
Towards a formal de�nition of the Foc language

St�ephane Fechter1 and Catherine Dubois2

1
stephane.fechter@lip6.fr

Laboratoire d'Informatique de Paris VI

8, rue du Capitaine Scott

75015 Paris, France
2
dubois@iie.cnam.fr

Cedric-IIE

18, all�ee Jean Rostand

91025 Evry, France

Abstract. The Foc project develops a formal language to implement

certi�ed components called collections. These collections are speci�ed

and implemented step by step: the programmer describes formally the

properties of the algorithms, the context in which they are executed,

the data representation and proves formally that the implemented al-

gorithms satis�es the speci�ed properties. This programming paradigm

implies the use of classic oriented-object features and the use of module

features like interfaces and encapsulation of data representation. In this

paper we formalize a kernel of the Foc language whose main ingredients

are multiple inheritance, late binding, overriding, interfaces and encap-

sulation of the data representation. We specify formally the semantics,

the type system, the soundness of the typing discipline.

R�esum�e Le projet Foc d�eveloppe un langage formel pour implanter des

composants certi��es appel�es collections. Ces collections sont sp�eci��ees

et implant�ees pas �a pas : le programmeur d�ecrit formellement les pro-

pri�et�es des algorithmes, le contexte dans lequel ils sont ex�ecut�es, la

repr�esentation des donn�ees et prouve formellement que les algorithmes

implant�es satisfont les propri�et�es sp�eci��ees. Ce paradigme de program-

mation implique l'utilisation de traits orient�es objets classiques et l'uti-

lisation de certain traits des modules comme les interfaces et l'encap-

sulation de la repr�esentation des donn�ees. Dans ce papier on forma-

lise un noyau du langage Foc dont les ingr�edients principaux sont le

multi-h�eritage, la liaison retard�ee, les interfaces et l'encapsulation de la

repr�esentation des donn�ees. On sp�eci�e formellement la s�emantique, le

syst�eme de type, la sûret�e du typage.

1 Introduction

The Foc project3 [1] develops a formal language to implement certi�ed compo-
nents called collections. These collections are speci�ed and implemented step by

3 French acronym for Formel OCaml and Coq

step: the programmer describes formally the properties of the algorithms, the
context in which they are executed and the data representation. The language
allows the correctness of the code with respect to the speci�ed properties: the
programmer can write formal proofs that are veri�ed by the proof checker Coq.
The properties and the algorithms are organized hierarchically in structures with
an object oriented avor: inheritance, late binding, encapsulation, re�nement.
This makes the speci�cation reuse easier. These object-oriented features are at
the same time powerful but limited with respect to the state of the art of object
oriented languages. Our purpose is to deliver certi�ed components equipped
with correctness proofs. And consequently it has an impact on the structure of
the development, on the dependencies we can accept. A static analysis ensures
that nasty dependencies are rejected [2].

The �nal code, written in OCaml, is obtained by translation of the ultimate
speci�cations contained in the collections. The generated code is quite eÆcient
thanks to the optimizations discovered by the static analysis.

Up to now, the Foc project has applied the language and methodology to the
computer algebra domain. More precisely, computer algebra served as a model
and gave the principal guidelines to implement the Foc language [1]. Thus
the Foc approach is validated by a wide computer algebra library, developed by
Rioboo [3], that includes some complex algorithms with performance comparable
to the best existing computer algebra systems. For example, the library provides
algorithms to compute the polynomial resultant of two polynomials with some
original polynomial representations.

The Foc language provides two notions of package units: species and col-
lections. A collection can be seen as an abstract data type, that is a module
containing the de�nition of a type, called the carrier type, a set of functions
manipulating values of the carrier type, called the entities of the species and a
set of properties with their proofs. The concrete de�nition of the carrier type

is hidden for the end users: it is encapsulated. This encapsulation is funda-
mental to ensure that the invariant on the data representation associated with
the collection (e.g. the entities are even natural numbers) is never broken. A
collection is the ultimate re�nement of speci�cations introduced step by step
with di�erent abstraction levels. Such a speci�cation unit is called a species:
it speci�es a carrier type, functions and properties (both called the methods of
the species). Carrier type and methods may be de�ned or only declared. In the
latter case, the de�nition of the function is given later in more concrete species,
and similarly the proof of a property can be deferred. Species come with late
binding: the de�nition of a function may use a function that is only declared
at this level. A collection built from a species implements all the de�nitions
speci�ed in the species and must provide a proof for each mentioned property.
A species B re�nes a species A if the methods introduced in A and/or the carrier
type of A are made more concrete (more de�ned) in B. This form of re�nement
is completed with the inheritance mechanism, that allows us to build a new
species from one or more existing species. The new species inherits the carrier

type and the methods of the inherited species. The new species can also specify
new methods or rede�ne inherited ones.

Carrier type, multiple inheritance, late binding, encapsulation, re�nement
are the elementary ingredients of our approach that ensure that the generated
code satis�es the speci�ed properties. The purpose of this article is to formalize
these elementary ingredients. We formally de�ne the type system and semantics
of the core language we call 4. The typing discipline is proven sound with respect
to the semantics.

In section 2, we present informally the core features of the Foc language
and illustrate them with examples coming from computer algebra. The termi-
nology �ts well to this domain and then can be intuitively understood. However
knowledge in computer algebra is not required to read this paper. We compare
the Foc concepts with notions coming form other paradigms. Then we detail
Otarie: syntax (section 4), type discipline (section 5) and semantics (section 6).
In the last section, we conclude and propose perspectives.

2 An overview of Foc

In this section, we illustrate the main features of Foc with the help of computer
algebra examples. The Foc environment allows us to describe general algebraic
structures such as setoids. A setoid is a set equipped with a reexive, symmetric
and transitive binary relation. At this level of description, the representation of
the elements of a setoid, is let abstract. The species setoid is written in Foc
as follows:

species setoid =

rep ;

sig equal in self->self->bool;

property equal_reflexive : all x in self,

!equal(x,x);

property equal_symmetric : all x y in self,

!equal(x,y) -> !equal (y,x);

property equal_transitive : all x y z in self,

!equal(x,y) -> !equal(y,z) -> !equal(x,z);

end

In the previous example, the keyword rep introduces the carrier type which is
not yet de�ned. The sentence sig equal in self->self->bool constitutes

4 otarie is the French word for sea-lion. The model name comes from a joke about the

language name Foc which is an homonym for the French translation of the English

word seal

the declaration of the relation equal: it is a binary relation whose parameters
are two elements of the setoid (self is their type). This method is only
declared, not yet de�ned, it can be compared to a virtual method in an object
oriented language. The properties about the equal relation are introduced
by equal reflexive, equal symetric and equal transitive. The symbol
! in front of equal has the same signi�cation than the variable self used in
class-based languages like Ocaml [4]. Thus !equal is some syntactic sugar for
self!equal that denotes the equal method of the collection that implements
the species (represented by self). In the de�nition of the properties, all x

in self means for any element x of the collection built from setoid. In the
construction property, -> denotes the logical implication.

