delay
vpi_get_delays()

-> expanded
bool: vpiExpanded

-> implicitly declared
bool: vpiImplicitDecl

-> name
str: vpiName
str: vpiFullName

-> net decl assign
bool: vpiNetDeclAssign

-> net type
int: vpiNetType
int: vpiResolvedNetType

-> scalar
bool: vpiScalar

-> scalared declaration
bool: vpiExplicitScalared

-> sign
bool: vpiSigned

-> size
int: vpiSize

-> strength
int: vpiStrength0
int: vpiStrength1
int: vpiChargeStrength

-> value
vpi_get_value()
vpi_put_value()

-> vector
bool: vpiVector

-> vectored declaration
bool: vpiExplicitVectored

->member
bool: vpiStructUnionMember

nets

net

typespec

ports
vpiPortInst

vpiLoad
net loads

vpiLocalLoad

vpiSimNet

module

vpiIndex

vpiIndex
vpiParent

vpiBit

net loads

vpiLocalDriver
net drivers

vpiDriver

net

expr

expr

range

vpiRightRange

vpiLeftRange

struct net

enum net

integer net

time net

logic net

packed array net

struct net

packed array net

vpiElement

nets
vpiParent

vpiMember

expr
vpiIndex

-> packed array member
bool:
vpiPackedArrayMember

enum net
ri
zed licensed use limited to: NOAA Boulder La
987
Copyright © 2018 IEEE. All rights reserv

bs Library. Downloaded on September 18,2018
ed.

 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
Details:

1) Any net declared as an array with one or more unpacked ranges is an array net. Any packed struct net or enum net
declared with one or more explicit packed ranges is a packed array net. The range iterator for a packed array net
returns only the explicit packed ranges for such a net. It shall not return the implicit range of packed struct net
elements themselves, nor shall it return the range (explicit or implicit) for the base type of enum net elements. For
example:

// a 34-bit-wide struct net (range iteration not allowed)
wire struct packed { logic [1:0]vec1; integer i1; } psnet;

// a packed array net (ranges [3:0] and [2:1] returned by range iteration)
wire struct packed { logic [1:0]vec1; integer i1; } [3:0][2:1] panet;

// an array net (ranges [5:4] and [6:8] returned by range iteration)
wire struct packed { logic [1:0]vec1; integer i1; } [3:0][2:1] anet
[5:4][6:8];

2) The Boolean property vpiArray is deprecated in this standard. The vpiArrayMember property shall be TRUE for
a net that is an element of an array net. It shall be FALSE otherwise. The vpiPackedArrayMember property shall
be TRUE for a packed struct net, an enum net, or a packed array net that is an element of a packed array net.

3) For logic nets, net bits shall be available regardless of vector expansion.

4) Continuous assignments and primitive terminals shall be accessed regardless of hierarchical boundaries.

5) Continuous assignments and primitive terminals shall only be accessed from scalar nets or bit-selects.

6) For vpiPorts, if the reference handle is a net bit, then port bits shall be returned. If it is an entire net or array net,
then a handle to the entire port shall be returned.

7) For vpiPortInst, if the reference handle is a bit or scalar, then port bits or scalar ports shall be returned, unless the
highconn for the port is a complex expression where the bit index cannot be determined. If this is the case, then the
entire port shall be returned. If the reference handle is an entire net or array net, then the entire port shall be
returned.

8) For vpiPortInst, it is possible for the reference handle to be part of the highconn expression, but not connected to
any of the bits of the port. This may occur if there is a size mismatch. In this situation, the port shall not qualify as a
member for that iteration.

9) For implicit nets, vpiLineNo shall return 0, and vpiFile shall return the file name where the implicit net is first
referenced.

10) vpi_handle(vpiIndex, net_bit_handle) shall return the bit index for the net bit. vpi_iterate(vpiIndex,
net_bit_handle) shall return the set of indices for a multidimensional net array bit-select, starting with the index for
the net bit and working outward.

11) Only active forces and assign statements shall be returned for vpiLoad.

12) Only active forces shall be returned for vpiDriver.

13) vpiDriver shall also return ports that are driven by objects other than nets and net bits.

14) vpiLocalLoad and vpiLocalDriver return only the loads or drivers that are local, i.e., contained by the module
instance that contains the net, including any ports connected to the net (output and inout ports are loads, input and
inout ports are drivers).

15) For vpiLoad, vpiLocalLoad, vpiDriver, and vpiLocalDriver iterators, if the object is a vector net (an enum net,
integer net, time net, packed array net, or a logic net or struct net for which vpiVector is TRUE), then all loads or
drivers are returned exactly once as the loading or driving object. That is, if a part-select loads or drives only some
bits, the load or driver returned is the part-select. If a driver is repeated, it is only returned once. To trace exact
bit-by-bit connectivity, pass a vpiNetBit object to vpi_iterate.

16) An iteration on loads or drivers for a variable bit-select shall return the set of loads or drivers for whatever bit to
which the bit-select is referring to at the beginning of the iteration.

17) vpiSimNet shall return a unique net if an implementation collapses nets across hierarchy (refer to 23.3.3.7 for the
definition of simulated net and collapsed net).

18) The property vpiExpanded on an object of type vpiNetBit shall return the property’s value for the parent.
988
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
19) The loads and drivers returned from (vpiLoad, obj_handle) and vpi_iterate(vpiDriver, obj_handle) may not be
the same in different implementations, due to allowable net collapsing 23.3.3.7. The loads and drivers returned
from vpi_iterate(vpiLocalLoad, obj_handle) and vpi_iterate(vpiLocalDriver, obj_handle) shall be the same for
all implementations.

20) The Boolean property vpiConstantSelect shall return TRUE for a net or net bit if it has no parent (the vpiParent
relation returns NULL) or if both of the following are true of the “select” part of the equivalent primary expression
(see A.8.4):

— Every index expression in the select is an elaboration time constant expression.

— Every element within the select denotes either a member of a struct net or a member of a packed or unpacked
array with static bounds.

Otherwise, vpiConstantSelect shall return FALSE.

NOTE—If vpiConstantSelect is TRUE, then if the handle refers to a valid underlying simulation object at the
beginning of simulation (or at any point in the simulation), it refers to the same object at all points in the simulation.
Moreover, if any index expression is in or out of bounds at the beginning of simulation, it is in or out of bounds at
all subsequent simulation times as well.

21) vpiSize for an array net shall return the number of nets in the array. For unpacked structures, the size returned
indicates the number of members in the structure. For an enum net, integer net, logic net, time net, packed struct
net, or packed array net, vpiSize shall return the size of the net in bits. For a net bit, vpiSize shall return 1.

22) vpi_iterate(vpiIndex, net_handle) shall return the set of indices for a net within an array net, starting with the
index for the net and working outward. If the net is not part of an array (the vpiArrayMember property is FALSE),
a NULL shall be returned. The vpiIndex iterator shall work similarly for packed array net elements (packed struct
nets, enum nets, or packed array nets whose vpiPackedArrayMember property is TRUE). The indices returned
shall start with the index of the element and work outward until the vpiParent packed array net is reached (see
detail 28). The indices retrieved for packed array net elements shall be the same as those shown in the example for
detail 29 for each of the subelements returned by vpiElement. The indices will be retrieved in right-to-left order as
they appear in the text.

23) For an array net, vpi_iterate(vpiRange, handle) shall return the set of array range declarations beginning with the
leftmost unpacked range of the array declaration and iterating through the rightmost unpacked range. For a packed
array (logic net), the iteration shall return the set of ranges beginning with the leftmost packed range and iterating
through the rightmost packed range. For a logic net, the vpiLeftRange and vpiRightRange relations shall return
the bounds of the leftmost packed dimension.

24) vpiArrayNet is #defined the same as vpiNetArray for backward compatibility. A call to vpi_get_str(vpiType,
<array_net_handle>) may return either “vpiArrayNet” or “vpiNetArray”.

25) A logic net without a packed dimension defined is a scalar; and for that object, the property vpiScalar shall return
TRUE and the property vpiVector shall return FALSE. A logic net with one or more packed dimensions defined is
a vector, and the property vpiVector shall return TRUE (vpiScalar shall return FALSE). Packed struct nets and
packed array nets are vectors, and the property vpiVector shall return TRUE (vpiScalar shall return FALSE). A net
bit is a scalar, and the property vpiScalar shall return TRUE (vpiVector shall return FALSE). The properties
vpiScalar and vpiVector when queried on a handle to an enum net shall return the value of the respective property
for an object for which the typespec is the same as the base typespec of the typespec of the enum net. For an integer
net or a time net, the property vpiVector shall return TRUE (vpiScalar shall return FALSE). For an array net, the
vpiScalar and vpiVector properties shall return the values of the respective properties for an array element. The
vpiScalar and vpiVector properties shall return FALSE for all other net objects.

26) vpiLogicNet is #defined the same as vpiNet for backward compatibility. A call to vpi_get_str(vpiType, <log-
ic_net_handle>) may return either “vpiLogicNet” or “vpiNet”.

27) Neither an array net nor an unpacked struct net has a value property.

28) The vpiParent transition shall be allowed on all net objects. It shall return one of the following types of objects
listed, representing one of its prefix objects (field select prefix or indexing select prefix as described in 11.5.3), or
NULL, depending on whether certain criteria are met. For purposes of defining vpiParent, a prefix object is the
object obtained from successively removing the rightmost index or identifier from a compound or indexed/
multidimensional object name.

Consider the following vpiArrayNet objects:

wire logic [1:0][2:3] mda [4:6][6:8];
wire struct { int i1; logic[1:0][2:3]bvec[4:5]; } spa [9:11][12:13];
989
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
mda[6][8][1][3] is a vpiLogicNet, mda[6][8][1] is its first prefix object (a 2-bit vpiLogicNet vector),
and mda[6][8] is its second prefix object (a 2  2 packed array vpiLogicNet), etc. The
spa[9][12].bvec[4] object is a vpiLogicNet (a 2  2 packed array vpiLogicNet), and
spa[9][12].bvec is its first prefix object (a vpiArrayNet struct member), and spa[9][12] is the second
prefix object (the vpiStructNet containing the bvec member), etc.

For a net object with prefix objects, the vpiParent transition shall return one of the following prefix objects,
whichever comes first in prefix order (rightmost to leftmost):
— Struct or union net
— Struct or union member net
— The largest containing packed array net object
— The largest containing unpacked array net object

If there is no prefix object, or no prefix object meets at least one of the above criteria, vpiParent shall return
NULL.

Using the preceding declarations, the vpiParent of mda[6][8][1][3] is mda[6][8], the vpiLogicNet
representing the largest containing packed array prefix; the vpiParent of mda[6][8] is mda, the vpiArrayNet
representing the largest containing unpacked array net prefix. Likewise, the vpiParent of
spa[9][12].bvec[4][0] is spa[9][12].bvec[4] (the largest containing packed array net); the
vpiParent of spa[9][12].bvec[4] is spa[9][12].bvec (struct member), and applying vpiParent again
yields spa[9][12], the struct net for member bvec. The vpiParent of spa[9][12] is spa, the largest
containing unpacked array of the struct net; vpiParent of spa (or mda) would return NULL.

