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Abstract

We consider the computation of periodic cyclic schedules for linear
precedence constraints graph: a linear precedence constraint is defined
between two tasks and induces an infinite set of usual precedence con-
straints between their executions such the the difference of iterations
is a linear function.The objective function is the minimization of the
maximal period of a task. Firstly, we recall that this problem can be
modelled using linear programming. Then, we develop a polynomial
algorithm to solve it for unitary graphs, which is a particular class of
linear precedence graph.We also show that a periodic schedule may not
exists for this special case. In the general case, we compute a decom-
position of the graph into unitary components and we suppose that a
periodic schedule exists for each of them. We compute lower bounds
on the periods and we show that an optimal periodic schedule may not
achieve them. Then, we introduce the notion of quasi-periodic sched-
ule, and we prove that this new class of schedule always reach these
bounds.

Keywords: Periodic schedules, cyclic scheduling, linear precedence.

1 Introduction

Cyclic scheduling, in which a set of tasks has to be repeated infinitely, has
been studied for several years and has yield many results [7, 6, 11]. The main
practical applications are mass production in manufacturing systems as well
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as computing loops on parallel or pipelined processors or the synthesis of
embedded systems.

We consider a set of tasks T = {1, ..., n}. Let us denote by < i, k > the
kth occurrence of a task i ∈ T . A schedule σ assigns to each occurrence k
of any task i a starting time tσ(< i, k >). We call average cycle time of a
task i, the average time interval between two successive occurrences of i. It
can be formally defined as:

limsupk→∞

tσ(< i, k >)

k

Usually, the maximum average cycle time is to be minimized.
Several kinds of relations between the executions of the tasks may be

defined. One of them, called uniform precedences [1], is the most usual way
to extend precedence constraints to cyclic scheduling problems. A set of
uniform precedence is usually represented as a multi-graph, called uniform
graph, in which each node corresponds to a task, and each arc a from node
b(a) = i to node e(a) = j has two valuations: its length la equals the
processing time of task i, and its height ha. An arc induces an infinite
number of usual precedences as follows:

∀k ≥ 1, < i, k > precedes < j, k + ha >

The simplest way to execute the tasks is to build a periodic schedule. In
this case, tasks starting times follow tσ(< i, k >) = tσ(< i, 1 >) + w(k − 1),
where w is the period of the schedule.

It is well known [7, 10] that there exists a schedule satisfying the con-
straints induced by a graph if and only if there exists a periodic schedule.
Moreover, the periodic schedule with the least period has the same average
cycle time than the earliest schedule [3], and thus is optimal. It can be
computed polynomially by shortest-path like algorithms.

This first model has been extended by Munier to linear precedence con-
straints. This extension is useful to model problems issued from the com-
putation of loops on parallel processors as well as assembly lines [12, 7].
Notice that this model is slightly more general than generalized timed event
graphs and synchronous dataflow [9]. A set of linear precedence constraints
is usually expressed as a multi-graph G, the nodes of which represents the
tasks, and the arcs of which the linear precedences. Each arc a from node
b(a) = i to node e(a) = j has five integer values: la ≥ 1 (processing time of
task i), pa, p

′
a ≥ 1, qa, q

′
a ∈ ZZ.

An arc induces an infinite number of usual precedences as follows:

∀k ≥ 0, < i, pak + qa > precedes < j, p′ak + q′a >
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Let us denote by πa =
p′a
pa

the weight of an arc a, and let us define the

weight Π(µ) of a path µ as the product of the weight of its arcs. It has been
proven in [13] that if there exists a schedule, all cycles of G have a weight
not less than 1 and that this condition is not sufficient.

In the particular case of unitary graphs, in which the weight of any
cycle equals 1, it has been shown that an equivalent uniform graph can be
built, so that the existence of schedules can be checked on this graph as well
as the construction of efficient schedules, using results on cyclic scheduling
with uniform constraints. Unfortunately, the size of this new graph is not
polynomial, so that all these conditions and algorithms are not polynomial.

In this paper, we tackle the problem of the construction of periodic
schedules, in which each task has its own periodicity, which appear to be
easy to implement in applications for embedded [4, 8], or production systems
[2, 14]. In Section 2, we first recall that the problem can be modelled
using linear programming: this modelling was first introduced by [5] for this
particular problem. We also show that a graph G may not have a periodic
schedule, even if an earliest schedule exists.

