
CDB File Format

Lenny Story

7th August 2003

SDCC Development Team

Contents

1 Overview 1

2 Usage 1

3 Conventions 2

4 Record Formats 2

4.1 Basic Record Format . 2

4.2 Module Record . 2

4.3 Symbol Records . 3

4.4 Type Chain Record . 4

4.5 Function Records . 5

4.6 Type Records . 6

4.7 Type Member . 6

4.8 Link Address of Symbol . 7

4.9 Linker Symbol End Address Record 7

4.10 Linker ASM Line Record . 8

4.11 Linker C-Line Record . 9

5 Source File Example 10

6 CDB File Example 11

1

3 CONVENTIONS

1 Overview

The CDB File is used to record all of the information that describes the variables,
functions, lines, and memory items. These records provide the critical information
that allows external utilities to properly locate and interpret variables, functions, and
types. Development tools such as simulators debuggers and profilers use these records
to analyze and describe the code in terms of the high level language in which it was
written. The CDB file is therefore the critical link to bridging the compiled code image
to the source files from which it was built.

2 Usage

CDB files are created when the "--debug" option is used. Each source file will have
its own CDB file associated with it. When the --debug flag is used during the link
process, the CDB file of the FIRST source module will contain all the records from all
the source modules linked as well as the linker records.

Code and variables that are removed during the optimization phase will not be present
in the debug file. Images created for debugging purposes should always disable as
much optimization as possible. The following options are critical for the completeness
of the resulting debugging file.

--debug Mandatory to produce a debugging file.

--noinduction Induction processing occurs at the very latest stages of compilation.
This results in the inability to report the location of the resulting variables.
Including this option disables the loop induction optimization.

--nooverlay Overlay variables will not show up in the debug file. Including this option
will force variables to the data segment.

3 Conventions

The record examples and grammar shown in this document are displayed on multiple
lines only for the purposes of readability. The records contained within the CDB files
are always encoded on a single line.

Record grammar is indicated here using a custom format of the following specifica-
tions:

• Record Elements are surrounded using the characters ‘<’ and ’>’.

• Alternation is indicated using the ‘|’ character.

• Non-mandatory items are surrounded using the characters ‘{‘ and ‘}’.

2

4 RECORD FORMATS

4 Record Formats

4.1 Basic Record Format

<RecordType><:><RecordSpec>

Type Description Form

M Module Record Compiler
F Function Record Compiler
S Symbol Record Compiler
T Structure (Complex Type) RecordCompiler
L Linker Record Assembler / Linker

All records are ASCII text, with one record per line. The record type is the first char-
acter, followed by a single colon ":". Sub types are often included as part of the record
specific format.

4.2 Module Record

<M><:><Filename>

M Module record type indicator
Filename The filename of the module that this CDB file represents.

Purpose

The module record is used to define a source module. It is usually used at the beginning
of each of the module specific CDB files, and will occur several times in the final CDB
file produced by the linker to represent each of the source modules. The location of
this record within the file does not necessarily indicate the scope of the variables that
follow. Those variables that have module specific scope have an indication encoded
within their respective symbol entry.

Examples

M:Timer0
M:_bp

3

4 RECORD FORMATS 4.3 Symbol Records

4.3 Symbol Records

S Symbol record type indicator
G Scope is global

F <Filename> Scope is file
L <Function> Scope is local

<Name> Symbol name
<Level> Scope level (see below)
<Block> Scope block (see below)

<TypeChain> Type chain record (see type record below)
<Address Space> Address space code (see table below)

<On Stack> Is this symbol on the stack? Indicates if the next parameter is valid.
<Stack> The stack Offsetorelative to the “bp” variable. (The libraries may have

to be recompiled to include the --debug option for this variable to ap-
pear in the debug file).

<Reg> If the address space is ’R’, this field indicates the register that the sym-
bol is allocated. The register name is in its native form: R1, AX, etc.

<S><:>
{ G | F<Filename> | L { <function> | “–null–“ }}
<$><Name>
<$><Level>
<$><Block>
<(><TypeRecord><)>
<,><AddressSpace>
<,><OnStack>
<,><Stack>
<,><[><Reg><,>{<Reg><,>}<]>

A symbol record is generated for each named symbol in the source file; this includes
local, global and parameter symbols.