29) The vpiElement transition shall be used to iterate over the subelements of packed array nets. Unlike vpiNet
iterations for vpiArrayNet objects, vpiElement shall retrieve elements for only one dimension level at a time. This
means that for multidimensioned packed array nets, vpiElement shall retrieve elements that are themselves also
vpiPackedArrayNet objects. vpiElement can then be used to iterate over the subelements of these objects and so
on, until the leaf level struct nets or enum nets are returned. In other words, the data type of each element retrieved
by vpiElement is equivalent to the original vpiPackedArrayNet object’s data type with one leftmost packed range
removed. For example, consider the following vpiPackedArrayNet object:

typedef struct packed { integer i1; logic [1:0][2:3]bvec; } pavartype;
wire pavartype [0:2][6:3] panet1;

The vpiElement transition applied to panet1 shall return 3 vpiPackedArrayNet objects: panet1[0],
panet1[1], and panet1[2]. The vpiElement transition applied to vpiPackedArrayNet panet1[0] in turn
shall retrieve vpiStructNet objects panet1[0][6], panet1[0][5], panet1[0][4], and
panet1[0][3], respectively. Also, the vpiParent transition for all the above-mentioned subelements of
panet1 shall return panet1 (as per detail 28), since panet1 is “the largest containing packed array net object.”

30) The vpiStructUnionMember property shall be TRUE for any enum net, integer net, time net, struct net, packed
array net, or array net that is a direct member of a struct net, i.e., whose vpiParent is a struct net (see detail 28).
This property shall be FALSE for any net, array net, or net bit whose vpiParent is not a struct net.
990
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
37.17 Variables

expr

ports
vpiHighConn

-> array type
int: vpiArrayType

vpiLowConn

variable loads

vpiDriver

vpiPortInst
ports

prim term

path term

tchk term

expr

var select
vpiParent

short int var

int var

long int var

integer var

variables

byte var

string var

class var

time var

enum var

bit var

logic var

array var

real var

virtual interface var

struct var

union var

variable drivers

vpiLoad

cont assign

short real var

range

vpiLeftRange

vpiRightRange

expr

module

instance

scope

var bit

vpiIndex

expr

vpiIndex

vpiParent

vpiParent

vpiParent

vpiParent

vpiParent
variables

expr

vpiReg

vpiIndex

-> access by index
vpi_handle_by_index()
vpi_handle_by_multi_index()

-> array member
bool: vpiArray (deprecated)
bool: vpiArrayMember

-> name
str: vpiName
str: vpiFullName

-> sign
bool: vpiSigned

-> size
int: vpiSize

-> lifetime
bool: vpiAutomatic

-> memory allocation
int: vpiAllocScheme

-> constant variable
bool: vpiConstantVariable

-> determine random availability
bool: vpiIsRandomized

-> randomization type
int: vpiRandType

-> member
bool: vpiStructUnionMember

->value
vpi_get_value()
vpi_put_value()

-> scalar
bool: vpiScalar

-> visibility
int: vpiVisibility

-> vector
bool: vpiVector

typespec

vpiBit

variables

vpiParent

vpiParent

vpiMember

-> constant selection
bool: vpiConstantSelect

expr

packed array var
vpiParent

chandle var

var bit
r
ized licensed use limited to: NOAA Boulder La
991
Copyright © 2018 IEEE. All rights reserved.

bs Library. Downloaded on September 18,2018 at 2
3:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
Details:

1) Any variable declared as an array with one or more unpacked ranges is an array var.

2) The Boolean property vpiArray is deprecated in this standard. The Boolean property vpiArrayMember shall be
TRUE if the referenced variable is a member of an array variable. It shall be FALSE otherwise.

3) To obtain the members of a union and structure, see the relations in 37.24.

4) For an array var, vpi_iterate(vpiRange, handle) shall return the set of array range declarations beginning with the
leftmost unpacked range and iterating through the rightmost unpacked range. If any dimension of the unpacked
array other than the first dimension is a dynamic array or queue dimension, the iteration shall return an empty range
(see 37.22) for that dimension. The iteration shall also return an empty range for any dimension that is an associa-
tive array dimension. For a packed array, the iteration shall return the set of ranges beginning with the leftmost
packed range and iterating through the rightmost packed range. The ranges returned for a packed array shall not
include the implicit range for packed struct or union var elements themselves, or the range (explicit or implicit) for
the base type of enum var elements.

5) vpi_handle (vpiIndex, var_select_handle) shall return the index of a var select in a one-dimensional array.
vpi_iterate (vpiIndex, var_select_handle) shall return the set of indices for a var select in a multidimensional
array, starting with the index for the var select and working outward.

6) The vpiLeftRange and vpiRightRange relations shall return the bounds of the leftmost packed dimension for a
packed array and of the leftmost unpacked dimension for an unpacked array. If the unpacked array has no mem-
bers,or the leftmost range corresponds to an empty range (see 37.22), vpiLeftRange and vpiRightRange shall
return NULL.

7) A var select is an element selected from an array var.

8) If the variable has an initialization expression, the expression can be obtained from vpi_handle(vpiExpr,
var_handle).

9) vpiSize for a variable array shall return the number of variables in the array. For variables belonging to an integer
data type (see 6.11), for enum vars, and for packed struct and union variables, vpiSize shall return the size of the
variable in bits. For a string var, it shall return the number of characters that the variable currently contains. For
unpacked structures and unions, the size returned indicates the number of fields in the structure or union. For a var
bit, vpiSize shall return 1. For all other variables, the behavior of the vpiSize property is not defined.

10) vpiSize for a var select shall return the number of bits in the var select. This applies only for packed var select.

11) Variables of type vpiArrayVar, vpiClassVar or vpiVirtualInterfaceVar do not have a value property. Struct var
and union var variables for which the vpiVector property is FALSE do not have a value property.

12) vpiBit iterator applies only for logic, bit, packed struct, packed union, and packed array variables.

13) vpi_handle(vpiIndex, var_bit_handle) shall return the bit index for the variable bit. vpi_iterate(vpiIndex,
var_bit_handle) shall return the set of indices for a multidimensional variable bit select, starting with the index for
the bit and working outwards.

14) cbSizeChange shall be applicable only for dynamic and associative arrays, for queues, and for string vars. If both
value and size change, the size change callback shall be invoked first. This callback fires after the size change
occurs and before any value changes for that variable. The value in the callback is the new size of the array.

15) The property vpiRandType returns the current randomization type for the variable, which can be one of vpiRand,
vpiRandC, or vpiNotRand.

16) vpiIsRandomized is a property to determine whether a random variable is currently active for randomization.

17) When the vpiStructUnionMember property is TRUE, it indicates that the variable is a member of a parent struct or
union variable. See also the relations in 37.24 and 37.18 detail 5.

18) If a variable is an element of an array (the vpiArrayMember property is TRUE), the vpiIndex iterator shall return
the indexing expressions that select that specific variable out of the array. See 37.18 (and detail 6) for similar
functionality available for elements of packed array vars.

19) In the preceding diagram:

logic var == reg
var bit == reg bit
array var == reg array

vpiVarBit is #defined the same as vpiRegBit for backward compatibility. However, a vpiVarBit can be an
992
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
element of a vpiBitVar (2-state) or a vpiLogicVar (4-state), whereas vpiRegBit could only be an element of a
vpiReg (4-state).

SystemVerilog treats reg and logic variables as equivalent in all respects. To allow for backward compatibility,
a call to vpi_get_str(vpiType, <logic_var_handle>) may return either “vpiLogicVar” or “vpiReg”. Similarly,
vpi_get_str(vpiType, <var_bit_handle>) may return either “vpiVarBit” or “vpiRegBit”, while
vpi_get_str(vpiType, <array_var_handle>) may return either “vpiArrayVar” or “vpiRegArray”.

20) A bit var or logic var, without a packed dimension defined, is a scalar and for those objects, the property vpiScalar
shall return TRUE, and the property vpiVector shall return FALSE. A bit var or logic var, with one or more packed
dimensions defined, is a vector, and the property vpiVector shall return TRUE (vpiScalar shall return FALSE). A
packed struct var, a packed union var, and packed array var are vectors, and the property vpiVector shall return
TRUE (vpiScalar shall return FALSE). A var bit is a scalar, and the property vpiScalar shall return TRUE
(vpiVector shall return FALSE). The properties vpiScalar and vpiVector when queried on a handle to an enum var
shall return the value of the respective property for an object for which the typespec is the same as the base typespec
of the typespec of the enum var. For an integer var, time var, short int var, int var, long int var, and byte var, the
property vpiVector shall return TRUE (vpiScalar shall return FALSE). For an array var, the vpiScalar and
vpiVector properties shall return the values of the respective properties for an array element. The vpiScalar and
vpiVector properties shall return FALSE for all other var objects.

21) vpiArrayType can be one of vpiStaticArray, vpiDynamicArray, vpiAssocArray, or vpiQueue.

22) vpiRandType can be one of vpiRand, vpiRandC, or vpiNotRand.

23) For details on lifetime and memory allocation properties, see 37.3.7.

24) vpiVisibility denotes the visibility (local, protected, or default) of a variable that is a class member.
vpiVisibility shall return vpiPublicVis for a class member that is not local or protected, or for a variable that
is not a class member.

25) A non-static data member of a class var does not have a vpiFullName property. The static data member of a class,
referenced either via a class var or a class defn, has the vpiFullName property. It shall return a full name string
representing the hierarchical path of the static variable through “class defn”. For example:

module top;
class Packet ;

static integer Id ;
....

endclass
Packet p;
c = p.Id;
....

The vpiFullName for p.Id is “top.Packet::Id”.

26) The vpiParent transition shall be allowed on all variable objects. It shall return one of the following types of
objects, representing one of its prefix objects (similar to the field select prefix or indexing select prefix as described
in 11.5.3), or NULL, depending on whether certain criteria are met. For purposes of defining vpiParent, a prefix
object is the object obtained from successively removing the rightmost index or identifier from a compound or
indexed/multidimensional object name (excluding scope identifiers).

Consider the following vpiArrayVar objects:

logic [1:0][2:3] mda [4:6][6:8];
struct { int i1; bit [1:0][2:3]bvec[4:5]; } spa [9:11][12:13];

mda[6][8][1][3] is a vpiVarBit, mda[6][8][1] is its first prefix object (a 2-bit vpiLogicVar vector), and
mda[6][8] is its second prefix object (a 2 x 2 vpiLogicVar packed array), etc. The spa[9][12].bvec[4]
object is a vpiBitVar (a 2 x 2 vpiBitVar packed array), and spa[9][12].bvec is its first prefix object (a
vpiArrayVar struct member), and spa[9][12] is the second prefix object (the vpiStructVar containing the
bvec member). etc.

For a variable object with prefix objects, the vpiParent transition shall return one of the following prefix objects,
whichever comes first in prefix order (rightmost to leftmost):
— Struct, union, or class variable
— Struct or union member variable, or class variable data member
— The largest containing packed array object
993
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
— The largest containing unpacked array object

If there is no prefix object, or no prefix object meets at least one of the above criteria, vpiParent shall return
NULL.