In Section 3, we study the particular case of unitary graphs, i.e a strongly
connected graph such that every circuit has a weight equal to 1.We show that
the feasible periods of the tasks are proportional to a particular vector, and
we deduce a simple polynomial algorithm to compute an optimal solution.

Section 4 is dedicated to the general case. We first compute lower bounds
on optimal periods based on the decomposition of the graph into unitary
components, and we show that this value may not be achieved by a periodic
schedule. Then, we introduce quasi-periodic schedules, and we prove that
if the graph is feasible, and if its unitary components can be scheduled
periodically, we can build a quasi-periodic schedule with periods equal to
these lower bounds.

2 Modelling the problem

Let us consider a linear precedence multi-graph G = (T , A). Notice that, un-
like uniform constraints, linear constraint induces that in an optimal sched-
ule (such as the earliest schedule), the tasks may have different average
cycle times. For example, let us consider the linear precedence multigraph
pictured by Figure 1. If we consider the arc a = (2, 1), the corresponding
precedence constraint is

∀k ≥ 0, t(< 2, k + 1 >) + 5 ≤ t(1, 3k + 1)
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Figure 1: A linear precedence multi-graph G. Every arc a is labeled with
(le(a), pa, p

′
a, qa, q

′
a)

Intuitively, this constraint induces that the average cycle time of the task 2
is at most 3 times the average cycle time of the task 1. So, we extend the
notion of periodic schedules to linear precedence constraints by allowing the
tasks to have different periods.

Definition 2.1. Let us consider a linear precedence multi-graph G = (T , A).
A schedule σ is said to be periodic if there exists two vectors of positive num-
bers w = (w1, . . . , wn) and t = (t1, . . . , tn), such that:

∀k ≥ 1, tσ(< i, k >) = ti + (k − 1)wi

Let us consider an arc a ∈ A. If σ is a periodic schedule, then

tσ(< b(a), pak + qa >) = tb(a) + (pak + qa − 1)wb(a)

tσ(< e(a), p′ak + q′a >) = te(a) + (p′ak + q′a − 1)we(a)

From that we derive easily the following lemma :

Lemma 2.2. A periodic schedule meets the linear precedence constraints if

and only if for any arc a ∈ A,

∀k ≥ 0, te(a) − tb(a) ≥ la + (wb(a)pa −we(a)p
′
a)k + wb(a)(qa − 1)−we(a)(q

′
a − 1)

Since this inequality must be true ∀k, we must have wb(a)pa−we(a)p
′
a ≤ 0.

We also notice that the right term of this inequality is maximal for k = 0.
Moreover, the aim is to minimize the largest period of a task. So, the
computation of an optimal periodic schedule for a linear precedence graph
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may be modelled by the following linear program:










































Min B

∀ a ∈ A wb(a)pa − we(a)p
′
a ≤ 0

te(a) − tb(a) ≥ la + wb(a)(qa − 1) − we(a)(q
′
a − 1)

∀i ∈ T li ≤ wi ≤ B

∀i ∈ T 0 ≤ ti

(1)

For example, the system associated with the graph pictured by Figure 1 is:






























































































Min B

w2 − 3w1 = 0

3w1 − 2w3 ≤ 0

2w3 − w2 ≤ 0

−5 ≥ t2 − t1 ≥ 2 + w1 − w2

t3 − t1 ≥ 2 + 2w1 − 4w3

t2 − t3 ≥ 4

2 ≤ w1 ≤ B, 5 ≤ w2 ≤ B, 4 ≤ w3 ≤ B

t1 ≥ 0, t2 ≥ 0, t3 ≥ 0

(2)

In the following sections, we will study the solutions of this linear program
for unitary graphs and in the general case.

3 Unitary graphs

We assume here that G is a unitary graph, i.e. G is strongly connected and
every cycle c of G has a weight Π(c) = 1.We develop a simple polynomial
time algorithm to solve the previous linear program associated with G.

Lemma 3.1. If G is unitary, then ∀a ∈ A,
wb(a)

we(a)
= πa.