Blocks and Levels

The level & block are used to further scope local variables since C allows unique def-
initions across different scope blocks. When using the symbol records, it is always
important to include the level and block information as part of the identification. It
is possible to have two symbols that share the same name, but have different scope
information.

The linker address records contain not only the name of the symbol, but the Scope
information as well, which is instrumental in determining the correct instantiation of
the symbol.

Linker C line records also contain the Scope information (see below).

The following code fragment illustrates a simple scope example:

4

4 RECORD FORMATS 4.4 Type Chain Record

foo()
{
int c; /* block #1 , level #1 */

{
int c; /* block #2, level #2 */
...

}
{

int c; /* block #3 , level #2 */
...

}
}

A External stack
B Internal stack
C Code
D Code / static segment
E Internal ram (lower 128) bytes
F External ram
G Internal ram
H Bit addressable
I SFR space
J SBIT space
R Register space
Z Used for function records, or any undefined space code

4.4 Type Chain Record

<{><Size><}> <DCLType> <,> {<DCLType> <,>} <:> <Sign>

<Size> The size of the item in decimal.
<DCLType> The type encoded using the table below.

<Sign> The sign of the item. Encoded as ’U’ or ’S’.

Purpose

The C programming language allows arbitrarily complex type constructions. Because
of this, the CDB file type designations are organized as a list of basic primitive types.

5

4 RECORD FORMATS 4.5 Function Records

DA <n> Array of n elements
DF Function
DG Generic pointer
DC Code pointer
DX External ram pointer
DD Internal ram pointer
DP Paged pointer
DI Upper 128 byte pointer
SL long
SI int
SC char
SS short
SV void
SF float

ST <name> Structure of name <name>
SX sbit

SB <n> Bit field of <n> bits

Examples

S:LcheckSerialPort$pstBuffer$1$1({3}DG,STTTinyBuffer:S),R,0,0,[r2,r3,r4]
S:Ltimer0LoadExtended$count$1$1({2}SI:S),B,1,-4
S:G$T2CON_7$0$0({1}SX:S),J,0,0
S:LAdcInitializea1$1({2}SI:S),B,1,1
S:G$ScanCount$0$0({2}SI:S),F,0,0

4.5 Function Records

<F><:>
{ G | F<Filename> | L { <function> | “–null–“ }}
<$><Name>
<$><Level>
<$><Block>
<(><TypeRecord><)>
<,><AddressSpace>
<,><OnStack>
<,><Stack>
<,><Interrupt>
<,><Interrupt Num>
<,><Register Bank>

6

4 RECORD FORMATS 4.6 Type Records

F Symbol record type indicator
G Scope is global

F <Filename> Scope is file
L <Function> Scope is local

<Name> Symbol name
<Level> Scope level (see below)
<Block> Scope block (see below)

<TypeChain> Type chain record (see type record below)
<Address Space> Address space code <see table below>

<On Stack> Indicates if this is a stack variable
<Stack> If stack variable, the stack offset relative to the “bp” variable. (Li-

braries will have to be compiled using the --debug option for this to be
available)

<Is Interrupt> Indicates if this is an interrupt handler.
<Interrupt Num> If interrupt handler, this indicates the interrupt number.
<Register Bank> If interrupt handler, this ist he register bank number.

Purpose

The Function record defines any Source File function. Its construction is the same
as the symbol record, with the addition of 3 extra parameters for indicating interrupt
handlers.

Example

F:G$main$0$0({2}DF,SV:S),C,0,0,0,0,0
F:G$SioISR$0$0({2}DF,SV:S),Z,0,0,1,4,0

4.6 Type Records

<T><:>
<F><Filename><$>
<Name>
<[><TypeMember> {<TypeMember>} <]>

T Type record type indicator
<Filename> The filename where this type is declared

<Name> The name of this type
<TypeMember> (see below)

4.7 Type Member

<(><{><Offset><}><SymbolRecord><)>

<Offset> The offset of this type member in decimal.
<SymbolRecord> A complete symbol record describing this Member. (See “Symbol

Records” above.

7

4 RECORD FORMATS 4.8 Link Address of Symbol

Purpose

Type records describe the complex types within the source file. These include structure
and union types.