Using the preceding declarations, the vpiParent of mda[6][8][1][3] is mda[6][8], the vpiLogicVar
representing the largest containing packed array prefix; the vpiParent of mda[6][8] is mda, the vpiArrayVar
representing the largest containing unpacked array prefix. Likewise, the vpiParent of
spa[9][12].bvec[4][0] is spa[9][12].bvec[4] (the largest containing packed array); the vpiParent
of spa[9][12].bvec[4] is spa[9][12].bvec (struct member), and applying vpiParent again yields
spa[9][12], the struct variable for member bvec. The vpiParent of spa[9][12] is spa, the largest
containing unpacked array of the struct variable; vpiParent of spa (or mda) would return NULL.

Class variables (as previously mentioned in the prefix object types) shall be returned as parent objects only when
they are explicitly used to reference corresponding class data members in the design. A VPI handle to a data
member that does not correspond to such an explicit reference in the design (e.g., a VPI handle to a data member
derived from iterations on its vpiClassObj or vpiClassDefn) shall have a NULL parent.

27) The property vpiConstantSelect shall return TRUE for a var bit or other variable if it has a static lifetime and has
no parent (the vpiParent relation returns NULL) or if both of the following are true of the “select” part of the
equivalent primary expression (see A.8.4):

— Every index expression in the select is an elaboration time constant expression.

— Every element within the select denotes either a member of a struct or union variable or a member of a packed
or unpacked array with static bounds.

Otherwise, vpiConstantSelect shall return FALSE.

NOTE 1—The final (non-prefix) element of the select may be an unindexed member identifier belonging to any
VPI variable type. It may, for example, be the name of a class variable or dynamic array. However, it must not be a
member of a class variable if the member has an automatic lifetime, and it must not be an element of a dynamically
allocated array.

NOTE 2—If vpiConstantSelect is TRUE, then if the handle refers to a valid underlying simulation object at the
beginning of simulation (or at any point in the simulation), it refers to the same object at all points in the simulation.
Moreover, if any index expression is in or out of bounds at the beginning of simulation, it is in or out of bounds at
all subsequent simulation times as well.

37.18 Packed array variables

Details:

1) vpiPackedArrayVar objects shall represent packed arrays of packed struct var, union var, or enum var objects.
The properties vpiVector and vpiPacked for these objects and their underlying struct var, union var, or enum var
elements shall always be TRUE (see 37.17).

2) For consistency with other variable-width vector objects, the vpiSize property for vpiPackedArrayVar objects
shall be the number of bits in the packed array, not the number of struct, enum, or union var elements. The total

vpiElement

struct var

union var

vpiParent

-> packed array member
bool: vpiPackedArrayMember

-> constant selection
bool: vpiConstantSelect

packed array var

packed array var
vpiIndex

expr

-> packed
bool: vpiPacked

enum var
994
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
number of struct var, enum var, or union var elements for a packed array var can be obtained by computing the
product of the vpiSize property for all of its packed ranges.

3) The vpiElement transition shall be used to iterate over the subelements of packed array variables. Unlike
vpiVarSelect or vpiReg transitions for vpiArrayVar objects, vpiElement shall retrieve elements for only one
dimension level at a time. This means that for multi-dimensioned packed arrays, vpiElement shall retrieve
elements that are themselves also vpiPackedArrayVar objects. vpiElement can then be used to iterate over the
subelements of these objects and so on, until the leaf level struct, enum, or union vars are returned. In other words,
the data type of each element retrieved by vpiElement is equivalent to the original vpiPackedArrayVar object’s
data type with the leftmost packed range removed. For example, consider the following vpiPackedArrayVar
object:

typedef struct packed { int i1; bit [1:0][2:3] bvec; } pavartype;
pavartype [0:2][6:3] pavar1;

The vpiElement transition applied to pavar1 shall return 3 vpiPackedArrayVar objects: pavar1[0],
pavar1[1], and pavar1[2]. The vpiElement transition applied to vpiPackedArrayVar pavar1[0] in turn
shall retrieve vpiStructVar objects pavar1[0][6], pavar1[0][5], pavar1[0][4], and
pavar1[0][3], respectively. Also, the vpiParent transition for all the above-mentioned subelements of
pavar1 shall return pavar1 (as per detail 26 of 37.17, since pavar1 is “the largest containing packed array
object”).

4) The vpiPackedArrayMember property shall be TRUE for any struct var, union var, enum var, or packed array var
whose vpiParent is a packed array var (see detail 26 of 37.17).

5) The vpiStructUnionMember property shall be TRUE only for packed array vars that are direct members of struct
or union vars, i.e., whose vpiParent is a struct or union var (see detail 26 of 37.17). This property shall be FALSE
for all subelements (as returned by the vpiElement iterator) of such packed array vars.

6) vpi_iterate(vpiIndex, packed_array_var_handle) shall return the set of indices for a subelement of a packed
array variable (relative to its vpiParent), starting with the index for the subelement and working outwards. The
indices retrieved shall be the same as those shown in the example for detail 3 for each of the subelements returned
by vpiElement. The indices will be retrieved in right-to-left order as they appear in the text.

37.19 Variable select

Details:

1) The property vpiConstantSelect shall return TRUE for a var select if

— every associated index expression is an elaboration time constant expression, and

— the parent of the var select is an unpacked array with static bounds, and

— vpiConstantSelect returns TRUE for the parent of the var select.

Otherwise, vpiConstantSelect shall return FALSE.

var select

expr
vpiIndex

-> constant selection
bool: vpiConstantSelect

-> name
str: vpiName
str: vpiFullName

-> size
int: vpiSize

-> value
vpi_get_value()
vpi_put_value()

vpiParent vpiIndex
exprarray var

typespec
995
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
NOTE—If vpiConstantSelect is TRUE, then if the handle refers to a valid underlying simulation object at the
beginning of simulation (or at any point in the simulation), it refers to the same object at all points in the simulation.
Moreover, if an index expression of the var select or of any of its parents is in or out of bounds at the beginning of
simulation, it is in or out of bounds at all subsequent simulation times as well.

37.20 Memory

Details:

1) The objects vpiMemory and vpiMemoryWord have been generalized with the addition of arrays of variables. To
preserve backwards compatibility, they have been converted into methods that will return objects of type
vpiRegArray and vpiReg, respectively. See 37.17 for the definitions of variables and variable arrays.

37.21 Variable drivers and loads

Details:

1) vpiDrivers/Loads for a structure, union, or class variable shall include the following:

— Driver/Load for the whole variable

reg array

expr
vpiLeftRange

-> access by index
vpi_handle_by_index()
vpi_handle_by_multi_index()

-> is a memory
bool: vpiIsMemory

vpiMemory

vpiRightRange
expr

scope

module

reg

expr
vpiLeftRange

vpiRightRange expr

vpiMemoryWord

expr
vpiIndex

vpiParent

ports

force

assign stmt

vpiDriver
variable drivers

cont assign

cont assign bit

variables

force

variable loads

cont assign

cont assign bit

vpiLoad

assign stmt
996
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
— Driver/Load for any bit-select or part-select of that variable

— Driver/Load of any member nested inside that variable

2) vpiDrivers/Loads for any variable array should include driver/load for entire array/vector or any portion of an
array/vector to which a handle can be obtained.

37.22 Object Range

Details:

1) An empty range is a range that has no elements. An empty range shall be used to represent:

— any range corresponding to an associative array dimension (see 37.17, detail 4)

— a range corresponding to an empty dynamic array or queue

— any range obtained from a typespec corresponding to a dynamic array, queue, or associative array dimension

For example:

int arr1 [][string];
initial

begin
#1 arr1 = new[2];
#1 arr1[0]["hello"] = 5;

end

All ranges obtained from the typespec handle of arr1 are empty. Also, ranges obtained from the arr1 object
itself at simulation time 0 are all empty, since the array is not sized yet. At times 1 and 2, the first range of arr1 is
[0:1] and the second is empty since it corresponds to an associative array dimension.

2) For an empty range, vpiSize shall return 0, while the vpiLeftRange and vpiRightRange relations shall each return
NULL.

range

expr
vpiLeftRange

vpiRightRange expr-> size
int: vpiSize
997
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
37.23 Typespec

-> packed
bool: vpiPacked

vpiTypedefAlias

enum const

short int typespec

int typespec

long int typespec

typespec

byte typespec

string typespec

class typespec

time typespec

enum typespec

bit typespec

logic typespec

array typespec

real typespec

struct typespec

union typespec

typespec
short real typespec

instance

typespec member

typespec

vpiIndexTypespec

typespec

typespec

integer typespec

-> tagged
bool: vpiTagged

-> vector
bool: vpiVector

-> vector
bool: vpiVector

-> array type
int: vpiArrayType

vpiBaseTypespec

-> name
str: vpiName

-> value
vpi_get_value()

typespec
vpiElemTypespec

-> name
str: vpiName

range

range

-> name
str: vpiName

-> randomization type
int: vpiRandType

expr

packed array typespec

-> vector
bool: vpiVector

struct typespec

union typespec

packed array typespec

vpiElemTypespec

bit typespec

logic typespec

vpiElemTypespec

vpiElemTypespec

expr

expr
vpiRightRange

vpiLeftRange

sequence typespec

property typespec

event typespec

type parameter

void typespec

enum typespec

interface typespec
998
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
Details:

1) If a typespec denotes a type that has a user-defined typedef, the vpiName property shall return the name of that
type; otherwise, except in the case of a class typespec (see 37.30), the vpiName property shall return NULL.
Consequently the vpiName property returns NULL for any SystemVerilog built-in type. If the typespec denotes a
type with a typedef that creates an alias of another typedef, then the vpiTypedefAlias of the typespec shall return a
non-null handle, which represents the handle to the aliased typedef. For example:

typedef enum bit [0:2] {red, yellow, blue} primary_colors;
typedef primary_colors colors;

If “h1” is a handle to the typespec colors, its vpiType shall return vpiEnumTypespec, the vpiName property
shall return “colors,” vpiTypedefAlias shall return a handle “h2” to the typespec “primary_colors” of
vpiType vpiEnumTypespec. The vpiName property for “h2” shall return “primary_colors”, and its
vpiTypedefAlias shall return NULL.

2) vpiIndexTypespec relation is present only on associative array typespecs and returns the type that is used as the
key into the associative array. For the wildcard index type (see 7.8.1), vpiIndexTypespec shall return NULL.

3) If the value of the property vpiType of a typespec is vpiStructTypesec or vpiUnionTypespec, then it is possible to
iterate over vpiTypespecMember to obtain the structure of the user-defined type. For each typespec member, the
typespec relation indicates the type of the member.

4) The property vpiName of a typespec member returns the name of the corresponding member, rather than the name
(if any) of the associated typespec.

5) The name of a typedef may be the empty string if the typespec denotes typedef field defined in-line rather than via
a typedef declaration. For example:

typedef struct {
struct

int a;
} B

} C;

The typespec representing the typedef C is a struct typespec; it has a single typespec member named B. The
typespec relation for B returns another struct typespec that has no name and has a single typespec member named
“a”. The typespec relation for “a” returns an int typespec.