Now, we can describe an additive monoid from a setoid by adding an opera-
tion plus and a neutral element zero. For this purpose, we construct
additive monoid by inheritance of setoid. Then we add the properties
zero is neutral (zero is the right neutral element) and plus is associative

(plus is associative). Since additive monoid inherits from setoid (and con-
sequently, it inherits the relation equal), we can use !equal to describe these
properties.

species additive_monoid

inherits setoid =

sig zero in self;

property zero_is_unique : all x o in self,

!equal(x,!plus(x,o)) -> !equal(!plus(o,x),x)

-> !equal(o,!zero) ;

sig plus in self-> self -> self;

property zero_is_neutral : all x in self,

!equal(!plus(x,!zero),x) and

!equal(!plus(!zero,x),x) ;

property plus_is_associative : all x y z in self,

!equal(!plus(x,!plus(y,z)),!plus(!plus(x,y),z));

end

Now, we create an additive monoid whose elements are integers. As
above, we create a species additive monoid integers that inherits from
additive monoid. Then we de�ne the carrier type with rep=int; where int is
the type of integers. And we give a de�nition for every declaration introduced
previously. We also add the constant one. In the species and in all the \daugh-
ter" species, the entities are implemented as integers and the programmer can
use this information.

species additive_monoid_integers

inherits additive_monoid =

rep=int;

let zero in self = 0;

let equal(x in self, y in self) in bool =

#int_eq(x,y);

let plus (x in self, y in self) in self =

#int_plus(x,y);

let is_zero (x in self) in bool =

#int_eq(x,!zero);

let one in self = 1;

proof of equal_reflexive = (* proof *);

proof of equal_symmetric = (* proof *);

proof of equal_transitive = (* proof *);

proof of plus_is_associative = (* proof *);

proof of zero_is_neutral = (* proof *);

end

In the above species, #int plus and #int eq are prede�ned operations (the
Ocaml ones) for integer addition and equality.
Now the equality and the operations are de�ned, it is possible to prove the
properties. The formal proofs (not detailed in the example) are introduced by
proof of These formal proofs can be done directly with the Coq prover
or with an adhoc prover under development in the project. However some
proofs will not be done because the involved operations are too low level. In
this case, we trust OCaml.

At this level, we could derive another species from
additive monoid integers in order to rede�ne the method plus. This would
imply to prove again the properties plus is associative and zero is neutral

because they depend on the de�nition of plus. In this context, let us de�ne
plus as an operation manipulating and computing integers modulo two. A
classical approach would consist in testing the parameters in order to reject
integers di�erent from 0 and 1. However it is not very eÆcient because of
the supplementary tests. So we de�ne a predicate is modulo 2 (with the
construction letprop) to express that the only entities of modulo 2 integers
are the integers 0 and 1. This property is the representation invariant. Then
we formulate and prove the property plus modulo 2: for all integers x and
y satisfying the representation invariant, the result of the addition of x and
y satis�es also the representation invariant. Thus, one and zero, satisfying

themselves the representation invariant, (plus zero one) is again an integer
modulo 2.

species modulo_2_integers

inherits additive_monoid_integers =

let plus (x in self, y in self) in self =

let r=#int_plus(x,y) in

if (!equal(r,2)) then 0 else r;

proof of plus_is_associative = (* new proof *);

proof of zero_is_neutral = (* new proof *);

letprop is_modulo_2 (x in self) = !equal(x,0) or !equal(x,1);

theorem plus_modulo_2:

all x y in self,

!is_modulo_2(x) -> !is_modulo_2(y) -> !is_modulo_2(!plus(x,y))

proof: ...

theorem zero_modulo_2: !is_modulo_2(!zero)

proof: ...

theorem one_modulo_2: !is_modulo_2(!one)

proof: ...

end

The species modulo 2 integers is totally de�ned. Then we can build a
collection c from this species.

collection c implements modulo_2_integers

To prevent the end user from using the entities in a bad manner, as for
example in the expression c!plus(2,5), the carrier type is made abstract. The

creation of the collection c comes with this encapsulation. Then the type of plus
becomes c -> c -> c where c is the name of the collection. And consequently
the entities denoted by one and two have the type c. Thus, plus may take as
parameters one and two. Generally speaking, only elements generated by the
operations de�ned in the collection c, that is, having the result type c, can be
used with to plus:

let r=c!plus(c!one,c!zero);;

c!plus(r,c!one);;

As one and zero satisfy the representation invariant, we are sure that plus

returns a modulo two integer stored in the variable r. And r can be used again
as a parameter. Thus the representation invariant is never broken.

In a species, every method has an associated type more or less imposed
by the programmer (with type annotations parameters or declarations). For
example, the method plus is de�ned by the user with the type self -> self

-> self. Such a type is called the method interface. The set of method
interfaces associated with their method names, for a given species, is called the
interface of the species. A collection has also an interface, provided by the
interface , the species from the collection derives. And every occurrence of self
is replaced by the name of the collection.

Furthermore, the Foc language o�ers multiple inheritance. The convention,
in case of conicts, is to choose the de�nition from the right most species.
The language is more restrictive about the carrier type. For example, in the
species modulo 2 integers, we cannot rede�ne rep as bool. Moreover, if a
species inherits from several other species, then the inherited carrier types must
be the same. We can explain easily this restriction in the computer algebra
domain: a species represents an algebraic structure that relies on a carrier set.
This set is given once for all, so changing the representation of its elements would

change the nature of this set. Moreover, in the framework of Foc, instead of
changing the carrier type from int to bool, we would create a species with an
abstract carrier type and two derived species (inheriting from the �rst one), one
with int as its carrier type and another one with bool as its carrier type.

Lastly, Foc provides parameterized species:

species cartesian_setoid (c1 is setoid, c2 is setoid) =

rep = c1 * c2;

let fst (x in self) in c1 = #first(x) ;

let snd (x in self) in c2 = #scnd(x) ;

end

The species cartesian setoid has two parameters c1 and c2 representing
two collections whose interface is derived from setoid.
As the collection name can be considered as a type, we can use c1 and c2 to de-
�ne the carrier type of cartesian setoid. Here, an entity of cartesian setoid

is a pair made of an entity of c1 and an entity of c2.
In cartesian setoid, we provide two methods fst and snd to access the com-
ponents of an entity. These methods use the Ocaml projections, #first and
#snd.
Let suppose two species bool setoid and int setoid, totally de�ned, with bool
and int as the carrier type de�nitions. Let c bool setoid and c int setoid the
collections created respectively from the species bool setoid and int setoid.
Thus c bool setoid and c int setoid have interfaces derived from the setoid
interface. Therefore, we can use c bool setoid and c int setoid as parame-
ters for cartesian setoid. As this application provides a new species totally
de�ned, we can create a new collection from it:

collection c implements

cartesian_setoid(c_bool_setoid, c_int_setoid)

Neither species nor collections are �rst class objects, even if collection may
be used as parameters of species.

3 Relative works

Inheritance, late binding, method rede�nition are features common to Foc and
class based objects oriented languages. However, there are di�erences. First
of all, the Foc carrier type, fundamental ingredient of our approach, has no
counter-part in the OO world. Another important di�erence is that a Foc

species has no state. We could consider the carrier type as a built-in method,
usually virtual in the early stages of the development. Any method of a species
or a collection is applied to entities which have a Caml type, not an object type.

Nevertheless with objects we cannot obtain the Foc encapsulation when we
create a collection: the carrier type must be made abstract while it is manifest
(in the same way as [5]) in the species that allowed to derive the collection.

A collection can be compared to a module of functional languages. In this
context, a collection is close to a structure providing a type whose de�nition is
hidden, that is an opaque type, and functions to handle elements of that opaque
type.

Species are also close to mixin modules (see [6]). Both have de�ned com-
ponents and deferred components (declared but not yet de�ned). De�ning a
deferred method in the Foc context can be compared to the operation of the
sum of two mixins.

The ingredients found in Foc and formalized in our core language named
Otarie are not new, they come from class based languages and modules. They
are consistently mixed to provide a framework to develop certi�ed components
by taking advantage of speci�cation and code reuse.

4 Presentation of Otarie

The previous section has presented di�erent features of Foc, in particular
those related to the carrier type, the interface and its abstraction. A �rst
formalization has been presented in [7,8]. However this work was not incorpo-
rating encapsulation and interfaces. In this paper we come back to this formal
model and adapt it to take into account the interfaces and the encapsulation of
entities.
Our formal de�nition of Otarie has been inspired by Objective ML [9], a
class-based model that serves as the foundations of the programming language
Ocaml. And, even if a collection is closer to a module than an object, a species
can be considered as a class, more precisely a virtual class since it may contain
deferred methods. A collection can be seen as an object, an instance of a class,
but it is not a �rst class value. For example, it's impossible to write a function

taking as a parameter, any collection having at least a method m.