Proof. For any arc a ∈ A,
wb(a)

we(a)
≤

p′a
pa

= πa. So, if µ is a path from node

i to node j, then we should have
wi

wj
≤ Π(µ). Let us consider now an arc
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a ∈ A. As G is unitary, it is strongly connected and thus there is a path µ
from e(a) to b(a). Hence, if there exists a periodic schedule, we should have
wb(a)

we(a)
≤ πa and

we(a)

wb(a)
≤ Π(µ). As G is unitary, πa.Π(µ) = 1, so that the

second inequality becomes
wb(a)

we(a)
≥ πa.

Let us consider the set of feasible periods

W = {w = (w1, .., wn) ∈ IQ+n/∀a ∈ A,
wb(a)

we(a)
= πa}

Using the same arguments as in [13], we prove now that every element
w ∈ W verifies wi = λWi, where λ is a strictly positive rational number and
the vector (W1, ...,Wn) is a particular element from W.

As G is unitary, all paths from 1 to i have the same weight. Let ρi be
the weight of any path from node 1 to node i. We can compute easily in
polynomial time two integers αi, βi such that ρi = αi

βi
and gcd(αi, βi) = 1.

Let us define β = lcm(β1, . . . , βn), α = lcm(α1, . . . , αn).
Let us define Ni = βρi, which will be referred as the minimum expansion

number of i in the following. It is proved in [13] that a uniform graph
Exp(G) can be build in which each node i of G is duplicated Ni times,
that is equivalent to G in terms of precedence constraints. Notice that the
number of duplicates might not be polynomial with respect to the size of
the data. For the previous example, we get ρ1 = 1, ρ2 = 1

3 , and ρ3 = 2
3 .We

obtain α = 2, β = 3 and the number of duplicates are N1 = 3, N2 = 1 and
N3 = 2.

Lemma 3.2. W = ( α
ρ1

, ..., α
ρn

) ∈ W. Moreover, any other element from W
is a multiple of W .

Proof. Let a ∈ A. By definition of W ,
Wb(a)

We(a)
=

ρe(a)

ρb(a)
. But ρe(a) = πaρb(a),

hence W ∈ W. Let w ∈ W and a task i ∈ T . We know that
W1

Wi
=

w1

wi
=

ρi

ρ1
,

hence ∀i,
W1

w1
=

Wi

wi
.

Let us define, for any arc a ∈ A its height ha = We(a)(q
′
a−1)−Wb(a)(qa−

1). Let us define the height H(µ) (resp. the length L(µ)) of a path µ to
be the sum of the heights (resp. lengths) of its arcs. We can now state the
existence condition:
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Theorem 3.3. There exists a periodic schedule of a unitary graph G if and

only if all cycles of G have a positive height. Moreover a periodic schedule

satisfies the following inequalities for any arc a of A:

te(a) − tb(a) ≥ la − λha

Proof. Let us suppose that there exists a periodic schedule for G. As the
periods satisfy lemma 3.1, we should have for any arc a of G:

te(a) − tb(a) ≥ la + wb(a)(qa − 1) − we(a)(q
′
a − 1) (3)

Now, according to lemma 3.2, there exists λ such that wb(a) = λWb(a) and
we(a) = λWe(a). Hence, we get te(a) − tb(a) ≥ la − λha.

If µ is a cycle of G, summing these inequalities along the arcs of the
cycle will lead to 0 ≥ L(µ)− λH(µ). Hence if the height of the cycle is non
positive, this inequality will be violated.

Conversely, let us suppose that every cycle µ has a positive height.Then,
for large enough λ∗, we get L(µ) − λ∗H(µ) ≤ 0, so that the graph G with
arcs valued by la − λ∗ha has non positive cycles. Let ti be the maximum
value L(µi) − λ∗H(µi) of a path µi from node 1 to node i. ti satisfies the
inequalities of lemma 2.2, so

tσ(< i, k) >) = ti + (k − 1)λ∗Wi

defines a periodic schedule.