6) If a type is defined as an alias of another type, it inherits the vpiType of this other type. For example:

typedef time my_time;
my_time t;

The vpiTypespec of the variable named “t” shall return a handle h1 to the typespec “my_time” whose vpiType
shall be a vpiTimeTypespec. The vpiTypedefAlias applied to handle h1 shall return a typespec handle h2 to the
predefined type “time”.

7) The expr associated with a typespec member shall represent the explicit default member value, if any, of the
corresponding member of an unpacked structure data type (See 7.2).

8) The vpiElemTypespec transition shall be used to unwind the typespec of an unpacked array (array typespec) or a
packed array (packed array typespec, or a bit or logic typespec with one or more dimensions), one dimension level
at a time. This means that for a multidimensional array typespec (a typespec with more than one unpacked range),
vpi_handle(vpiElemTypespec, array_typespec_handle) shall initially retrieve a vpiArrayTypespec equivalent
to the original typespec with its leftmost unpacked range removed. Subsequent calls to the vpiElemTypespec
method continue the unwinding until a typespec object is retrieved that has no unpacked ranges remaining.
Similarly, when the vpiElemTypespec is applied to a typespec of a multidimensional packed array object, a
vpiPackedArrayTypespec (or vpiBitTypespec or vpiLogicTypespec) is retrieved that is equivalent to the
original typespec with its leftmost packed range removed, and so on, until a typespec without an explicit packed
range is retrieved. When the vpiElemTypespec relation is applied to a vpiStructTypespec, vpiUnionTypespec,
vpiEnumTypespec, or a vpiBitTypespec or vpiLogicTypespec with no ranges present, it shall return NULL. This
allows packed or unpacked array typespecs constructed with multiple typedefs to be unwound without losing name
information. Consider the complex array typespec defined below for arr:

typedef struct packed { int i1; bit bvec; } [1:3] parrtype;
typedef parrtype [2:1] parrtype2;
999
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
typedef parrtype2 unparrtype [6:4];
unparrtype arr [3:0];

The typespec of the object arr is an unpacked 4  3 array typespec with a NULL vpiName property. The typespec
retrieved by applying vpiElemTypespec to this is a 3-element unpacked array typespec with a vpiName property
of “unparrtype”. The typespec retrieved by using vpiElemTypespec on this in turn yields a 2  3 packed array
typespec (of packed struct objects) with a vpiName property of “parrtype2”. Using vpiElemTypespec again in
turn yields another packed array typespec (of 3 packed struct objects) with a vpiName property of “parrtype”.
One more application of vpiElemTypespec to this result yields a struct typespec, a non-array typespec for which
no further array subelements exist (the unwinding is done).

9) If a logic typespec, bit typespec, or packed array typespec has more than one packed dimension, vpiLeftRange and
vpiRightRange shall return the bounds of the leftmost packed dimension. If an array typespec has more than one
unpacked dimension, vpiLeftRange and vpiRightRange shall return the bounds of the leftmost unpacked
dimension, unless that dimension corresponds to an empty range (see 37.22), in which case they shall return NULL.

10) For an array typespec, vpi_iterate(vpiRange, handle) shall return the set of array range declarations beginning
with the leftmost unpacked range and iterating through the rightmost unpacked range. If any dimension of the array
typespec corresponds to a dynamic array, associative array, or queue, the iteration shall return an empty range (see
37.22) for that dimension. For a logic typespec or bit typespec that has an associated range, the iteration shall return
the set of ranges beginning with the leftmost packed range and iterating through the rightmost packed range.

11) In a context (such as a class defn) in which a type parameter has not been resolved, the type parameter itself shall
act as a typespec.

37.24 Structures and unions

Details:

1) vpi_get_value()/vpi_put_value() cannot be used to access values of entire unpacked structures and unpacked
unions.

vpiMember

struct var

union var
variables

vpiParent

-> packed
bool: vpiPacked

1000
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
37.25 Named events

Details:

1) The vpiWaitingProcesses iterator returns all waiting processes, static or dynamic, identified by their thread, for
that named event.

2) vpi_iterate(vpiRange, named_event_array_handle) shall return the set of array range declarations beginning
with the leftmost unpacked range and iterating through the rightmost unpacked range.

3) For details on lifetime and memory allocation properties, see 37.3.7.

Details:

1) vpi_iterate(vpiIndex, named_event_handle) shall return the set of indices for a named event within an array,
starting with the index for the named event and working outward. If the named event is not part of an array, a NULL
shall be returned.

2) For details on lifetime and memory allocation properties, see 37.3.7.

named event thread

vpiWaitingProcesses

-> array member
bool: vpiArray (deprecated)
bool: vpiArrayMember

-> name
str: vpiName
str: vpiFullName

-> value
vpi_put_value()

-> lifetime
bool: vpiAutomatic

-> memory allocation
int: vpiAllocScheme

instance

scope

module

event typespec
vpiTypespec

named event array named event
vpiParent

-> name
str: vpiName
str: vpiFullName

-> access by index
vpi_handle_by_index()
vpi_handle_by_multi_index()

-> lifetime
bool: vpiAutomatic

-> memory allocation
int: vpiAllocScheme

instance

range

expr

vpiIndex

module

array typespec
vpiTypespec
1001
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
37.26 Parameter, spec param, def param, param assign

Details:

1) For a value parameter, vpi_get_value() shall return the value that the parameter has at the end of elaboration.

2) The vpiTypespec of a type parameter shall return the typespec that the type parameter has at the end of elaboration,
but without resolving typedef aliases.

vpiRightRange

parameter typespec

expr

expr

expr

vpiLeftRange

-> constant type
int: vpiConstType

-> sign
bool: vpiSigned

-> size
int: vpiSize

-> value
vpi_get_value()

-> connection by name
bool: vpiConnByName

expr

parameter

vpiRhs

vpiLhs

def parammodule

typespec

vpiRhs

vpiLhs

param assign

scope

module

type parameter

parameters

parameter

-> local
bool: vpiLocalParam

-> name
str: vpiName
str: vpiFullName

type parameter typespec

typespec
vpiExpr

scope

module
parameters

expr

vpiParameter
1002
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
3) The vpiExpr relation of a value parameter shall return the default expr, while the vpiExpr relation of a type
parameter shall return the default typespec.

4) vpiLhs from a param assign object shall return a handle to the overridden value parameter or type parameter.

5) If a value parameter does not have an explicitly defined range, vpiLeftRange and vpiRightRange shall return a
NULL handle.

37.27 Virtual interface

Details:

1) The vpiExpr relation shall return the interface instance assigned to the virtual interface in its declaration, if any;
otherwise, vpiExpr shall return NULL.

2) A ref obj may be an interface expr only if it is a local declaration of an interface or modport passed through a port.
A constant may be an interface expr only if it has a vpiConstType of vpiNullConst.

Example 1: Passing an interface or modport through a port:

interface SBus #(parameter WIDTH=8);
logic req, grant;
logic [WIDTH-1:0] addr, data;
modport phy(input addr, inout data);

endinterface

module top;

parameter SIZE = 4;

virtual SBus#(16) V16;
virtual SBus#(32).phy V32_Array [1:SIZE];
...

endmodule

-> name
str: vpiName
str: vpiFullName

-> is modport
bool: vpiIsModPort

interface typespec
vpiTypespec

interface expr

interface

modport

ref obj

interface

vpiActual modport

virtual interface var

constant

vpiExpr

virtual interface var
1003
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
In this example, V16 is a virtual interface, while V32_Array is an array var. The vpiVariables iteration from
module top includes both V16 and V32_Array, while the vpiVirtualInterfaceVar iteration returns V16
together with the individual elements of V32_Array, that is, V32_Array[1] through V32_Array[4].

Example 2: Virtual interface declaration in a class definition:

interface SBus; // A Simple bus interface
logic req, grant;
logic [7:0] addr, data;

endinterface

class SBusTransactor; // SBus transactor class
virtual SBus bus; // virtual interface of type SBus
function new(virtual SBus s);

bus = s; // initialize the virtual interface
endfunction
task request(); // request the bus

bus.req <= 1'b1;
endtask
task wait_for_bus(); // wait for the bus to be granted

@(posedge bus.grant);
endtask

endclass

module devA(SBus s); ... endmodule // devices that use SBus

module devB(SBus s); ... endmodule

module top;
SBus s[1:4] (); // instantiate 4 interfaces
devA a1(s[1]); // instantiate 4 devices
devB b1(s[2]);
devA a2(s[3]);
devB b2(s[4]);
initial begin

SbusTransactor t[1:4]; // create 4 bus-transactors and bind
t[1] = new(s[1]);
t[2] = new(s[2]);
t[3] = new(s[3]);
t[4] = new(s[4]);

end
endmodule

A virtual interface var is returned for the left-hand side expression of the statement “bus = s” in the constructor
of the class definition SBusTransactor. The vpiName of the virtual interface var is “bus”, and it has a
vpiInterfaceTypespec for which the vpiDefName is “SBus”. The vpiActual relationship returns the interface
instance associated with that particular call to new after the assignment has executed. For example, if it was
“new(s[1])”, vpiActual would return the interface s[1]. If vpiActual is queried before the assignment is
executed, the method shall return NULL if the virtual interface is uninitialized. In addition, the right-hand side
expression of “bus = s” returns a virtual interface var for which vpiActual is the interface instance passed to the
call to new.
1004
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
37.28 Interface typespec

Details:

1) The vpiDefName of an interface typespec that represents a modport shall be the modport identifier. The
vpiDefName of an interface typespec that represents an interface shall be the identifier of the interface declaration.

2) For an interface typespec that represents a modport, vpiParent shall return an interface typespec of the
corresponding interface. For an interface typespec that represents an interface, vpiParent shall return NULL.

3) In the following example, the first typedef defines an interface typespec corresponding to “virtual
SBus#(16)” whose vpiName is SB16. The vpiDefname of this typespec shall be SBus, and the assigned
parameter value of 16 shall be derived by iterating on vpiParamAssign. The typedef SBphy, however, is an array
typespec for which the vpiElemTypespec returns an interface typespec corresponding to “virtual
SBus#(32).phy”.

The vpiTypedef iteration from the module top returns handles to both SB16 and SBphy interface typespecs.

interface SBus #(parameter WIDTH=8);
logic req, grant;
logic [WIDTH-1:0] addr, data;
modport phy(input addr, inout data);

endinterface

module top;

parameter SIZE = 4;

typedef virtual SBus#(16) SB16;
typedef virtual SBus#(32).phy SBphy [1:SIZE];
...

endmodule

-> name
str: vpiName

-> def name
str: vpiDefName

-> is modport
bool: vpiIsModPort

param assigninterface typespec

vpiParent

interface typespec
1005
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
37.29 Class definition

Details:

1) The iterations over vpiVariables, vpiMethods, vpiNamedEvent, and vpiNamedEventArray shall return both
static and automatic properties or methods. However, the iteration over vpiMethods shall not include built-in
methods for which there is no explicit declaration.

2) vpi_get_value() and vpi_put_value() are not allowed for variable and event handles obtained from class defn
handles.

3) The iterator to constraints returns only normal constraints and not inline constraints.