In Otarie, we consider a set of constants cst 2 K, a set of variables x 2 X ,
a set of collections c 2 C, a set of species names z 2 Z , a set of name methods
m 2M. All these sets are enumerable.

Fig. 1. carrier type de�nition and method interface

carrier type de�nition :

t ::= �cst atomic type like int, bool, etc...

j In(c) carrier type reference of the collection c

j t! t j t � t

method interface :

i ::= rep abstraction annotation

j �cst j In(c)
j i! i j i � i

The syntax to de�ne a carrier type is given in the �gure 1. A carrier type
as de�ned by the developer can mix atomic types, constructors and collection
names. In this latter case, the collection name is considered as a type name.
Although, in a Foc program, we use indi�erently the name c to denote both
the collection and irs carrier type, we prefer to adopt in Otariea disambiguous
syntax. So we write In(c) instead of c in a carrier type. Thus, by using In(c),
the developer refers to the carrier type of the collection c. However he has an
abstract vision from it. In other words, an expression of type In(c), must be
considered as an encapsulated entity of the collection c.

To de�ne a method interface, the syntactic category i is used. In the same
way, an interface is composed of regular types and collection names (tagged
with In()) and incorporate generally occurrences of rep (self in Foc). By
using rep, the developer speci�es that the corresponding parameter or result
is an entity of the species that he is writing. Thanks to the annotation rep,
even if the carrier type de�nition is int, in the method interface rep ! int,
we can do the distinction between an integer that is an entity and an integer
that is not.This information will help when creating and abstracting a collection.

Although the syntactic category t is included in i, we do the distinction
between the two categories because the annotation rep must not be used to
de�ne a carrier type. Indeed, the use of rep to de�ne a carrier type has no
meaning since rep refers to the carrier type itself. Moreover, this syntactic
distinction avoids us not to add supplementary rules in the type system.

The main syntax of Otarie is described in the �gure 2. It's an extension of
core ML (constant, variable, function, application, pair and local de�nition) with

Fig. 2. main syntax

a ::= cst j x j fun(x): a j a a j (a; a) j let x = a in a core ML

j col!m method invocation

j collection c = e in a collection de�nition

j species z = e in a species de�nition

three constructions. The �rst construction col!m is the invocation of a method
m on a collection col. The second construction collection c = e in a, is the
creation of the collection c from the species e. The user can access the collection
through the name c in the expression a. It reects the construction collection

c implements species name of Foc. In relation to Objective ML, the second
construction is close to the creation of an object from a class e. But because of
the abstraction mechanism, we provide a scope for any introduced collection.
The third construction, species z = e in a, aims to name the species e. Thus
the collection e is identi�ed by z through the expression a. By de�nition of
a, z can never be used directly in a. Only species expressions or creations of
collections will be able to use the species name z.

Fig. 3. collection

col ::= c name collection

j self current collection

j hwi executive collection

The syntax for a collection is described in the �gure 3. A collection may
be a collection name, self to denote the current collection or an executive

collection, that is a list of de�ned methods.

Fig. 4. de�nition of �elds

w ::= ? j d; w

d ::= m : i = a method

j rep = t carrier type de�nition

j inherit e inherited species

The �elds, described in the �gure 4, are used to de�ne executive collections
or species body. A �eld d can be :

{ a method m : i = a where i is its type or interface (syntax given in the �gure
1) and a its de�nition (syntax given in the �gure 2)

{ the de�nition of the carrier type rep = t where t is a carrier type de�nition
(syntax given in the �gure 1)

{ an inheritance declaration inherit e (syntax given in the �gure 5).

Fig. 5. syntax of species

e ::= z

j struct w end species structure

j fun(c : [m : i]): e parameterized species

j e col application on a species

Lastly, the species syntax is described in �gure 5. The main form of a species,
called a species structure, is struct w end where w is its body. The body
is a list of �elds. A parameterized species is written fun(c : [m : i]): e where
c is the collection parameter. The notation [m : i] is a list of method names m

associated with their interface i (whose syntax is described in �gure 1). This list
represents the interface of the parameter c. The Foc species species sp name

(c is oth sp) = body end is translated in Otarie as follows :

species sp name = fun(c : [m : i]): struct body end in : : :

where [m : i] is the corresponding interface of the species oth sp.

Finally, e col is the application the species e on the collection col.

The translation of a Foc program into a Otarie program is quite easy. For
example:

species foo =

rep;

sig inc in self -> self;

let inc2 (x in self) in self = !inc(x);

end

corresponds to the following Otarie program:

species foo =

struct

inc2 : rep ! rep = fun(x): self!inc x

end

in ...

where the declaration inc and rep are made implicit. Indeed, Otarie provides
implicit declarations and doesn't constrain us to write rep;when the carrier type
is not yet de�ned. Although it was possible to make ones explicit, we use an
implicit version in order to simplify the presentation of Otarie.

The species foo, for example, can be extended by inheritance in oder to make
a collection :

species foo2 inherits foo2 =

rep = int;

let elt in self = 0;

let inc (x in self) in self = #int_plus(x,1);

end

collection c implements foo2 ;;

c!inc2(c!elt);;

Thus, the corresponding Otarie program is :

species foo2 =

struct

inherit foo;

rep = int;

elt : rep = 0;

inc : rep ! rep = fun(x): #int_plus x

end

in collection c = foo2 in

c!inc2 c!elt

5 The type system of Otarie

5.1 Type language

Main types. The main types, corresponding to main expressions a, are de-
scribed in �gure 6. A type � can be a type variable �, an atomic type (e.g. int,
bool, etc ...), a collection name, a functional type or a product type. The oc-
currences of collection names appearing in a type, are considered as type names.

Fig. 6. Main types

� ::= � j �cst j c j � ! � j � � �

List of �eld types. Lists of �elds have their class type � described in �gure 7.
A type � contains two sorts of �eld types :

{ the method type (m : �) where m is the name of the method and �, its
interface.

{ the carrier type rep = � where � corresponds to a carrier type t as given by
the developer.

On the list of �eld types �, we suppose an axiom of left-commutativity :

f1; f2; � = f2; f1; �

where f1 and f2 are �eld types. Thanks to this axiom, we can retrieve easily
a method name or rep in � without being constrained by any order.

We de�ne an union operation � on lists of �eld types. This operation
requires the two argument lists are identical on the intersection of their domain.
In other words, if there is a �eld type m : � (resp. rep = �) in �1 and there is a
�eld type m : �0 (resp. rep = � 0) in �2, �1 � �2 requires that � and �0 are equal
(resp. � and � 0 be equal).

Fig. 7. list of �eld types

� ::= � j �cst j c j rep j �! � j � � �
� ::= ? j m : �; � j rep = � ; �

We add meta-notations on � (see �gure 8) in order to distinguish lists of �elds
types without occurrences of rep = � (see �d), those with a unique occurrence
of rep = � (see �c) and those that may be followed by a row variable � (see �e).

Fig. 8. meta-notations

�d , �nfrep = �g

�c , (rep = � ; �d)

�e , �d j �d; �

Collection types. The syntax of a collection type is described in the �gure 9.
It is composed of a list of �eld types �c optionally followed by the row variable
�. By de�nition of �c, a collection type has a unique occurrence of rep = � .
Thus, we impose that a collection has mandatory a unique carrier type. On the
other hand, the presence of rep = � allows us to bind occurrences of annotation
rep in method types. In other words, rep plays the role of an existential type
whose witness is � (given by rep = �).
The row variable is useful for the parameterized species. It permits to apply a
collection whose interface is larger than the one written in the species parameter.