The condition of the previous theorem can be checked polynomially by
a longest path algorithm, together with a depth first search on a subgraph.
Notice that if G is uniform, this condition is exactly the feasibility condition
of the task system. Unfortunately, it is not a necessary condition of existence
of a schedule. Indeed, if we consider the unitary graph defined by two nodes
1, 2 and two arcs u = (1, 2) and v = (2, 1) with the following values: pu = 3,
p′u = 2, qu = 1, q′u = 1, pv = 2, p′v = 3, qv = 2, q′v = 2, we can check that
there is no periodic schedule, although the task system is feasible. Indeed,
W1 = 2,W2 = 3, so that h(u) = 0, h(v) = −1. But the infinite precedence
graph of all occurrences of tasks, shown in Figure 2 does not have any circuit,
so that the earliest schedule exists.

Let us now assume we are given a unitary graph for which a periodic
schedule exists. We can build the periodic schedule with minimum periods,
i.e. a periodic schedule with maximum average cycle time (among periodic
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<2,1> <2,2> <2,3> <2,4> <2,5> <2,6> <2,7>

<1,1> <1,2> <1,3> <1,4> <1,5> <1,6> <1,7>

Figure 2: The developped graph of precedences

schedules). Indeed, all periods of tasks are multiple of a number λ. Hence
minimizing λ, is equivalent to minimize all periods at the same time. Let

λmin = max
c cycle ofG

L(c)

H(c)

Exactly as for uniform graphs, λmin can be computed in polynomial time
using a binary search combined with a longest path algorithm. For our
previous example, we get the graph G valued by la−λha pictured by Figure

3, the vector W = (2, 6, 3) and λmin =
7

4
.

� � 

� � � �
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�

Figure 3: Graph G valued by la − λha

Since in any feasible periodic schedule, the period of task i is not less
than λminWi, we get the following theorem:

Theorem 3.4. Let us consider a unitary graph G such that a periodic sched-

ule exists. For any λ ≥ λmin, there exists a periodic schedule such that for

any task i, the period i is wλ
i = λWi. The starting time ti of the first exe-

cution of i can be build in polynomial time, using a longest path algorithm.

The optimal periodic schedule is defined for λ = λmin.

4 General case

It is shown in [12] that every linear precedence graph G = (T , A) can be
decomposed into unitary components G1, ..., Gr defined as follows:
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Definition 4.1. For every linear precedence graph G = (T , A), there exists
a unique partition of the set of nodes {T α, α = 1, ..., r} such that:

1. ∀α ∈ {1, ..., r}, a set of arcs Aα ⊂ A may be associated to T α such
that the partial sub-graph Gα = (T α, Aα) is a unitary graph,

2. For every circuit c of G with weight Π(c) = 1, there exists α ∈ {1, ..., r}
such that c is a circuit of Gα.

Notice that a periodic schedule of G induces a periodic schedule of each
component Gα, α ∈ {1, ..., r}. We thus assume that there exists a periodic
schedule for each Gα, α ∈ {1 . . . , r}.

Lemma 4.2. With any periodic schedule of G is associated a vector λ1, . . . , λr

such that ∀α ∈ {1, . . . , r},

1. λα ≥ λα
min

2. ∀i ∈ V α, wi = λαW α
i .

Proof. Let α ∈ {1, . . . , r}. According to lemma 3.2, we can define a vector
W α of |T α| values, such that in any periodic schedule of Gα all tasks i ∈ T α

have a period wi = λW α
i for some λ ≥ 0. Hence in any periodic schedule

of G, there exists a vector λ1, . . . , λr such that the period of a task i ∈ T α

satisfies wi = λαW α
i

Moreover, according to theorem 3.4, we can define ∀α ∈ {1, . . . , r} a
minimum value λα

min such that λα ≥ λα
min.

Now, let us consider an arc a ∈ A which does not belong to a unitary
component with b(a) ∈ T α and e(a) ∈ T β. By lemma 3.2, we must have
wb(a)pa − we(a)p

′
a ≤ 0, so we get:

λαW α
b(a)pa − λβW β

e(a)p
′
a ≤ 0

and then,
λβ

λα
≥

W α
b(a)pa

W β
e(a)p

′
a

(4)

Let us define

u(α, β) = max
b(a)∈T α,e(a)∈T β

W α
b(a)pa

W β
e(a)p

′
a

If there is no arc from T α to T β, we set u(α, β) = 0. We then build a valued
reduced graph R = (N,E) as follows:
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Figure 4: Definition of c

1. N = {0, . . . , r},

2. ∀α ∈ {1, . . . , r}, we build arc (0, α) with value u(0, α) = λα
min,

3. A couple (α, β) ∈ {1, ..., r}2 belongs to E if and only if u(α, β) 6= 0.
The value of this arc is then u(α, β).

For every path µ of R, we set U(µ) =
∏s

e∈E∩µ u(e). We prove then the
following lemma:

Lemma 4.3. For every circuit C of R, U(C) < 1.