4) The vpiConstraint iteration shall return the constraints in syntactic declaration order. The position within this
order of a constraint declared as extern shall be determined by the position of its prototype. To get constraints
inherited from base classes, it is necessary to traverse the extends relation to obtain the base class typespec.

5) The vpiDerivedClasses iterator shall return all the class defns derived from the given class defn.

6) The relation to vpiExtends exists whenever one class is derived from another class (refer to 8.13). The relation
from extends to class typespec provides the base class. The vpiArgument iterator from extends shall provide the
arguments used in constructor chaining (refer to 8.17).

7) The vpiParameter iteration shall return both the parameters declared in the parameter port list of the class
declaration and the parameters declared within the body of the class declaration as class items. The property
vpiLocalParam (see 37.26) shall return TRUE for parameters declared within the body.

8) For details on lifetime and memory allocation properties, see 37.3.7.

class defn instance

extends

constraint

vpiMethods

-> name
str: vpiName

-> virtual
bool: vpiVirtual

-> declared lifetime
bool: vpiAutomatic

expr

variables

task func
class defn

vpiArgument

vpiDerivedClasses scope

named event

named event array

type spec

scope

vpiTypedef

vpiInternalScope

class typespec

vpiParameter
parameters
1006
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
37.30 Class typespec

Details:

1) According to how it is obtained, a class typespec may represent either a lexical construct or a class specialization.

If the class typespec is obtained as part of a class defn, it represents a lexical construct from the SystemVerilog
source code. In particular, it shall represent a lexical construct under the following conditions:

— It is obtained from a class defn via the vpiTypedef iteration. In this case it represents a user-defined typedef.

— It is part of the declaration of a class item (variable or method) obtained from the class defn.

— It is obtained from the extends object associated with the class defn.

A class typespec object that has all parameter values resolved shall represent a class specialization. In particular, it
shall represent a class specialization under the following conditions:

— It is obtained from a class defn by iterating over vpiClassTypespec.

— It is the type of a variable or method for which no containing scope is a class defn. If the variable or method is
declared using the name of a typedef, the class typespec shall be the corresponding class instantiation rather
than the class typespec for the typedef itself.

A class typespec derived from a class defn for which the parameter port list is empty may represent both a lexical
construct and a class specialization.

2) For a class typespec that represents only a lexical construct, the one-to-many relations vpiVariables, vpiMethods,
vpiConstraint, vpiNamedEvent, vpiNamedEventArray, vpiTypedef, and vpiInternalScope are not supported.

3) In the case of a class typespec that represents a lexical construct, if the class type construct includes an explicit
parameter expression or type, the object for that parameter or type shall constitute the vpiRhs part of the
corresponding param assign (see 37.26); otherwise the vpiRhs part shall reference the default expression or type
with which the parameter was declared. However, if the class typespec represents a class specialization, the vpiRhs
of each param assignment may be any object that has the correct value (in the case of a non-type parameter) or type
(in the case of a type parameter).

constraint

vpiMethods
-> name

str: vpiName
-> class type

int: vpiClassType
-> declared lifetime

bool: vpiAutomatic

variables

task func
class typespec

virtual interface var

named event

named event array

scope
vpiInternalScope

class typespec

class defn

vpiExtends

param assign

vpiParameter
parameters
1007
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
4) A class typespec that represents a class specialization shall have a valid, though tool-dependent, name.

5) From a class typespec that represents a class specialization, the iterations over vpiVariables, vpiMethods,
vpiNamedEvent, and vpiNamedEventArray shall return both static and automatic properties or methods.
However, the iteration over vpiMethods shall not include built-in methods for which there is no explicit
declaration.

6) vpi_get_value() and vpi_put_value() are not allowed for non-static variable and event handles obtained from class
typespec handles.

7) The iterator to constraints returns only normal constraints and not inline constraints.

8) The vpiConstraint iteration shall return the constraints in syntactic declaration order. The position within this
order of a constraint declared as extern shall be determined by the position of its prototype. To get constraints
inherited from a base class typespec, it is necessary to traverse the extends relation to obtain the base class typespec.

9) The vpiExtends relation shall return the base class typespec, if any, from which a given class typespec is derived.
The base class typespec of a class specialization shall also be a specialization.

10) The vpiClassTypespec iteration from a class defn shall return the class specializations derived directly (and not by
inheritance) from that class defn.

11) The vpiVirtualInterfaceVar iteration (formerly vpiInterfaceDecl—now deprecated in this standard—see C.4.3,
item 5) shall return the virtual interface var declarations in the class specialization (see 37.12 detail 7). If an array of
virtual interfaces is declared, the vpiVirtualInterfaceVar iteration shall return each element of the array
separately. However, the vpiVariables iteration shall return the array declaration as a single vpiArrayVar.

12) The vpiParameter iteration shall return parameters corresponding both to those declared in the parameter port list
of the class declaration and to those declared within the body of the class declaration as class items. The property
vpiLocalParam (see 37.26) shall return TRUE for parameters declared within the body.

13) The vpiClassDefn relation shall return NULL for built-in classes.

14) For details on lifetime and memory allocation properties, see 37.3.7.
1008
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
37.31 Class variables and class objects

Details:

1) The property vpiObjId is a class object’s identifier. It is a property of a live object and guaranteed to be unique
with respect to all other dynamic objects that support this property for as long as the object is alive. After the object
is destroyed by garbage collection, its particular vpiObjId value may be reused.

2) For a class var, its vpiObjId is the identifier of the object it references or 0, indicating it is not referencing any
object.

3) The vpiWaitingProcesses iterator on a mailbox or semaphore shall return the threads waiting on the class object or
object resource. A waiting process is a static or dynamic process represented by its suspended thread. A process
may be waiting to retrieve a message from a mailbox or waiting for a semaphore resource key.

4) A vpiMessages iteration shall return all the messages in a mailbox.

5) For a class var, vpiClassTypespec shall return the class typespec with which the class var was declared in the
SystemVerilog source text. If the class var has the value of NULL, the vpiClassObj relationship applied to the class
var shall return a null handle. vpiClassTypespec when applied to a class obj handle shall return the class typespec
with which the class obj was created. The difference between the two usages of vpiClassTypespec can be seen in
the following example:

class Packet;
...

endclass : Packet
class LinkedPacket extends Packet;

...
endclass : LinkedPacket
LinkedPacket l = new;
Packet p = l;

In this example, the vpiClassTypespec of variable p is Packet, but the vpiClassTypespec of the class obj
associated with variable p is “LinkedPacket”.

NOTE—When a class var is obtained as a data member of a class typespec, the application must use vpiScope (see
37.12) rather than vpiClassTypespec to obtain the enclosing scope.

class var

vpiWaitingProcesses

variables

expr

class typespec-> referenced identity
int64: vpiObjId

vpiMessages
thread

constraint

vpiMethods

class obj

class typespec

task func

virtual interface var

named event

named event array

scope
vpiInternalScope

-> my identity
int64: vpiObjId

vpiParameter
parameters
1009
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
6) From a class obj, the iterations over vpiVariables, vpiMethods, vpiNamedEvent, and vpiNamedEventArray
shall return both static and automatic properties or methods. However, the iteration over vpiMethods shall not
include built-in methods for which there is no explicit declaration.

7) The vpiVirtualInterfaceVar iteration (formerly vpiInterfaceDecl—now deprecated in this standard—see C.4.3,
item 5) shall return the virtual interface var declarations in the class object. If an array of virtual interfaces is
declared, the vpiVirtualInterfaceVar iteration shall return each element of the array separately. However, the
vpiVariables iteration shall return the array declaration as a single vpiArrayVar.

8) The vpiParameter iteration shall return parameters corresponding both to those declared in the parameter port list
of the class declaration and to those declared within the body of the class declaration as class items. The property
vpiLocalParam (see 37.26) shall return TRUE for parameters declared with the body. The value of a parameter
derived from a class obj shall be the same as that of the same parameter derived from the corresponding class
typespec.

9) vpi_handle_by_name() shall accept a full name to a non-static data member, even though it does not have a
vpiFullName property. For example:

module top;
class Packet ;

integer Id ;
....

endclass
Packet p;
c = p.Id;
....

vpi_handle_by_name() accepts “top.p.Id”.

10) For details on class object specific callbacks, see 38.36.1.
1010
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
37.32 Constraint, constraint ordering, distribution

Details:

1) For a constraint, vpiAutomatic property does not mean lifetime, but reflects the keyword used in the constraint
declaration. vpiAutomatic == 0 implies the constraint was declared static. See 18.5.11 for meaning.

2) For details on memory allocation property, see 37.3.7.

3) Possible return values for the vpiAccessType property (see 37.8) for a constraint are vpiExternAcc or zero,
indicating whether it was declared outside its enclosing class declaration or not (see 18.5.1).

4) The vpiConstraint iteration shall return the constraints in syntactic declaration order. The position within this
order of a constraint declared as extern shall be determined by the position of its prototype.

5) The vpiConstraintItem iteration shall return the constraint items in the order in which they occur within the
constraint.

expr

constraint item

constraint expr

constraint ordering

class obj

-> virtual
bool: vpiVirtual

-> lifetime (static/automatic)
 bool: vpiAutomatic

-> memory allocation
int: vpiAllocScheme

-> access
int: vpiAccessType

-> name
str: vpiName
str: vpiFullName

-> active
bool: vpiIsConstraintEnabled

distribution

constraint
vpiParent

expr

expr

constraint ordering

vpiSolveBefore

vpiSolveAfter

dist item

expr

range

expr

vpiValueRange

vpiWeight

-> distribution type
int: vpiDistType
1011
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
37.33 Primitive, prim term

Details:

1) vpiSize shall return the number of inputs.

2) For primitives, vpi_put_value() shall only be used with sequential UDP primitives.

3) vpiTermIndex can be used to determine the terminal order. The first terminal has a term index of zero.

4) If a primitive is an element within a primitive array, the vpiIndex transition is used to access the index within the
array. If a primitive is not part of a primitive array, this transition shall return NULL.

expr primitive

gate

udp defn

-> array member
bool: vpiArray (deprecated)
bool: vpiArrayMember

-> definition name
 str: vpiDefName

-> delay
vpi_get_delays()
vpi_put_delays()

-> name
str: vpiName
str: vpiFullName

-> primitive type
int: vpiPrimType

-> number of inputs
int: vpiSize

-> strength
int: vpiStrength0
int: vpiStrength1

-> value
vpi_get_value()
vpi_put_value()

switch

prim term

vpiDelay

expr

expr
-> direction

int: vpiDirection
-> index

vpiTermIndex
-> value

vpi_get_value()udp

vpiIndex

primitive array

module
1012
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
37.34 UDP

Details:

1) Only string (decompilation) and vector (ASCII values) shall be obtained for table entry objects using
vpi_get_value(). Refer to the definition of vpi_get_value() for additional details.

2) vpiPrimType returns vpiSeqPrim for sequential UDPs and vpiCombPrim for combinational UDPs.