Fig. 9. collection types

�col ::= h�ci j h�c; �i

Species types. The species types , in �gure 10, can take the form
sig (�col) � end for species structures or �col ! for parameterized species.
The species types sig (�col) � end is composed of two parts :

{ � represents the list of �eld types whose corresponding �elds are de�ned in
the species (directly in the structure or by inheritance). We call this type
the list of de�ned �eld types (type of the de�ned �elds).

{ �col represents the type of the underlying executive collection, that is the
future collection created from the species. We call this type the signature.
Among other things, it permits to build a �x point (see typing rules further)
in order to resolve the self reference and the late binding. Thus, the variable
self will be assigned the type �col.

A method name m present in �col, but not in �, is considered as virtual,
that is in Foc words, m is only declared. Similarly, if rep = � is not present in
�, it means that the carrier type is not yet de�ned.
If all method names and rep = � present in �col are also declared in �, then the
species is totally de�ned. Consequently all methods are de�ned and a de�nition
for the carrier type is given. Such a species is said \concrete".

The species and collection types are very similar to class and object types
of Objective ML. Furthermore, as in Objective ML, methods and carrier types
cannot be polymorphic. In other words, the methods in species and collections
are monomorph. However our actual experience with Foc shows the polymor-
phic methods are not indispensable. Generally parameterized species provide
the solution. It is also mandatory to forbid free type variables in a carrier type.
Indeed, let us consider the following example :

species foo =

rep = 'a (* 'a is a free type variable *)

let elt in self = true

let m (x in self) in self = x + 1

end

collection c implements foo = end

c!m c!elt;;

Since 'a is a free type variable, the method de�nitions are correct according to
their speci�cations. Thus, the application of c!elt on c!m is correct. However,
at run-time, the incorrect result true + 1 is obtained.
To avoid this kind of problem, the syntactic category t (see �gure 1) doesn't

provide the possibility to de�ne a carrier type with type variable occurrences.
And in the type system, the free variables are captured in type schemes or
eliminated through the typing rules.

Fig. 10. species types

 ::= sig (�col) � end

j �col !

Type schemes. For the sequel we consider the following type schemes :

�� ::= 8��:�
� ::= 8��8�:

where �� denotes for a set of type variables �1; : : : ; �n (possibly empty). � is
a row variable (possibly absent).

We denote by � 6 �� (respectively � 6 ��) that � (resp.) is a type instance
of the type scheme �� (resp. �).

5.2 Notations

Since there are several syntactic categories we use for the sequel the following
meta-notations :

�a , a j w j col j e

�� , � j � j �col j

These meta-notations are used consistently. For instance, (�a; ��) means
(a; �), (w;�), etc... but not (e; �).

5.3 Rules

The typing rules, presented in the �gures 11, 12, 13 and 15, allow to certify or
not that an expression is well-typed in a given context. This context is a pair of
environments.
The �rst environment is a typing environment de�ned by :

A ::= ?
j A+ x : �� j A+ z : �
j A+ c : �col j A+ self : �col

We note A� the typing environment A deprived of self.
The second environment is a collection name environment :

 ::= ? j
; c where c does not belong to

We call a well-formed typing environment according to a collection name
environment
 an environment A such that :
for all x : �� 2 A (respectively for all z : � 2 A, for all c : �col 2 A, for all
self : �col 2 A), all occurrences of collection names in �� (respectively � , �col
) are declared in
.

The typing rules use typing judgments whose form is A ;
 ` �a : �� , meaning
the expression �a is well typed and has the type �� with respect to the context
A;
.

We say that a judgment A ;
 ` �a : �� is well-formed if A is well-formed
according to the collection name environment
 and all the occurrences of
collection names in �� are declared in
.

We de�ne the generalisation Gen(�� ; A) by 8��:�� where �� are the variables of
�� that are not free in A.

Main typing rules. The rules in �gure 11 correspond to expressions of the main
syntax. The rules Var, Fun-ML, App-ML, Pair-ML and Let-ML coming
from ML, are classical.
The method invocation m of a collection col is veri�ed with the rule Send. This
rule is close to the one used for objects in [9]. The expression col!m has a type
� 0 if the type of col contains the �eld type (m : �) and a carrier type (rep = �).
Since occurrences of rep can be in �, � 0 must be equal to � where all occurrences
of rep are replaced by � .
The type veri�cation for a collection de�nition is done with the rule Abstract.
The creation of a collection with collection c = e in a, is authorized only if

the species e is totally de�ned: the type of e indicates that the carrier type is
well de�ned and all methods are de�ned since there are rep = � and �d in the
signature and in the list of de�ned �eld types. The uses of the new collection c

in the expression a are veri�ed in the second premise of the rule Abstract. For
this, we extend the collection name environment
 with c. By construction, c
must be fresh with respect to
. Globally, it means the name c must be di�erent
from all the other ones already introduced in the collection name environment

. In Foc, every collection has a unique name. So the property is syntactically
satis�ed.Then, we extend the type environment A with the collection name c

associated with the type hrep = c; �di. This type is built from the signature
of the species type where the carrier type is replaced by the collection name c.
By this way, the carrier type becomes abstract (like a private type in ADA, for
example). Thus, the collection c in the expression a is abstracted and the type
of collection c = e in a is the type � 0 of the expression a.
Lastly, the rule Species Let, permitting to check the type of the expression
species z = e in a, is similar to the rule Let-ML.

Fig. 11. main typing rules

Var

� 6 A(x)

A ;
 ` x : �

Fun-ML

A+ x : �1 ;
 ` a : �2

A ;
 ` fun(x): a : �1!�2

App-ML

A ;
 ` a1 : �1!�2 A ;
 ` a2 : �1

A ;
 ` a1 a2 : �2

Pair-ML

A ;
 ` a1 : �1 A ;
 ` a2 : �2

A ;
 ` (a1; a2) : �1 � �2

Let-ML

A ;
 ` a1 : �1 A+ x : Gen(�1; A) ;
 ` a2 : �2

A ;
 ` let x = a1 in a2 : �2

Send

A ;
 ` col : hrep = � ;m : �;�di

A ;
 ` col!m : �[rep �]

Abstract

A ;
 ` e : sig (hrep = �
0

;�di) (rep = �
0

;�d) end

A+ c : hrep = c;�di ; (
; c) ` a : �

A ;
 ` collection c = e in a : �

Species Let

A ;
 ` e : A+ z : Gen(;A) ;
 ` a : �

A ;
 ` species z = e in a : �

Collection typing rules. The rule for collections are presented in the �gure
12. For the collection name and the variable self, the rules Collection name
and Self are respectively used. These simple rules consist in retrieving the type
associated with identi�er in the typing environment.
The rule for executive collection hwi is the same as the one used for the objects
in Objective ML. The collection hwi has the type h�ci if w has the type �c. The
environment A�, in the premise, is extended with self : h�ci in order to provide
the self reference for w.

Fig. 12. collection typing rules

Collection name

A ;
 ` c : A(c)

Self

A ;
 ` self : A(self)

Executive collection

A
�

+ self : h�ci ;
 ` w : �c

A ;
 ` hwi : �c

Typing rules for �elds. The �elds are type-checked with the rules of the
�gure 13. These rules use the j-jA forms (see �gure 14) that translates any
type t in a type when all occurrences of collection names are replaced by their
carrier type if such names are found in A.

In �gure 13, the rules Method, Carrier type and Inherit type-check
(respectively the method, the carrier type de�nition and the inheritance) �eld.
During the type-checking of a carrier type de�nition rep = t, we must validate
the carrier type t given by the programmer. If valid, this type must be the
appearing carrier type in the type of self.