Proof. Let C = 1, 2, ..., v, 1 be a circuit of R. We can define the sequences
is and js, s = 1, ..., v of vertices of G such that :

1. is and js−1 (resp. i1 and jv) are in the same unitary component Gs

for s ∈ {2, ..., v}.

2. for s ∈ {1, ..., v}, there exist a sequences of arcs as with b(as) =

is, e(as) = js with u(s, s + 1) =
W s

is
pas

W s+1
e(as)p

′
as

for s < v and u(v, 1) =

W v
iv

pav

W 1
e(av)p

′
av

.

So, we get a circuit c of G which does not belong to a unitary component
of G, hence Π(c) > 1. Let us denote by νs, s ∈ {1, ..., u} the sub-paths of
c in the unitary component Gs. Then, Π(c) =

∏u
s=1 Π(νs)

∏u
s=1 πas . But

by the definition of W and since Gs is a unitary graph, Π(ν1) =
W 1

jv

W 1
i1

and
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Figure 5: A linear precedence graph G and the corresponding reduced graph
R

Π(νs) =
W s

js−1

W 1
is

for s > 1. Moreover, by definition of u, πas =
p′as

pas

, so we get

πas =
W s

is

W s+1
js

u(as)
for s < v and πau =

W v
iv

W 1
jv

u(av)
. So,

Π(c) =
v

∏

s=1

1

u(as)
=

1

U(C)
> 1

Theorem 4.4. In any periodic schedule, the associated λ1, . . . , λr meets the

following system of inequalities:

∀(α, β) ∈ {1, . . . , r}2,
λβ

λα
≥ u(α, β) (5)

∀α ∈ {1, . . . , r}, λα ≥ λα
min (6)

Moreover, there exists a minimum solution λ1
opt, ..., λ

r
opt, i.e. such that any

other solution λ1, . . . , λr satisfies:

∀α ∈ {1, . . . , r}, λα ≥ λα
opt

Proof. The first part of the theorem is a simple outcome of equation 4 and
lemma 4.2. From lemma 4.3, we can define, for all α ∈ {1, . . . , r}, λα

opt to be
the path with maximum U-value from node 0 to node α in the graph R.

Hence, as we aim to minimize the periods, one can hope that there
will exist a periodic schedule of G that is based on the vector λ1

opt, ..., λ
r
opt.

Unfortunately, this is not true in general. Indeed, let us consider the graph
G with T = {1, 2} pictured by Figure 5. The two unitary components
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of G are G1 = ({1}, ∅) and G2 = ({2}, ∅). We get W 1
1 = W 2

2 = 1 and
λ1

min = λ2
min = 1. From the reduced graph, we obtain then λ1

opt = λ2
opt = 1.

On another hand, the linear programming system associated with G is:


































































Min B

w1 − 2w2 ≤ 0

w2 − w1 ≤ 0

t2 − t1 ≥ 1 − 2w2

t1 − t2 ≥ 1 + w2

1 ≤ w1 ≤ B, 1 ≤ w2 ≤ B

t1 ≥ 0, t2 ≥ 0

(7)

and an optimal solution is given by w1 = w2 = 2, t1 = 3 and t2 = 0. So, there
is no periodic schedule with period λ1

optW
1
1 = λ2

optW
2
2 = 1. However, in the

following, we prove that, if a schedule exists and if the unitary components
of the graph can be scheduled periodically, it is always possible to build
a quasi-periodic schedule of G which starts with the earliest schedule, and
becomes periodic according to the minimal vector λ1

opt, ..., λ
r
opt in the steady

state.