37.35 Intermodule path

Details:

1) To get to an intermodule path, vpi_handle_multi(vpiInterModPath, port1, port2) can be used.

io decl

initial

udp

udp defn

-> definition name
str: vpiDefName

-> number of inputs
 int: vpiSize

-> protected
bool: vpiProtected

-> type
int: vpiPrimType

-> number of symbol entries
int: vpiSize

-> value
vpi_get_value()

table entry

inter mod path ports

-> delay
vpi_get_delays()
vpi_put_delays()
1013
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
37.36 Constraint expression

Details:

1) The variable obtained via the vpiVariables relation from a vpiConstrForeach shall represent the array being
indexed.

2) The vpiLoopVars iteration shall return the index variables of the foreach constraint in left-to-right order. If an
index variable is skipped, its place shall be represented as a vpiOperation for which the vpiOpType is vpiNullOp.

3) Each vpiConstraintExpr iteration shall return the expressions in the order in which they occur in the containing
implication, if, if-else, or foreach constraint.

constraint expr

constraint expr

implication

vpiElseConst

expr

constr if

constr if else constraint expr

expr
vpiCondition

constr foreach

distribution

constr foreach
variables

variables

vpiLoopVars

constraint expr

operation

-> soft constraint
bool: vpiSoft

soft disable expr
1014
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
37.37 Module path, path term

Details:

1) Specify blocks can occur in both modules and interfaces. For backwards compatibility the vpiModule relation has
been preserved; however this relation shall return NULL for specify blocks in interfaces. For new code, it is
recommended that the vpiInstance relation be used instead.

vpiModPathIn

interface

expr

path term

mod path

module

module

vpiDelay
expr

expr
vpiCondition

-> direction
int: vpiDirection

-> edge
int: vpiEdge

-> delay
vpi_get_delays()
vpi_put_delays()

-> path type
int: vpiPathType

-> polarity
int: vpiPolarity
int: vpiDataPolarity

-> hasIfNone
bool: vpiModPathHasIfNone

vpiModPathOut

vpiModDataPathIn

vpiInstance

path term

path term
1015
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
37.38 Timing check

Details:

1) For the timing checks in 31.2 the relationship vpiTchkRefTerm shall denote the reference_event or
controlled_reference_event, while vpiTchkDataTerm shall denote the data_event, if any.

2) When iterating over vpiExpr from a tchk, the handles returned for a reference_event, a controlled_reference_event,
or a data_event shall have the type vpiTchkTerm. All other arguments shall have types matching the expression.

vpiTchkNotifier

tchk term

tchk

module

vpiExpr

expr

expr

-> edge
int: vpiEdge

-> limit
vpi_get_delays()
vpi_put_delays()

-> tchk type
int: vpiTchkType

vpiTchkDataTerm

vpiTchkRefTerm

tchk term

tchk term

vpiCondition

regs

expr

tchk term

expr
vpiDelay
1016
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
37.39 Task and function declaration

Details:

1) A SystemVerilog function shall contain an object with the same name, size, and type as the function. This object
shall be used to capture the return value for this function.

2) For a function where the return type is a user-defined type, vpi_handle(vpiReturn, function_handle) shall return
the implicit variable handle representing the return of the function from which the user can get the details of that
user-defined type.

3) vpiReturn shall always return a var object, even for simple returns.

4) vpiVisibility denotes the visibility (local, protected, or default) of a task or function that is a class member (a
method). vpiVisibility shall return vpiPublicVis for a class member that is not local or protected, or for a task or
function that is not a class member.

5) vpiFullName of a task or function declared inside a package or class defn shall begin with the full name of the
package or class defn followed by “::” and immediately followed with the name of the task or function.

6) vpiAccessType shall return vpiDPIExportAcc for "DPI" and "DPI-C" export functions/tasks, and shall return
vpiDPIImportAcc for "DPI" and "DPI-C" import functions/tasks.

7) vpiDPIPure shall return TRUE for pure "DPI" and "DPI-C" import functions.

8) vpiDPIContext shall return TRUE for context import "DPI" and "DPI-C", functions/tasks.

9) vpiDPICStr shall return vpiDPI for a "DPI" function/task, and vpiDPIC for a "DPI-C" function/task.

10) vpiDPICIdentifier shall return a string corresponding to the C linkage name for the "DPI"/"DPI-C" function/task.

11) For details on lifetime and memory allocation properties, see 37.3.7.

12) If the vpiSize of the vpiReturn variable is defined (see 37.17, detail 9) and can be determined without evaluating
the function, vpiSize for the function shall return the same value as vpiSize for the vpiReturn variable. For a void
function, vpiSize shall return 0. For all other cases the behavior of vpiSize is undefined.

function

expr
vpiLeftRange

io decl task func

variables

vpiRightRange

task

expr

vpiReturn

-> method
bool: vpiMethod

-> access
int: vpiAccessType

-> visibility
int: vpiVisibility

-> virtual
bool: vpiVirtual

-> default lifetime
bool: vpiAutomatic

-> sign
bool: vpiSigned

-> size
int: vpiSize

-> type
int: vpiFuncType

class defn

ref obj
vpiParent

func call

task call

-> pure DPI
bool: vpiDPIPure

-> context
bool: vpiDPIContext

-> DPI qualifier
int: vpiDPICStr

-> identifier
str: vpiDPICIdentifier
1017
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
37.40 Task and function call

Details:

1) The vpiWith relation is only available for randomize methods (see 18.7) and for array locator methods (see 7.12.1).

2) For methods (method func call, method task call), the vpiPrefix relation shall return the object to which the method
is being applied. For example, for the class method invocation

packet.send();

the prefix for the “send” method is the class var “packet”.

3) The system task or function that invoked an application shall be accessed with vpi_handle(vpiSysTfCall, NULL).

4) vpi_get_value() shall return the current value of the system function.

task
vpiPrefix

named event

expr

expr

user systf

-> type
int: vpiFuncType

-> value
vpi_get_value()

function

task call

func call

named event array

vpiSysTfCall

scope tf call

method func call

method task call

-> is built in
bool: vpiUserDefn

-> value
vpi_get_value()

sys func call

sys task call

-> user-defined
bool: vpiUserDefn

-> decompile
str: vpiDecompile

-> type
int: vpiFuncType

-> value
vpi_get_value()
vpi_put_value()

-> name
str: vpiName

-> systf info
p_vpi_systf_data:

vpi_get_systf_info()

scope

primitive

vpiArgument

exprvpiWith

constraint

interface expr
1018
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
5) If the vpiUserDefn property of a system task or function call is true, then the properties of the corresponding systf
object shall be obtained via vpi_get_systf_info().

6) All user-defined system tasks or functions shall be retrieved using vpi_iterate(), with vpiUserSystf as the type
argument, and a NULL reference argument.

7) The simulator shall not evaluate arguments to system tasks or functions when calling those tasks or functions
(36.4). Effectively, the value of any argument expression, or of any operand or argument of the expression, is not
known until an application asks for it using vpi_get_value() (38.15), a cbValueChange callback (38.36.1), or other
equivalent operation. If no application asks for the value of the argument, it is never evaluated.

8) An empty (omitted) argument (see 21.2.1) shall be represented as an expression with a vpiType of vpiOperation
and a vpiOpType of vpiNullOp. An argument consisting of the special value null shall be represented as an
expression with a vpiType of vpiConstant and a vpiConstType of vpiNullConst.

Example:

logic my_var;
$my_task(my_var, ””, , null,);

In the call to the user-defined system task $my_task(), my_var is an ordinary argument of type vpiLogicVar.
The second argument, an empty string (but not an empty argument), is a vpiConstant for which the vpiConstType
is vpiStringConst. The third and fifth arguments are empty arguments, while the fourth argument is a vpiConstant
with a vpiConstType of vpiNullConst. VPI shall represent the third and fifth arguments as vpiOperations with a
vpiOpType of vpiNullOp.

9) The property vpiDecompile shall return a string with a functionally equivalent system task or function call to what
was in the original source code. The arguments shall be decompiled using the same manner as any expression is
decompiled. See 37.57 for a description of expression decompilation.

10) System task and function calls that are protected shall allow iteration over the vpiArgument relationship.

11) For a built-in method func call, vpiFunction shall return NULL, while vpiTask shall return NULL for a built-in
method task call.
1019
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
37.41 Frames

Details:

1) Frames correspond to the set of automatic variables declared in a given task or function.

2) It shall be illegal to place value change callbacks on automatic variables.

3) It shall be illegal to put a value with a delay on automatic variables.

4) There is at most only one active frame at any time in a given thread. To get a handle to the currently active frame,
use vpi_handle(vpiFrame, NULL). The frame to stmt transition shall return the currently active statement within
the frame.

5) The frame object model is not backwards compatible with IEEE Std 1364-2005.

6) For details on frame specific callbacks, see 38.36.1.

vpiAutomatics

named event

variables

stmt

thread

-> active
bool: vpiActive

frame

task call

func call

scope

frame

named event array

vpiOrigin

vpiParenttask call

func call

scope

method task call

method task call

method func call

method func call
1020
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
37.42 Threads

Details:

1) A thread is a SystemVerilog process such as an always procedure or a branch of a fork construct. As a thread
works its way down a call chain of tasks and/or functions, a new frame is activated as each new task or function is
entered.

2) For details on thread specific callbacks, see 38.36.1.

37.43 Delay terminals

Details:

1) The value of the input delay term shall change before the delay associated with the delay device.

2) The value of the output delay term shall not change until after the delay has occurred.

stmt

-> active
bool: vpiActive

thread

thread

frame

vpiParent

vpiOrigin

thread

delay term

-> delay type
int: vpiDelayType

-> value
vpi_get_value()

module

delay term

delay device

net drivers

net loads
vpiLoad

vpiDriver

vpiOutTerm

vpiInTerm

-> delay type
int: vpiDelayType
1021
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
37.44 Net drivers and loads

Details:

1) Complex expressions on input ports that are not concatenations shall be considered a load for a net. Iterating on
loads for trinet in the following example will cause the fourth port of ram to be a load:

module my_module;
tri trinet;
ram r0 (a, write, read, !trinet);

endmodule

Access to the complex expression shall be available using vpi_handle(vpiHighConn, portH) where portH is the
handle to the port returned when iterating on loads.

ports

force

prim term

vpiDriver
net drivers

cont assign

cont assign bit

nets

force

net loads

cont assign

cont assign bit

vpiLoad

assign stmt

delay term

delay term

prim term

ports
1022
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
37.45 Continuous assignment

Details:

1) The size of a cont assign bit is always scalar.

2) Callbacks for value changes can be placed onto cont assign or a cont assign bit.

3) vpiOffset shall return zero for the LSB.

expr

-> delay
vpi_get_delays()

-> net decl assign
bool: vpiNetDeclAssign

-> strength
int: vpiStrength0
int: vpiStrength1

-> value
vpi_get_value()

module cont assign

cont assign bit

expr

vpiBit

-> offset from LSB
int: vpiOffset

expr

vpiParent

vpiDelay

vpiLhs

vpiRhs
1023
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
37.46 Clocking block

Details:

1) The methods, vpiInputSkew and vpiOutputSkew, and properties vpiInputEdge and vpiOutputEdge, on the
clocking block apply to the default constructs. The same methods and properties on the clocking io decl apply to
the clocking io decl itself.