To type-check a method m : i = a, we �rst verify that the method interface
is well-formed. Then we must check that the variable self has a collection type
hrep = � ;m : �;�di where the method name m is present with a type equal to
the interface. Lastly, we type-check the body a of the method. Its type must be
the type � where all occurrences of rep are substituted by � . By these di�erent
veri�cations, we check that the method m of the underlying collection has a
type coherent (in our context, coherent means equal modulo the substitution
of In(c)) with respect to the interface given by the programmer. Moreover, we
check that the de�nition of the method is correct according to the speci�cation.

The rule for the inheritance inherit e is the same as in [9]. The species e
must be type-checked in a context where self is associated with the underlying
collection. In order to take into account the right variable self, the signature

of the type species e must be the type of variable self found in the current
environment. Thus the type for inherit e, is the list of de�ned �eld types
from the type of species e.

The type-checking of a list of �elds uses the rules Basic and Then. The �rst
rule is trivial. The second rule type-checks the head of the list (by using rules
Inherit, Carrier type andMethod), that is a �eld whose type is �1. Then
it type-checks the rest of the list whose type is �2. Thus, the type for the entire
list is �1 � �2. Consequently, when a method is rede�ned, its type cannot be
changed. In a similar way, the carrier type cannot be rede�ned. This is enforced
by the � operator which requires that the two arguments share commun types
on the intersection of their domains.
The rules Basic and Then are almost the ones of Objective ML. The rule Then
of Objective ML must take in account the super binders in addition, features
not provided by Foc.

Fig. 13. typing rules for �elds

Basic

A ;
 ` ? : ?

Then

A ;
 ` d : �1 A ;
 ` w : �2

A ;
 ` d; w : �1 � �2

Inherit

A ;
 ` self : �col A
�

;
 ` e : sig (�col) � end

A ;
 ` inherit e : �

Carrier type

A ;
 ` self : hrep = jtjA; �di

A ;
 ` rep = t : (rep = jtjA)

Method

A ;
 ` self : hrep = � ; m : �; �di A ;
 ` a : �[rep �] where jijA = �

A ;
 ` m : i = a : (m : �)

Fig. 14. Veri�cation of interfaces and carrier type de�nitions

j�cstjA = �cst

jrepjA = rep

jIn(c)jA = � if c : hrep = � ; �di 2 A

jt1!t2jA = jt1jA!jt2jA
jt1 � t2jA = jt1jA � jt2jA

Typing rules of species. The type-checking for the species uses the rules of
the �gure 15.

To type-check a species structure, we use the rule Species Body. This rule
is identical to the rule for class structure in Objective ML. In the the body w

of struct w end, there are invocation of methods on self. Thus we must
type-check w on the starry current environment augmented with the variable
self. As for the rule Inherit, if the environment is starry, it's to avoid conict
problems. The type for the variable self must be the one from the signature of
the type of e. The list of de�ned �eld types for e, is built with the list of �eld
types of w.

The rule Species Fun is used to check a parameterized species
fun(c : [m : i]): e. Its type hrep = � 0; [m : �]; �ei ! 0 ([m : �] is
the list of method names m associated with their type �) speci�es that the
parameter is a collection providing at least the methods m detailed in the
interface with types following the ones given in the interface. Then, the rule
checks the species e. This is done by increasing the current collection name
environment with c, and by increasing the current typing environment A with
c : hrep = c; [m : �]i. We use rep = c in the type of c, in order to see c as an
abstract collection di�erent from the other ones used in the species e.
The type � 0 seems independent of the rule and chosen randomly. But it's not
really exact in most of the time. Indeed, we shall have in mind that other rules
intervene on the derivation tree whose the expression fun(c : [m : i]): e is
an element of it. Thus the type � 0 is constrained by the other rules employed

to derive the tree. On the other hand, we would understand that the name
c is quanti�ed universally. From this fact, therefore all substitution of c by
other types is available. Thus we can apply any collection of any form on
parameterized species seeing that the collection posses the same interface as the
one imposed by the parameter.
The �e list appearing in the type, allows to apply a collection whose its interface
is greater than [m : i], that is an interface containing [m : i] and other method
interfaces.

Lastly, the application of a collection on parameterized species is type-
checked by the rule Species App. This rule is homologous to the rule App-ML.

6 Semantics

In order to formalize the execution of a Foc program, we provide a reduction
semantics with a call by value strategy for Otarie. Then we prove our typing
discipline is sound with respect to this semantics.

Semantics is described by a set of small-step reduction rules (see �gure 17)
and a set of contexts (see �gure 18). Thus the evaluation of an expression, if
it terminates, can be visualized step by step until obtaining an expression that
can't be reduced anymore.

Fig. 15. typing rules of species

Species name

 6 A(z)

A ;
 ` z :

Species Body

A
�

+ self : �col ;
 ` w : �

A ;
 ` struct w end : sig (�col) � end

Species Fun

A+ c : hrep = c; [m : �]i ; (
; c) ` e : where jijA = �

A ;
 ` fun(c : [m : i]): e : hrep = �
0

; [m : �]; �ei![c �
0

]

Species App

A ;
 ` e : �col! A ;
 ` col : �col

A ;
 ` e col :

The values are described in the �gure 16. Every syntactic category has
a corresponding category of values. First, we �nd standard values ML v :
constant, abstraction and pair of values. The value of a list of �elds is a list
where there is no more overriding on method names and rep (one occurrence of
rep at most). In other words, a value for a list of �elds is a list where inheritance
and rede�nition have been resolved. Such a value is used to de�ne a collection
value hvwi or a species value, in particular a species structure struct vw end.
Lastly, the parameterized species are also values.

Fig. 16. Values

v ::= cst j fun(x): a j (v; v)

vcol ::= hvwi

vs ::= struct vw end

j fun(c : [m : i]): e

vw ::= ? j vd; vw
vd ::= m : i = a j rep = t

Let us now comment the elementary reduction rules detailed in the �gure 17.
The rules 1 and 2 are the standard �-reduction ML rules.

The rule 3, very similar to the one provided for objects in [9], reduces the
method of an executive collection hvw(m)i!m: it returns the body vw(m) of the
method m and replaces every occurrence of self in vw(m) by the executive
collection itself. This substitution allows to compute the self reference.

The rule 4 replaces the collection name c by its executive form hvwi, in an
expression a. It's done if the species, used to instantiate the collection, is a
value struct vw end, that is a species where inheritance has been resolved and

Fig. 17. reduction rules

1 (fun(x): a) v !� a[v=x]

2 let x = v in a !� a[v=x]

3 hvwi!m !� vw(m)[hvwi=self]

4 collection c = (struct vw end) in a!� a[hvwi=c][CT (hvwi)=In(c)]
5 species z = vs in a !� a[vs=z]

6 m : i = a; vw !� vw if m 2 dom(vw)

7 rep = t; vw !� vw if rep 2 dom(vw)

8 inherit (struct vw end); w !� vw @ w

9 (fun(c : [m : i]): e) vcol !� e[vcol=c][CT (vcol)=In(c)]

where all �elds are de�ned. Moreover, as the collection is now executive, all
occurrences of In(c) must be replaced by the carrier type found in vw, denoted
by CT (hvwi).

The rule 5 is analogous to the rule 2: the occurrences of z in a are replaced
by the species value vs.

The rules 6, 7 and 8 are the computation rules for lists of �elds. The rules
6 and 7 are related to the rede�nition of a �eld. If a method m already occurs
in the list vw, then the rule 6 returns vw, its forgets the �rst, that is the old,
de�nition of the method m : i = a. The rule 7 does likewise with the rep = t

�eld. The rule 8 is used for resolving inheritance. The inherited species must
be a value struct vw end, the rule concatenates the inherited methods and the
possible rep �eld, vw, with the other methods w.
By combining these previous rules, we resolve the multi-inheritance (by using
several times the rule 6) and the method rede�nition: the rightmost de�nition
is chosen.