Examples

T:Fcmdas$TTinyBuffer[
({0}S:S$pNext$0$0({3}DG,STTTinyBuffer:S),Z,0,0)
({3}S:S$length$0$0({1}SC:U),Z,0,0)
({4}S:S$maxLength$0$0({1}SC:U),Z,0,0)
({5}S:S$rindex$0$0({1}SC:U),Z,0,0)
({6}S:S$windex$0$0({1}SC:U),Z,0,0)
({7}S:S$buffer$0$0({64}DA64,SC:U),Z,0,0)
]

4.8 Link Address of Symbol

<L><:>
{ <G> | F<filename> | L<function> }
<$><name>
<$><level>
<$><block>
<:><address>

L Link record type indicator
G Symbol has file scope.

F <Filename> Symbol has file scope.
L <Function> Symbol has function scope

<Name> Symbol name
<Level> Symbol level
<Block> Symbol block

<Address> Symbol address in hex, relative to the address space code, in the match-
ing symbol record.

Purpose

The link address record is used to bind a memory location to a symbol record.

Example

L:G$P0$0$0:80
L:G$ScanCount$0$0:0
L:Fcmdas$_str_0$0$0:195

4.9 Linker Symbol End Address Record

<L><:><X>
{ <G> | F<filename> | L<functionName> }

8

4 RECORD FORMATS 4.10 Linker ASM Line Record

<$><name>
<$><level>
<$><block>
<:><Address>

L Link record type indicator
X Link end address sub type indicator
G Symbol has file scope.

F <Filename> Symbol has file scope.
L <Function> Symbol has function scope.

<Name> Symbol name
<Level> Symbol level
<Block> Symbol block

<Address> Symbol end address in hex, relative to the address space code contained
in the matching symbol record.

Purpose

The Linker Symbol end address record is primarily used to indicate the Ending address
of functions. This is because function records do not contain a size value, as symbol
records do.

Example

L:XG$sysClearError$0$0:194
L:XG$SioISR$0$0:A09

4.10 Linker ASM Line Record

<L> <:> <A>
<$><Filename>
<$><Line>
<:><EndAddress>

L Link record type indicator
A Link assembly file line record sub type indicator

<Filename> Filename of the assembly file.
<Line> Line number in the above filename.{}These numbers start at 1 (not 0).

<EndAdress> End address

Purpose

The linker Asm Line record is used to bind the execution address with a source file and
line number.

Example

L:A$TinyBuffer$2320:A13
L:A$max1270$391:CA4

9

4 RECORD FORMATS 4.11 Linker C-Line Record

4.11 Linker C-Line Record

<L> <:> <C>
<$><Filename>
<$><Line>
<$><Level>
<$><Block>
<:><EndAddress>

L Link record type indicator
C Link assembly file line record sub type indicator

<Filename> Filename of the assembly file.
<Line> Line number in the above filename. These numbers start at 1 (not 0).
<Level> Current level at this line and address.
<Block> Current block at this line and address.

<EndAddress> End address

Purpose

The linker C-Line record is used to bind the execution address with a source file, line
number and the level, block information.

The following is an example source module with its lines showing the corresponding
C-Line Records. You will notice in this example that there are no line entries for lines
18, 19. This is because the code was optimized and removed.

10

5 SOURCE FILE EXAMPLE

01
02 struct complex
03 {
04 int count;
05 int Max;
06 };
07
08 L:C$vars.c$8$0$0:38 void main(void)
09 {
10 int iterA;
11 int iterB;
12 struct complex myStruct;
13
14 L:C$vars.c$14$1$1:C1 for(iterA = 0; iterA < 10; iterA++)
15 {
16 L:C$vars.c$16$2$2:B9 for(iterB = 0; iterB < 10; iterB++)
17 {
18 int iterA = 6 + iterB;
19 iterA++;
20
21 L:C$vars.c$21$1$1:69 myStruct.count++;
22
23 L:C$vars.c$23$3$3:83 if(myStruct.count > myStruct.Max)
24 L:C$vars.c$24$3$3:A3 myStruct.Max = mystruct.count;
25 }
26 }
27 L:C$vars.c$27$1$1:CE }

Example

L:C$max1270.c$35$1$1:CA9
L:C$Timer0.c$20$1$1:D9D

5 Source File Example

sfr IM = 0x90;
struct complex
{

int count;
int Max;

};
void main(void)
{

int iterA;
int iterB;
struct complex myStruct;

11

6 CDB FILE EXAMPLE

for(iterA = 0; iterA < 10; iterA++)
{

for(iterB = 0; iterB < 10; iterB++)
{

int iterA = 6 + iterB;
iterA++;
myStruct.count++;