Definition 4.5. A schedule σ is said to be quasi-periodic if

∀i ∈ T ,∃n0
i ≥ 0/∀n ≥ n0

i , t
σ(< i, n >) = ti + (n − 1)wi

Let us assume that the period of every task i ∈ T α is λα
optW

α
i . If a is an

arc of A − ∪r
α=1A

α with b(a) ∈ T α and e(a) ∈ T β , we obtain from lemma
2.2 the inequality:

∀k ≥ 0, te(a) − tb(a) ≥ la + λα
optW

α
b(a)(pak + qa − 1) − λβ

optW
β
j (p′ak + q′a − 1)

Setting ma = la+λα
optW

α
b(a)(qa−1)−λβ

optW
β

e(a)(q
′
a−1) and ha = λβ

optW
β

e(a)p
′
a−

λα
optW

α
i pa, we get

te(a) − tb(a) ≥ ma − kha (8)

Notice that for any arc a, ha ≥ 0.
We denote by C the set of circuits of G which weight is strictly greater

than 1.
C = {circuit c of G,Π(c) > 1}

For every path ν of G, we also denote by M(ν) =
∑

e∈ν me and by H(ν) =
∑

e∈ν he.
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Lemma 4.6. For every c ∈ C, H(c) > 0.

Proof. Let c ∈ C. Since Π(c) > 1, we can define the sequences is and js,
s = 1...v of vertices in the same way as in the proof of lemma 4.3. Then, we
get

H(c) =

v
∑

s=1

H(νs) +

v
∑

s=1

has

• We prove that H(νs) = 0. Indeed, if νs is the sequence of arcs
x1, ..., xw, we get

H(νs) =
w

∑

v=1

λs
opt(W

s
e(xv)p

′
xv

− W s
b(xv)pxv)

Now, by lemma 3.2,
W s

e(xv)

W s
b(xv)

=
pxv

p′xv

, so H(νs) = 0.

• By definition of λs
opt, we get :

∀s ∈ {1, . . . , v − 1}
λs+1

opt

λs
opt

≥
W s

is
pas

W s+1
js

p′as

and
λ1

opt

λv
opt

≥
W s

iv
pav

W 1
jv

p′av

(9)

So, we obtain

λ1
opt...λ

v
opt

λv
optλ

1
opt...λ

v−1
opt

= 1 ≥ (

v
∏

s=1

1

πas

)
W 1

i1
W 2

i2
...W v

iv

W 1
jv

W 2
j1

...W v
jv−1

By lemma 3.1 and by theorem 3.4, we know that Π(νs) =
W s

js−1

W s
is

, s =

2...v and Π(ν1) =
W 1

jv

W 1
i1

. So, the previous inequality can be rewritten:

1 ≥
v

∏

s=1

1

πas

v
∏

s=1

1

Π(νs)
=

1

Π(c)

Now, we know that Π(c) > 1, so there is at least one arc (as) for which
the inequality 9 is strict, so that h(as) > 0. Since all the others are
nonnegative, we get the lemma.
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By lemma 4.6, we can define k0 as

k0 = max
c∈C

⌈

M(c)

H(c)

⌉

We set, for every i ∈ T ,

n1
i = max( max

a=(i,j)∈A
pak0 + qa, max

a=(j,i)∈A
p′ak0 + qa)

The idea is to build a quasi-periodic schedule σ as follows:

1. We start to execute the tasks following the earliest schedule. We stop
at time t when, for every task i, the index of its last execution n is
greater than or equal to n1

i ,i.e when at least n1
i occurrences of i have

been scheduled. Let us denote by n0
i , i ∈ V the index of the next

execution of task i. We also denote by

T (k0) = {< i, n >, i ∈ T , n < n0
i }

the executions performed in this first phase.

2. In the second phase, the tasks are executed periodically. Let us denote
by T ∗ the infinite set of the executions of tasks from T .The infinite set
of executions of tasks performed in this second phase is T ∗ − T (k0).
We define ti ≥ 0, i ∈ T that meet the following requirements:

• For any arc a ∈ A, te(a) − tb(a) ≥ ma − k0ha.