Lastly, the rule 9, very close to the �rst rule, reduces the application of a
parameterized species. However, occurrences of In(c) may appear in the species.
These occurrences are replaced by the carrier type of the collection as in the rule
4.

The typing system presented previously is sound with respect to our seman-
tics. Formally, it consists in two properties: the preservation of the type by
reduction (also called the subject reduction theorem) and the non-locking of
well typed programs. The proof of type soundness follows the proof of type
soundness for Objective ML (detailed in [9]). The main di�erence comes from
the construction collection c = e in a, a lemma establishing that a well-
typed collection is also well-typed under its executive form. We detail the proof
in the appendix A. The veri�cation of this proof with the Coq proof assistant
[10] has been partly done [11]: at the moment, it does not take into account the
entities abstraction, this last aspect is under development.

Fig. 18. Reduction context

Context:
E ::= [] j let x = E in a j E a j v E j (E; a) j (v; E)

j Ecol!m

j collection c = Ee in a j species z = Ee in a

Ecol ::= hF i

Ee ::= [] j struct F end

j Ee col j vs Ecol

F ::= [] j Fd; w j vw; F
Fd ::= inherit Ee

where [] is the empty context

7 Conclusion and future works

In the �rst part of this paper we have presented informally the core features
of the Foc language. We have then formalized the main constructions of the
language.

The main purposes of Otarie in this paper are to explain the di�erent object
oriented features and encapsulation possibilities. But we didn't mention logic
aspects. Among other things, the self reference provides a naive recursion mak-

ing easily logic inconsistent. To avoid this problem, Foc provides a dependency
analysis on methods (see [2] and [12]). Thus, every method call is certi�ed to
terminate. This analysis looks like the one done for mixins, in particular ones
presented in [6]. The authors extend their type system with dependency graphs.
If a type derivation tree is built with a graph having at least a cycle, then the
tree is considered like inconsistent.
In Foc, the mutual recursion, through the methods, is more or less limited.
The user must declare explicitly the methods concerned by this sort of recur-
sion. And he must provide a proof of termination.
Thus, in the future, Otarie will have to be extended with such a dependency
analysis.
Lastly, the conception of Otarie has been carried out with constraints coming
from computer algebra. Most of these constraints appear naturally and indepen-
dently of the computer algebra domain. An important perspective is to evaluate
the constraints on other domains, in order to understand whether they can be
relaxed or not. For example, type carrier rede�nition could be visited again.

Acknowledgements

We would like to thank Th�er�ese Hardin, Luigi Liquori and V�eronique Vigui�e
Donzeau-Gouge for helpful discussions about this work. We are also grateful to
the referees of an old version of this paper for their constructive remarks.

A Proofs of the type soundness for Otarie

A.1 Introduction

Since Otarie has been inspired by Objective ML, the di�erent proofs for the
propositions and lemmas are classical and closed to the ones found in [9]. We
just present the most interesting and pertinent cases. The other cases can be
easily retrieved.

Since we have multiple syntactic categories for expressions, contexts and
types, it is convenient to introduce the following meta-notations:

�a , a j w j col j e

�� , � j � j �col j
�E , E j Ecol j Ee j F j Fd

These meta-notations are used consistently. For instance, when writen
A ;
 ` �a : �� , (�a; ��) means (a; �), (w;�), etc, but not (a;).

We introduce the relation �� > �0� (resp. � > �0) to say that any instance
of �0� (resp. �0) is an instance of �� (resp. �).

A.2 Proofs

Lemma 1. Let jtjA = � , c a collection name and � 0 a carrier type de�nition.

Then jA[c � 0]j� [c � 0] = t

Proof. The proof is by induction on t.

Case t is �cst :

trivial:

jA[c � 0]j�cst[c � 0] = �cst

?

Case t is rep :

similar to the above case.

?

Case t is In(c) :

We have:

jIn(c)jA = � with c0 : hrep = � ; �di 2 A

thus we have:

c0 : hrep = � [c � 0]; �d[c � 0]i 2 A[c � 0]

therefore:

jA[c � 0]j� [c � 0] = In(c)

?

Case t is t1 ! t2 :

We have:

jt1!t2jA = jt1jA!jt2jA

with jt1jA = �1 and jt2jA = �2

By induction on jt1jA and jt2jA, we have:

jA[c � 0]jt1[c � 0] ! jA[c � 0]jt2[c � 0] = �1[c � 0] ! �2[c � 0]
= (�1!�2)[c � 0]

therefore:

jA[c � 0]j(�1!�2)[c � 0] = t1!t2

?

Case t is t1 � t2 :

similar to the above case

?

ut

Lemma 2. For this lemma, we use the notations �� , � j � j �col j and at ,

rep j c.

Let at1 and at2 distinct. Let � and � 0 two types such as � 0 doesn't contain

occurences of at2. Then the following equality is veri�ed:

(��[at1 �]) [at2 � 0[at1 �]] = (��[at2 � 0]) [at1 �]

Proof. The proof is by induction on ��.

Case �� is � :

We have:

(�[at1 �]) [at2 � 0[at1 �]] =
�[at2 � 0[at1 �]] =
�

and:

(�[at2 � 0]) [at1 �] =
�[at1 �] =
�

Therefore, the equality is veri�ed.

?

Case �� is �cst :

The proof is similar to the previous case.

?

Case �� is c :

There are three sub-cases:

{ case c 6= at1 and c 6= at2 :
The proof is similar to the previous case.

{ case c = at1 (and at2 6= c , by hypothesis) :
we have:

(c[at1 �]) [at2 � 0[at1 �]] =
� [at2 � 0[at1 �]] =
� because � doens't have contain of at2

and:

(c[at2 � 0]) [at1 �] =
c[at1 �] =
�

Therefore the equality is veri�ed.

{ case c = at2 (and at1 6= c , by hypothesis) :
We have:

(c[at1 �]) [at2 � 0[at1 �]] =
c[at2 � 0[at1 �]] =
� 0[at1 �]

and:

(c[at2 � 0]) [at1 �] =
� 0[at1 �]

Therefore the equality is veri�ed.

?

Case �� is rep :

There are three sub-cases:

{ case at1 6= rep and at2 6= rep :
We have:

(rep[at1 �]) [at2 � 0[at1 �]] = rep

and:
(rep[at2 � 0]) [at1 �] = rep

Therefore the equality is veri�ed.
{ case at1 = rep (and at2 6= rep, by hypothesis):
We have:

(rep[at1 �]) [at2 � 0[at1 �]] =
� [at2 � 0[at1 �]] =
� (by knowing that � doesn't contain occurences of at2)

and:

(rep[at2 � 0]) [at1 �] =
rep[at1 �] =
�

Therefore the equality is veri�ed.
{ case at2 = rep (and at1 6= rep, by hypothesis):
We have:

(rep[at1 �]) [at2 � 0[at1 �]] =
rep[at2 � 0[at1 �]] =
� 0[at1 �]]

and:

(rep[at2 � 0]) [at1 �] =
� 0[at1 �]

Therefore the equality is veri�ed.

?

Case �� is �1 ! �2 :

We have:

(�1 ! �2)[at1 �]) [at2 � 0[at1 �]] =
(�1[at1 �]! �2[at1 �]) [at2 � 0[at1 �]] =
�1[at1 �][at2 � 0[at1 �]]! �2[at1 �][at2 � 0[at1 �]]

By induction on �i[at1 sup][at2 sup0[at1 sup]] (for i equal 1 and 2),
we have:

= (�1[at2 � 0]) [at1 �]! (�2[at2 � 0]) [at1 �]
= (�1[at2 � 0]! �2[at2 � 0])[at1 �]
= ((�1 ! �2)[at2 � 0]) [at1 �]

Therefore the equality is veri�ed.