IM = iterA;
if(myStruct.count > myStruct.Max)
myStruct.Max = myStruct.count;

}
}

}

6 CDB File Example

M:vars
F:G$main$0$0({2}DF,SV:S),C,0,0,0,0,0
T:Fvars$complex[({0}S:S$count$0$0({2}SI:S),Z,0,0)({2}S:SMax0$0({2}SI:S),Z,0,0)]
S:Lmain$iterA$1$1({2}SI:S),R,0,0,[r0,r1]
S:Lmain$iterB$1$1({2}SI:S),R,0,0,[r4,r5]
S:Lmain$myStruct$1$1({4}STcomplex:S),E,0,0
S:Lmain$iterA$3$3({2}SI:S),R,0,0,[r6,r7]
S:GIM0$0({1}SC:U),I,0,0
S:G$main$0$0({2}DF,SV:S),C,0,0
L:GIM0$0:90
L:Lmain$myStruct$1$1:8
L:A$vars$64:0
L:A$vars$65:3
L:A$vars$67:B
L:A$vars$69:13
L:A$vars$71:1B
L:A$vars$73:23
L:A$vars$75:2B
L:A$vars$129:33
L:A$vars$131:36
L:A$vars$158:38
L:C$vars.c$10$0$0:38
L:G$main$0$0:38
L:A$vars$159:3A
L:A$vars$163:3C
L:A$vars$164:3D
L:A$vars$165:3E

12

6 CDB FILE EXAMPLE

L:A$vars$166:40
L:A$vars$167:41
L:A$vars$168:43
L:A$vars$170:45
L:A$vars$171:47
L:A$vars$176:4A
L:A$vars$177:4C
L:A$vars$181:4E
L:A$vars$182:4F
L:A$vars$183:50
L:A$vars$184:52
L:A$vars$185:53
L:A$vars$186:55
L:A$vars$191:57
L:A$vars$196:59
L:C$vars.c$20$3$3:59
L:A$vars$197:5B
L:A$vars$198:5D
L:A$vars$200:5E
L:A$vars$201:5F
L:A$vars$202:61
L:A$vars$207:62
L:C$vars.c$21$3$3:62
L:A$vars$208:63
L:A$vars$209:66
L:A$vars$216:67
L:C$vars.c$23$3$3:67
L:A$vars$217:69
L:A$vars$220:6B
L:A$vars$221:6C
L:A$vars$222:6F
L:A$vars$227:70
L:A$vars$228:72
L:A$vars$232:74
L:C$vars.c$25$3$3:74
L:A$vars$238:76
L:C$vars.c$27$3$3:76
L:A$vars$239:77
L:A$vars$240:79
L:A$vars$241:7A
L:A$vars$242:7C
L:A$vars$243:7E
L:A$vars$244:80
L:A$vars$245:83
L:A$vars$248:85
L:A$vars$256:87

13

6 CDB FILE EXAMPLE

L:C$vars.c$28$3$3:87
L:A$vars$257:8A
L:A$vars$263:8D
L:C$vars.c$18$2$2:8D
L:A$vars$264:8E
L:A$vars$265:91
L:A$vars$268:92
L:A$vars$274:94
L:C$vars.c$16$1$1:94
L:A$vars$275:95
L:A$vars$276:98
L:A$vars$278:99
L:A$vars$282:9C
L:C$vars.c$31$1$1:9C
L:XG$main$0$0:9C
L:A$vars$84:A1
L:A$vars$85:A4
L:A$vars$86:A7
L:A$vars$87:A9
L:A$vars$88:AB
L:A$vars$91:AE
L:A$vars$92:B0
L:A$vars$93:B2
L:A$vars$94:B4
L:A$vars$95:B6
L:A$vars$96:B8
L:A$vars$97:B9
L:A$vars$98:BB
L:A$vars$99:BD
L:A$vars$100:BE
L:A$vars$101:C1
L:A$vars$102:C3
L:A$vars$103:C6
L:A$vars$104:C7
L:A$vars$105:C8
L:A$vars$106:C9
L:A$vars$107:CA
L:A$vars$108:CB
L:A$vars$109:CE
L:A$vars$110:D0
L:A$vars$111:D2
L:A$vars$112:D5
L:A$vars$113:D7
L:A$vars$114:DA
L:A$vars$118:DD

14