• For every arc a ∈ A, and every couple of executions < b(a), n >∈
T (k0) and < e(a), n′ >∈ T ∗ − T (k0) with e(a) ∈ T β,

te(a) ≥ tσ(< b(a), n >) + la − (n′ − 1)λβ
optW

β
e(a)

Notice that it follows from the definition of k0 that such ti ≥ 0, i ∈ T
exists and can be computed in polynomial time using Bellman-Ford’s
algorithm. For every task i ∈ T α we set

∀n ≥ n0
i , tσ(< i, n >) = ti + (n − 1)λα

optW
α
i

We get the following lemma by construction of the schedule:

Lemma 4.7. For any arc a ∈ A, let us consider the executions < b(a), n >
and < e(a), n′ > such that n = pak + qa and n′ = p′ak + q′a. If < b(a), n >∈
T ∗ − T (k0) then < e(a), n′ >∈ T ∗ − T (k0).
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Proof. Since < b(a), n >∈ T ∗ − T (k0), then all its successors according
to the precedence constraints cannot have been scheduled by the earliest
schedule. So < e(a), n′ >∈ T ∗ − T (k0).

Theorem 4.8. If the unitary components of a linear precedence graph G can

be scheduled periodically, then there exists a quasi-periodic schedule such that

every task i ∈ T α, α ∈ {1, ..., r}, has a minimum period λα
optW

α
i .

Proof. We must check that the schedule built previously meets all the prece-
dence constraints between the executions of the tasks. Let us consider an
arc a ∈ A with b(a) ∈ T α, e(a) ∈ T β and the executions < b(a), n > and
< e(a), n′ > with n = pak + qa and n′ = p′ak + q′a. We consider 3 cases :

1. If < b(a), n >∈ T ∗ − T (k0) then by lemma 4.7, < e(a), n′ >∈ T ∗ −
T (k0). So,

tσ(< e(a), n >) = tb(a) + (pak + qa − 1)λα
optW

α
b(a)

and
tσ(< e(a), n′ >) = te(a) + (p′ak + q′a − 1)λβ

optW
β

e(a)

We prove that tσ(< e(a), n′ >) ≥ tσ(< b(a), n >) + la. Indeed,

tσ(< e(a), n >) − tσ(< b(a), n′ >) − la = te(a) − tb(a) + kha − ma

Since te(a) − tb(a) ≥ ma − k0ha, we get

tσ(< e(a), n >) − tσ(< b(a), n′ >) − la ≥ (k − k0)ha

We know that ha ≥ 0. Moreover, since < b(a), n >∈ T ∗ − T (k0) and
< e(a), n′ >∈ T ∗ − T (k0) we get k ≥ k0, so the precedence constraint
is met.

2. If < b(a), n >∈ T (k0) and < e(a), n′ >∈ T (k0), then, they are both
executed following the earliest schedule, according to their precedence
constraint.

3. Lastly, if < b(a), n >∈ T (k0) and < e(a), n′ >∈ T ∗ − T (k0), by the
definition of te(a),

tσ(< e(a), n′ >) = te(a) + (n′ − 1)λβ
optW

β
e(a) ≥ tσ(< b(a), n >) + la
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Notice that the the construction of the reduced graph R and the com-
putation of an optimum period is polynomial. But, we have no complexity
results concerning the computation of an optimal quasi-periodic schedule:
indeed, the number of tasks that must be scheduled according to the earliest
schedule might not be bounded by a polynomial function.

5 Conclusion

We have proposed a polynomial algorithm to compute the existence of a
periodic schedule on a linear precedence graph. If the graph is unitary, the
computation turns out to be more simple and powerful. We have shown
that in some cases, there might exist a schedule but not a periodic schedule.

The computation of the best periodic schedule appears as easy as the
uniform case. However, the performance of this schedule with respect to the
earliest schedule is still to be studied.

We have shown that if the graph is not unitary, then a better performance
can be achieved by using quasi-periodic schedules, in which tasks becomes
periodic after some executions. We have provided an algorithm for building
optimal quasi-periodic schedules based on the decomposition of the linear
graph into unitary components.

These results should be further generalized to handle schedules on gen-
eralized timed event-graphs and dataflow models.

However, the existence of a polynomial time feasibility test for a uni-
tary graph remains open. It would be interesting to further analyse the
complexity of this problem which we conjecture to be co-NP-hard.

In the next future, introduction of resource constraints should help to
solve problems that occur in embedded systems.
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