?

Case �� is �1 � �2 :

The proof is similar to the previous case.

?

Case �� is ? :

trivial:

(?[at1 �]) [at2 � 0[at1 �]] = (?[at2 � 0]) [at1 �]

?

Case �� is (m : �; �) :

We have:

((m : �; �)[at1 �]) [at2 � 0[at1 �]] =
(m : �[at1 �]; �[at1 �])[at2 � 0[at1 �]] =
(m : �[at1 �][at2 � 0[at1 �]]; �[at1 �][at2 � 0[at1 �]])

By induction on �[at1 �][at2 � 0[at1 �]] et �[at1 �][at2 � 0[at1
�]], therefore we have:

= m : (�[at2 � 0]) [at1 �]; (�[at2 � 0]) [at1 �]
= (m : �[at2 � 0]; �[at2 � 0])[at1 �]
= ((m : �; �)[at2 � 0]) [at1 �]

?

Case �� is rep = � ; � :

The proof is similar to the previous cas, namely the de�nition of � is included
in the one of �.

?

Case �� is h�ci :

We have:

(h�c; i[at1 �]) [at2 � 0[at1 �]] =
h(�c[at1 �]) [at2 � 0[at1 �]]i

By induction on (�c[at1 �]) [at2 � 0[at1 �]], namely the de�nition of
�c is included in the one of �, we have:

= h(�c[at2 � 0]) [at1 �]i
= (h�ci[at2 � 0]) [at1 �]

Therefore the equality is veri�ed.

?

Case �� is h�c; �i :

The proof is similar to the above case.

?

Case �� is sig (�col) � end :

On a :

((sig (�col) � end) [at1 �]) [at2 � 0[at1 �]] =
(sig (�col[at1 �]) �[at1 �] end) [at2 � 0[at1 �]] =
sig ((�col[at1 �])[at2 � 0[at1 �]]) (�[at1 �])[at2 � 0[at1 �]] end

By induction on (�col[at1 �])[at2 � 0[at1 �]] and on �[at1 �])[at2
� 0[at1 �]] we have:

= sig ((�col[at2 � 0]) [at1 �]) (�[at2 � 0]) [at1 �] end
= (sig (�col[at2 � 0]) �[at2 � 0] end) [at1 �]
= ((sig (�col) � end)[at2 � 0]) [at1 �]

The equality is veri�ed.

?

Case �� is �col ! :

The proof is similar to the case for �� is �1 ! �2.

?

ut

Property 1 (Application of collection names). Let
; c a collection name envi-
ronment, A a type environment well-formed in relation to
; c. Let �car a type
such as:

{ �car doesn't contain occurrence of c and occurrence of type variable.
{ all collection name in �car is declared in
.

Then A ; (
; c) ` �a : �� implies A[c �car];
 ` �a : �� [c �car]

Proof. The proof is done by induction on A ; (
; c) ` �a : ��

Case Var :

We have:

� 6 A(x)

A ; (
; c) ` x : �

By the premise, we have

� [c �car] 6 (A(x))[c �car]

� [c �car] doesn't contain any occurrence of c and (A(x))[c �car] =
A[c �car](x). Then � [c �car] 6 A[c �car](x).

Therefore:

� [c �car] 6 A[c �car](x)

A ;
 ` x : � [c �car]

?

Case Fun-ML :

We have:

A+ x : �1 ; (
; c) ` a : �2

A ; (
; c) ` fun(x): a : �1!�2

By induction hypothesis on the premise, therefore:

A[c �car] + x : �1[c �car];
 ` a : �2[c �car]

A[c �car];
 ` fun(x): a : (�1!�2)[c �car]

?

Case App-ML :

We have:

A ; (
; c) ` a1 : �
0
!� A ; (
; c) ` a2 : �

0

A ; (
; c) ` a1 a2 : �

By induction hypothesis on the premises, therefore:

A[c �car];
 ` a1 : �
0[c �car]!� [c �car]

A[c �car];
 ` a2 : �
0[c �car]

A[c �car];
 ` a1 a2 : � [c �car]

?

Case Pair-ML :

This case is similar to the above one.

?

Case Let-ML :

We have:

A ; (
; c) ` a1 : �1 (1) A+ x : Gen(�1; E) ; (
; c) ` a2 : �2 (2)

A ; (
; c) ` let x = a1 in a2 : �2

By induction hypothesis on the premises (1) et (2) we have:

A[c �car];
 ` a1 : �1[c �car]

and
A[c �car] + x : (Gen(�1; E))[c �car];
 ` a2 : �2[c �car]

By hypothesis, �car doesn't contain occurrence of type variable. Then we
have:

Gen(�1; E)[c �car] = Gen(�1[c �car]; A[c �car])

Therefore:

A[c �car];
 ` a1 : �1[c �car]
A[c �car] + x : Gen(�1[c �car]; A[c �car]);
 ` a2 : �2[c �car]

A[c �car];
 ` let x = a1 in a2 : �2[c �car]

?

Case Send :

We have:

A ; (
; c) ` col : hrep = � 0; m : �; �di

A ; (
; c) ` col!m : �[rep � 0]

By induction hypothesis on the premise we have:

A[c �car];
 ` col : hrep = � 0[c �car]; m : �[c �car]; �d[c �car]i

A[c �car];
 ` col!m : (�[c �car]) [rep � 0[c �car]]

By the lemma 2 (�car doesn't contain any rep by de�nition) we have:

(�[c �car]) [rep � 0[c �car]] = (�[rep � 0]) [c �car]

Therefore:

A[c sup];
 ` col!m : (�[rep � 0]) [c �car]

?

Case Abstract :

On a :

A ; (
; c) ` e : sig (hrep = � 0; �di) (rep = � 0; �d) end (1)

A+ c0 : hrep = c0;�di ; (
; c; c0) ` a : � (2)

A ; (
; c) ` collection c0 = e in a : �

By the premisse (2), c0 is fresh in relation to (
; c). Therefore c 6= c0.
By hypothesis, �car can contain only occurences of collection names belonging
to
. Then �car can't contain occurrence of c0.
Therefore by induction hypothesis applied on the premises (1) and (2):

A[c �car];
 ` e : sig (hrep = � 0[c �car];�d[c �car]i) (rep = � 0[c �car];�d[c �car]) end
A[c �car] + c0 : hrep = c0;�d[c �car]i; (
; c0) ` a : � [c �car]

A[c �car];
 ` collection c0 = e in a : � [c �car]

By knowing � [c �car] doesn't contain any occurrence of c0 according to the
previous remark.

?

Case Species Let :

This case is similar to the Let-ML case.

?

Case Collection name :

Trivial

?

Case Self :

Trivial

?

Case Executive collection :

We have:

A� + self : h�ci ; (
; c) ` w : �c

A ; (
; c) ` hwi : h�ci

By induction hypothesis on the premise, we have:

A�[c �car] + self : h�c[c �car]i;
 ` w : �c[c �car]

A[c �car];
 ` hwi : �c[c �car]

?

Case Basic :

trivial

?

Case Then :

We have:

A ; (
; c) ` d : �1 A ; (
; c) ` w : �2

A ; (
; c) ` d; w : �1 � �2

By applying [c �car] in the same time on �1 and on �2, �1[c �car]
and �2[c �car] stay compatible. Therefore �1[c �car] � �2[c �car] =
(�1 � �2)[c �car].

Therefore by induction hypothesis applied on the premises, we have:

A[c �car];
 ` d : �1[c �car] A[c �car];
 ` w : �2[c �car]

A[c �car];
 ` d; w : (�1 � �2)[c �car]

?