2) The vpiPrefix relation shall be non-NULL when the clocking block represents an expression in the SystemVerilog
source code immediately prefixed by a virtual interface.

3) If a prefix of a clocking block is a virtual interface that has no value at the current simulation time, the vpiActual
relation shall return NULL.

4) vpiExpr shall return the expression or ref obj referenced by the clocking io decl. Consider input
enable = top.mem1.enable. Here, “enable” is represented by a clocking io decl, and the vpiExpr
relation returns a handle to “top.mem1.enable”.

clocking block

vpiInputSkew

instancevpiClockingEvent

clocking io decl

expr

delay control

event control

delay control

clocking io decl

vpiInputSkew vpiOutputSkew

-> name
str: vpiName
str: vpiFullName

-> edge
int: vpiInputEdge
int: vpiOutputEdge

-> direction
int: vpiDirection

-> name
str: vpiName

-> edge
int: vpiInputEdge
int: vpiOutputEdge

delay control
vpiOutputSkew

vpiExpr nets

variables

property decl

sequence decl

ref obj

virtual interface var
vpiPrefix

clocking block
vpiActual
1024
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
37.47 Assertion

Details:

1) For details on using VPI to obtain static and dynamic assertion information as well as assertion callbacks and
control, see Clause 39.

2) For details on using VPI to obtain assertion coverage, see 40.5.3.

sequence inst

assume

assertion

cover

property inst

assert

immediate assert

instance clocking block

-> location
str: vpiFile
int: vpiStartLine
int: vpiColumn
int: vpiEndLine
int: vpiEndColumn

-> assertion name
str: vpiName

immediate assume

immediate cover

restrict
1025
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
37.48 Concurrent assertions

Details:

1) Clocking event is always the actual clocking event on which the assertion is being evaluated, regardless of whether
this is explicit or implicit (inferred).

2) The restrict property statement has no pass and no fail action statement. Also, it is not simulated and hence
generates no run-time information.

vpiElseStmt

stmt

expr

-> name
str: vpiName
str: vpiFullName

-> is clock inferred
bool:vpiIsClockInferred

assert

assume

expr concurrent assertions

stmt

vpiClockingEvent

property inst

property spec

vpiProperty

cover

vpiDisableCondition

distribution

-> is cover sequence
bool:vpiIsCoverSequence

restrict
1026
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
37.49 Property declaration

Details:

1) The vpiPropFormalDecl iterator shall return the property declaration arguments in the order that the formals for
the property are declared.

2) The vpiArgument iterator shall return the property instance arguments in the order that the formals for the property
are declared, so that the correspondence between each argument and its respective formal can be made. If a formal
has a default value, that value shall appear as the argument should the instantiation not provide a value for that
argument.

3) The vpiTypespec relation shall return NULL if the formal is untyped.

4) If the formal has an initialization expression, the expression can be obtained using the vpiExpr relation.

5) vpiDirection returns vpiNoDirection if the formal argument is not a local variable argument. Otherwise,
vpiDirection returns vpiInput.

property decl

property spec
-> name

str: vpiName
str: vpiFullName

property inst

prop formal decl

variables

prop formal decl
property expr-> name

str: vpiName
-> direction

int: vpiDirection

named event

typespec

vpiExpr

property decl

property inst

vpiDisableCondition

property expr

named event

expr

vpiArgument
1027
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
37.50 Property specification

Details:

1) Variables are declarations of property variables. The value of these variables cannot be accessed.

2) Within the context of a property expr, vpiOpType can be any one of vpiAcceptOnOp, vpiAlwaysOp,
vpiCompAndOp, vpiCompOrOp, vpiEventuallyOp, vpiIfElseOp, vpiIfOp, vpiIffOp, vpiImpliesOp,
vpiNexttimeOp, vpiNonOverlapFollowedByOp, vpiNonOverlapImplyOp, vpiNotOp,
vpiOverlapFollowedByOp, vpiOverlapImplyOp, vpiRejectOnOp, vpiSyncAcceptOnOp,
vpiSyncRejectOnOp, vpiUntilOp, or vpiUntilWithOp.

Operands to these operations shall be provided in the same order as shown in the BNF, with the following
exceptions:
— vpiNexttimeOp: Arguments shall be: property, constant. constant shall only be given if different from 1.

— vpiAlwaysOp and vpiEventuallyOp: Arguments shall be: property, left range, right range.

3) vpiOpStrong is valid only for operations vpiNexttimeOp, vpiAlwaysOp, vpiEventuallyOp, vpiUntilOp,
vpiUntilWithOp, and for sequence expression. vpiOpStrong shall return TRUE to indicate the strong version of
the corresponding operator.

4) The case property item shall group all case conditions that branch to the same property statement.

5) vpi_iterate() shall return NULL for the default case item because there is no expression with the default case.

property spec
vpiClockingEvent

expr

vpiDisableCondition

property expr

operation

property expr

property inst

-> operation type
int: vpiOpType

-> operator strength
bool: vpiOpStrong

sequence expr

multiclock
sequence expr

clocked property

property expr

expr

property expr

vpiClockingEvent

vpiOperand

expr

distribution

case property

case property item

expr

expr

property expr

vpiCondition
1028
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
37.51 Sequence declaration

Details:

1) The vpiSeqFormalDecl iterator shall return the sequence declaration arguments in the order that the formals for the
sequence are declared.

2) The vpiTypespec relation shall return NULL if the formal is untyped.

3) If the formal has an initialization expression, the expression can be obtained using the vpiExpr relation.

4) vpiDirection returns vpiNoDirection if the formal argument is not a local variable argument. Otherwise,
vpiDirection returns either vpiInput, vpiOutput, or vpiInout.

variables

sequence decl

multiclock

-> name
str: vpiName
str: vpiFullName vpiExpr

sequence inst

sequence expr

sequence expr

seq formal decl

seq formal decl
sequence expr

named event

typespec

vpiExpr

-> name
str: vpiName

-> direction
int: vpiDirection
1029
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
37.52 Sequence expression

Details:

1) The vpiArgument iterator shall return the sequence instance arguments in the order that the formals for the
sequence are declared, so that the correspondence between each argument and its respective formal can be made. If
a formal has a default value, that value shall appear as the argument should the instantiation not provide a value for
that argument.

2) Within a sequence expression, vpiOpType can be any one of vpiCompAndOp, vpiIntersectOp, vpiCompOrOp,
vpiFirstMatchOp, vpiThroughoutOp, vpiWithinOp, vpiUnaryCycleDelayOp, vpiCycleDelayOp,
vpiRepeatOp, vpiConsecutiveRepeatOp, or vpiGotoRepeatOp.

3) For operations, the operands shall be provided in the same order as the operands appear in BNF, with the following
exceptions:

— vpiUnaryCycleDelayOp: Arguments shall be: sequence, left range, right range. Right range shall only be
given if different from left range.

— vpiCycleDelayOp: Arguments shall be: left-hand side sequence, right-hand side sequence, left range, right
range. Right range shall only be provided if different than left range.

— All the repeat operators: The first argument shall be the sequence being repeated, and the next argument shall be
the left repeat bound, followed by the right repeat bound. The right repeat bound shall only be provided if
different from left repeat bound.

and, intersect, or,
first_match,
throughout, within,
##,
[*], [=], [->]

operation

tf call

sequence decl

vpiMatchItem

sequence inst

assignment

sequence expr

sequence expr

distribution

vpiOperand

-> operation type
int: vpiOpType

vpiArgument

sequence expr

expr

named event
1030
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
37.53 Immediate assertions

stmt

vpiElseStmt
stmt

immediate assume

stmt

vpiElseStmt
stmt

expr

immediate assertexpr

immediate coverexpr stmt

-> is deferred
int: vpiIsDeferred

-> is final
int: vpiIsFinal

-> is deferred
int: vpiIsDeferred

-> is final
int: vpiIsFinal

-> is deferred
int: vpiIsDeferred

-> is final
int: vpiIsFinal
1031
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
37.54 Multiclock sequence expression

37.55 Let

Details:

1) The vpiArgument iterator shall return the let expression arguments in the order that the formals for the let are
declared, so that the correspondence between each argument and its respective formal can be made. If a formal has
a default value, that value shall appear as the argument should the instantiation not provide a value for that
argument.

multiclock
clocked seqsequence expr

clocked seq

vpiClockingEvent
expr

sequence expr

let decl

vpiArgument

expr

-> name
str: vpiName

let expr expr

seq formal decl
1032
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
37.56 Simple expressions

Details:

1) For vectors, the vpiUse relationship shall access any use of the vector or of the part-selects or bit-selects of the
vector.

2) For bit-selects, the vpiUse relationship shall access any specific use of that bit, any use of the parent vector, and any
part-select that contains that bit.

3) The property vpiConstantSelect shall return TRUE for a bit-select if

— every associated index expression is an elaboration time constant expression, and

— vpiConstantSelect returns TRUE for the parent of the bit-select.

Otherwise, vpiConstantSelect shall return FALSE.

NOTE—If vpiConstantSelect is TRUE, then if the handle refers to a valid underlying simulation object at the
beginning of simulation (or at any point in the simulation), it refers to the same object at all points in the simulation.
Moreover, if an index expression of the bit-select or of any of its parents is in or out of bounds at the beginning of
simulation, it is in or out of bounds at all subsequent simulation times as well.

simple expr

nets

ref obj

vpiIndex

variables

parameter

spec param

var select

bit select

-> name
str: vpiName
str: vpiFullName

-> constant select
bool:
vpiConstantSelect

integer var

time var

parameter

spec param

var select
expr

vpiParent

tchk term

delay term

cont assign

cont assign bit

prim term

path term

ports

stmt

vpiUse
1033
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
37.57 Expressions

Details:

1) For an operator whose type is vpiMultiConcatOp, the first operand shall be the multiplier expression. The
remaining operands shall be the expressions within the concatenation.

2) The property vpiDecompile shall return a string with a functionally equivalent expression to the original expression
within the source code. Parentheses shall be added only to preserve precedence. Each operand and operator shall be
separated by a single space character. No additional white space shall be added due to parentheses.

expr

simple expr

vpiOperand

vpiParent
vpiLeftRange

vpiRightRange
-> constant selection

bool: vpiConstantSelect

-> operation type
int: vpiOpType

-> constant type
int: vpiConstType

-> decompile
str: vpiDecompile

-> size
int: vpiSize

-> value
vpi_get_value()

indexed part select

part select

operation

func call

constant

method func call

sys func call

-> constant selection
bool: vpiConstantSelect

-> index part select type
int: vpiIndexedPartSelectType

expr

expr

expr

typespec

pattern

sequence inst

range

vpiWidthExpr

expr

expr

vpiBaseExpr

vpiParent

property inst

let expr

interface expr
1034
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
3) The cast operation, for which vpiOpType returns vpiCastOp, is represented as a unary operation, with its sole
argument being the expression being cast, and the typespec of the cast expression being the type to which the
argument is being cast.

4) The constant type vpiUnboundedConst represents the $ value used in assertion ranges.

5) The one-to-one relation to typespec shall always be available for vpiCastOp operations, for simple expressions,
and for vpiAssignmentPatternOp and vpiMultiAssignmentPatternOp expressions when the curly braces of the
assignment pattern are prefixed by a data type name to form an assignment pattern expression. For other
expressions, it is implementation dependent as to whether or not there is any associated typespec.

6) For an operation of type vpiAssignmentPatternOp, the operand iteration shall return the expressions as if the
assignment pattern were written with the positional notation. Nesting of assignment patterns shall be preserved.

Example 1:

struct {
int A;
struct {

logic B;
real C;

} BC1, BC2;
} ABC = '{BC1: '{1'b1, 1.0}, int: 0, BC2: '{default: 0}};

The assignment pattern that initializes the struct variable ABC uses member, type, and default keys. The
vpiOperand traversal would represent this assignment pattern expression as:

'{0, '{1'b1, 1.0}, '{0, 0}}

or some other equivalent positional assignment pattern.

Example 2:

logic [2:0] varr [0:3] = '{3: 3'b1, default: 3'b0};

The assignment pattern that initializes the array variable varr uses index and default keys. The vpiOperand
traversal would represent this assignment pattern as:

'{3'b0, 3'b0, 3'b0, 3'b1}

7) For an operator whose type is vpiMultiAssignmentPatternOp, the first operand shall be the multiplier expression.
The remaining operands shall be the expressions within the assignment pattern.

Example:

bit unpackedbits [1:0];
initial unpackedbits = '{2 {y}} ; // same as '{y, y}

For the assignment pattern '{2{y}}, the vpiOpType property shall return vpiMultiAssignmentPatternOp, and
the first operand shall be the constant 2. The next operand shall represent the expression y.

8) Expressions that are protected shall permit access to the vpiSize property.

9) The property vpiConstantSelect shall return TRUE for a part-select or indexed part-select if

— vpiConstantSelect returns TRUE for its parent, and

— the parent is a packed or unpacked array with static bounds, and

— each range expression in the part-select or indexed part-select is an elaboration time constant expression.

Otherwise, vpiConstantSelect shall return FALSE.

NOTE—If vpiConstantSelect is TRUE, then if the handle refers to a valid underlying simulation object at the
beginning of simulation (or at any point in the simulation), it refers to the same object at all points in the simulation.
Moreover, if any index expression of the part-select or indexed part-select or of any of its parents is in or out of
bounds at the beginning of simulation, it is in or out of bounds at all subsequent simulation times as well.
1035
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
10) For a part-select or indexed part-select, the vpiParent object shall correspond to the expression formed by
removing the part-select range from the expression represented by the part-select or indexed part-select itself. For
example, given the declaration

logic [0:3][7:0] r [1:4];

then the parents of various part-selects or indexed part-selects shall be as shown in Table 37-1:

Table 37-1—Part-select parent expressions

Part-select or indexed
part-select expression

Parent expression

r[4][3][1:0] r[4][3]

r[i+1][3][j+:2] r[i+1][3]

r[0][j-:4] r[0]

r[0:2] r
1036
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
37.58 Atomic statement

if

atomic stmt

-> label
str: vpiName

if else

while

repeat

waits

case

for

delay control

event control

event stmt

assignment

assign stmt

deassign

disables

tf call

forever

force

release

do while

expect stmt

foreach stmt

return stmt

break

continue

immediate assert

null stmt

immediate assume

immediate cover
1037
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
Details:

1) The vpiName property shall provide the statement label if one was given; otherwise, the name is NULL.

37.59 Dynamic prefixing

Details:

1) The vpiPrefix relation shall be non-NULL when the object represents an expression or task call in the
SystemVerilog source code prefixed by a virtual interface or a clocking block, or when the object is all or part of a
non-static class property prefix ed by a class var.

2) The memory allocation scheme value for an object for which a class var or virtual interface var vpiPrefix is
non-NULL shall be the same as for the prefix.

3) The property vpiHasActual shall return TRUE:

— whenever the prefix object has a corresponding actual at the current simulation time.

— if the object is all or part of a statically declared object in an elaborated context.

— if the object is part or all of an automatically allocated variable obtained from a frame (see 37.41).

The property vpiHasActual shall return FALSE:

— whenever the prefix object has no corresponding actual at the current simulation time.

— if the object is obtained from a lexical context, such as from a class defn (see 37.29).

— if the object is part or all of a non-static class property variable referenced relative to its class
typespec (see 37.30).

— if the object is part or all of an automatically allocated variable obtained from a task or function
declaration (see 37.39).

-> has actual
bool: vpiHasActual

class var

clocking block

virtual interface var
vpiPrefix

indexed part select

part select

named event array

named event

tf call

simple expr
1038
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
37.60 Event statement

37.61 Process

Details:

1) vpiAlwaysType can be one of vpiAlways, vpiAlwaysComb, vpiAlwaysFF, or vpiAlwaysLatch.

event stmt named event

-> blocking
bool: vpiBlocking

initial

process

final

always

scopemodule

stmt

scope

atomic stmt

-> always type
int: vpiAlwaysType
1039
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
37.62 Assignment

Details:

1) vpiOpType shall return vpiAssignmentOp for normal assignments (both blocking “=” and nonblocking “<=”).
For assignment operators, vpiOpType shall return a value that corresponds to the operator that is combined with
the assignment as described in 11.4.1.

For example, the assignment

a += 2;

shall return vpiAddOp for the vpiOpType property.

37.63 Event control

Details:

1) For event control associated with assignment, the statement shall always be NULL.

assignment

vpiLhs
expr

expr
vpiRhs event control

delay control

repeat control
-> operator

 int: vpiOpType
-> blocking

bool: vpiBlocking

interface expr

expr
event control “@”

sequence inst

vpiCondition

stmt

named event
1040
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
37.64 While, repeat

37.65 Waits

37.66 Delay control

Details:

1) For delay control associated with assignment, the statement shall always be NULL.

expr

while

repeat

vpiCondition

stmt

stmt

wait

ordered wait

waits

sequence inst

vpiCondition

wait fork
stmt

expr

vpiCondition

vpiElseStmt

expr

delay control “#”

vpiDelay

stmt
-> delay

vpi_get_delays()
1041
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
37.67 Repeat control

37.68 Forever

37.69 If, if–else

exprrepeat control

event control

stmtforever

expr

stmt

vpiCondition
if

if else
vpiElseStmt

stmt

-> qualifier
int: vpiQualifier
1042
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
37.70 Case, pattern

Details:

1) The case item shall group all case conditions that branch to the same statement.

2) vpi_iterate() shall return NULL for the default case item because there is no expression with the default case.

any pattern

tagged pattern

pattern

case item

expr

stmt

case

-> type
int: vpiCaseType

-> qualifier
int: vpiQualifier expr

vpiExpr pattern

pattern

typespec

struct pattern pattern

-> name
str: vpiName

vpiCondition

-> name
str: vpiName

expr

-> name
str: vpiName
1043
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
37.71 Expect

37.72 For

37.73 Do-while, foreach

Details:

1) The variable obtained via the vpiVariables relation from a foreach stmt shall represent the packed array, unpacked
array, or string var being indexed.

2) The vpiLoopVars iteration shall return the index variables of the foreach statement in left-to-right order. If an
index variable is skipped, its place shall be represented as a vpiOperation for which the vpiOpType is vpiNullOp.

expect stmt

property spec

stmt

stmt
vpiElseStmt

for

expr

stmt

vpiCondition

stmt

stmt

stmt

vpiForIncStmt

stmtvpiForInitStmt

vpiForIncStmt

vpiForInitStmt
-> has local variables

int: vpiLocalVarDecls

do while

expr

stmt

vpiCondition

foreach stmt

variables

variablesvpiLoopVars

stmt

operation
1044
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
37.74 Alias statement

Example:

alias a=b=c=d;

results in 3 aliases:

alias a=d;
alias b=d;
alias c=d;

d is the right-hand side for all.

37.75 Disables

37.76 Return statement

instance

expr
vpiLhs

alias stmt

expr
vpiRhs

disable

disables

task

disable fork

vpiExpr

function

named begin

named fork

return stmt expr
vpiCondition
1045
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
37.77 Assign statement, deassign, force, release

37.78 Callback

Details:

1) To get information about the callback object, the routine vpi_get_cb_info() can be used..

2) To get callback objects not related to the above objects, the second argument to vpi_iterate() shall be NULL.

force

assign stmt

vpiLhsdeassign

release

vpiRhs

vpiLhs

expr

expr

expr

callback

-> cb info
p_cb_data: vpi_get_cb_info()

prim term

expr

time queue

stmt
1046
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
37.79 Time queue

Details:

1) The time queue objects shall be returned in increasing order of simulation time.

2) vpi_iterate() shall return NULL if there is nothing left in the simulation time queue.

3) The current time queue shall only be returned as part of the iteration if there are events that precede read only sync.

37.80 Active time format

Details:

1) If $timeformat() has not been called, vpi_handle(vpiActiveFormat, NULL) shall return NULL.

time queue

-> time
vpi_get_time()

tf call
vpiActiveTimeFormat
1047
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
37.81 Attribute

net

attribute

-> name
str: vpiName

-> On definition
bool: vpiDefAttribute

-> value:
vpi_get_value()

-> definition location
str: vpiDefFile
int: vpiDefLineNo

port

array net

variables

named event

prim term

path term

mod path

tchk

param assign

spec param

task func

table entry

stmt

process

primitive

operation

concurrent assertions

sequence decl

property decl

clocking block

class defn

constraint

instances
vpiParent
1048
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
37.82 Iterator

Details:

1) vpi_handle(vpiUse, iterator_handle) shall return the reference handle used to create the iterator.

2) It is possible to have a NULL reference handle, in which case vpi_handle(vpiUse, iterator_handle) shall return
NULL.

ports

iterator

-> type
int: vpiIteratorType

udp defn

regs

net array

named event array

inter mod path

mod path

tchk

param assign

case item

tf call

frame

stmt

process

primitive

time queue

expr

vpiUse

instance array

scope

nets

variables

reg array

prim term

path term

delay term
1049
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800-2017
IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language

Autho
37.83 Generates

expr

gen scope array

-> size
int: vpiSize

-> name
str: vpiName
str: vpiFullName

-> access by index
vpi_handle_by_index()
vpi_handle_by_multi_index()

array net

variables

named event

named event array

module

module array

gen scope array

def param

program

process

primitive

cont assign

clocking block

alias stmt

interface

vpiInstance

scope

vpiIndex

logic var

array var

array var

primitive array

program array

interface array

module

interface

program

module

gen var

gen scope

-> name
str: vpiName
str: vpiFullName

vpiTypedef

vpiInternalScope

vpiMemory

-> array member
bool: vpiArray (deprecated)
bool: vpiArrayMember

-> name
str: vpiName
str: vpiFullName

-> protected
bool: vpiProtected

-> is implicitly declared
bool: vpiImplicitDecl

typespec

assertion

net

parameters
vpiParameter
1050
Copyright © 2018 IEEE. All rights reserved.

rized licensed use limited to: NOAA Boulder Labs Library. Downloaded on September 18,2018 at 23:08:29 UTC from IEEE Xplore. Restrictions apply.