Case Inherit :

We have:

A ; (
; c) ` self : �col A� ; (
; c) ` e : sig (�col) � end

A ; (
; c) ` inherit e : �

By induction hypothesis applied on the premises, we have:

A[c �car];
 ` self : �col[c �car]
A[c �car];
 ` e : sig (�col[c �car]) �[c �car] end

A[c �car];
 ` inherit e : �[c �car]

?

Case Carrier Type :

We have:

A ; (
; c) ` self : hrep = jtjA;�di (1)

A ; (
; c) ` rep = t : (rep = jtjA)

By the lemma 1 we have:

(jtjA)[c �car] = jA[c �car]jt

Thus by induction hypothesis applied on the premise (1), we have:

A[c �car];
 ` self : hrep = jA[c �car]jt; �d[c �car]i

E[c �car];
 ` rep = t : (rep = jA[c �car]jt)

That is:

E[c �car];
 ` rep = t : (rep = jtjA)[c �car]

?

Case Method :

We have:

A ; (
; c) ` self : hrep = � 0; m : �; �di (1)

A ; (
; c) ` a : �[rep � 0] (2) where jijA = � (3)

A ; (
; c) ` m : i = a : (m : �)

By induction hypothesis applied on the premises (1) et (2), then by applica-
tion of the lemma 1 on (3) we have:

A[c �car];
 ` self : hrep = � 0[c �car]; m : �[c �car]; �d[c �car]i ,

A[c �car];
 ` a : (�[rep � 0])[c �car]

and
jA[c �car]j�[c �car] = i

Since rep is not contained in �car by de�ninition, we have by the lemma 2:

(�[c �car]) [rep � 0[c �car]] = (�[rep � 0]) [c �car]

Therefore:

A[c �car];
 ` self : hrep = � 0[c �car]; m : �[c �car]; �d[c �car]i
A[c �car];
 ` a : (�[c �car]) [rep � 0[c �car]]

where jA[c �car]j�[c �car] = i

A[c �car];
 ` m : i = a : (m : �)[c �car]

?

Case Species Name :

This case is similar to the one for Var

?

Case Species Body :

We have:

A� + self : �col ; (
; c) ` w : �

A ; (
; c) ` struct w end : sig (�col) � end

By induction hypothesis on the premise, we have:

A�[c �car] + self : �col[c �car];
 ` w : �[c �car]

A[c �car];
 ` struct w end : sig (�col[c �car]) �[c �car] end

Therefore:

A[c �car];
 ` struct w end : (sig (�col) � end)[c �car]

?

Case Species Fun :

We have:

A+ c0 : hrep = c0; [m : �]i ; (
; c0; c) ` e : (1) where jijA = � (2)

A ; (
; c) ` fun(c0 : [m : i]): e : hrep = � 0; [m : �]; �ei![c0 � 0]

We have c 6= c0 since c0 is fresh in relation to
.
By hypothesis, all collection name into �car is declared in
. c0 is fresh relation
to
, then �car doesn't contain occurrence of c0.
By induction application on the premise (1), then by the lemma 1 applied to
the side condition (2), we have:

A[c �car] + c0 : hrep = c0; [m : �[c �car]]i; (
; c0) ` e : [c �car]
jA[c �car]j�[c �car] = i

A[c �car];
 ` fun(c
0 : [m : i]): e : hrep = � 0[c �car]; [m : �[c �car]];�e[c �car]i

! ([c �car])[c
0
 � 0[c �car]]

And we have:

hrep = � 0[c �car]; [m : �[c �car]]; �e[c �car] i ! ([c �car]) [c
0 � 0[c �car]]

= hrep = � 0; [m : �]; �ei[c �car] ! ([c �car])[c
0 � 0[c �car]]

By application of the lemma 2 at the right of !, by knowing �car doesn't contain any c0, we have:
= hrep = � 0; [m : �]; �ei[c �car] ! ([c0 � 0])[c �car]
= (hrep = � 0; [m : �]; �ei ! [c0 � 0]) [c �car]

Therefore:

A[c sup];
 ` fun(c : [m : i]): e : (hrep = � 0; [m : �]; �ei ! [c0 � 0]) [c �car]

?

Case Species App :

On a :

A ; (
; c) ` e : �col! A ; (
; c) ` col : �col

A ; (
; c) ` e col :

By induction hypothesis applied on the premises, we have:

A[c �car];
 ` e : �car[c �car] ! [c �car]
A[c �car];
 ` col : �car[c �car]

A[c �car];
 ` e a : [c �car]

?

ut

Lemma 3. Let A and A0, two type environment such as:

{ dom(A) = dom(A0)
{ A0(�x) > A(�x) for all �x 2 dom(A).

Then jAj� = i implies jA0j� = i

Proof. The proof is by simple induction on jAji
ut

Proposition 1 (Typing stability by hypothesis reenforcement). Let

A and A0 two type environment well formed in relation to a collection name

environment
 such as:

{ dom(A) = dom(A0)
{ A0(�x) > A(�x) for all �x 2 dom(A).

Then A ;
 ` �a : �� implies A0 ;
 ` �a : ��

Proof. The proof is by induction on A ;
 ` �a : ��

Case Var :

We have:

� 6 A(x) (1)

A ;
 ` x : �

By hypothesis and the premise (1), we have � 6 A0(x). As A0 is well formed
in relation to
, we have:

� 6 A0(x)

A0 ;
 ` x : �

?

Case App - ML :

By simple induction on the premises of App-ML:

A0 ;
 ` a1 : �1!�2 A0 ;
 ` a2 : �1

A0 ;
 ` a1 a2 : �2

?

Case Let - ML :

We have:

A ;
 ` a1 : �1 (1) A+ x : Gen(�1; A) ;
 ` a2 : �2 (2)

A ;
 ` let x = a1 in a2 : �2

By induction on the premise (1) we have:

A ;
 ` a1 : �1

We know A0(�x) > �x for �x 2 dom(A). Thus all type variables of A(�x)

belong to A0(��). Moreover we have dom(A0) = dom(A). Therefore all free type
variables of A are also free type variables of A0.

We have Gen(�1; A) = 8�1 : : : �n:�1 with f�1; : : : ; �ng = L(�1)nL(A).
By the previous remark we have L(A) = L(A0). Thus f�1; : : : ; �ng =
L(�1)nL(A

0).
Then Gen(�1; A) = Gen(�1; A

0)

Therefore we have:
(A0 + x : Gen(�1; A

0))(x) > (A+ x : Gen(�1; A))(x)
for all x 2 dom(A + x : Gen(�1; A))
Then, by hypothesis, we have:

{ dom(A0 + x : Gen(�1; A
0)) = dom(A+ x : Gen(�1; A))

{ (A0 + x : Gen(�1; A
0)) and (A + x : Gen(�1; A)) are well-formed in relation

to
.

Therefore, by induction on the premise (2), we have:

A0 ;
 ` a1 : �1 A0 + x : Gen(�1; A
0) ;
 ` a2 : �2

A0 ;
 ` let x = a1 in a2 : �2

?

Case Abstract :

We have:

A ;
 ` e : sig (hrep = � ;�di) (rep = � ;�d) end (1)

A+ c : hrep = c;�di ; (
; c) ` a : � (2)

A ;
 ` collection c = e in a : �

By induction on the premise (1), we have:

A0 ;
 ` e : sig (hrep = � ;�di) (rep = � ;�d) end

By hypothesis, we have:

{ (A0 + c : hrep = c;�di)(�x) > (A + c : hrep = c;�di)(�x) for all �x of (A + c :
hrep = c;�di)(�x)).

{ dom(A0 + c : hrep = c;�di) = dom(A+ c : hrep = c;�di)
{ A0 + c : hrep = c;�di and A + c : hrep = c;�di are well-formed in relation
to (
; c) since A and A0 are well-formed in relation to
 and c is fresh in
relation
.

Thus, by induction on the premise (2), we have:

A0 + c : hrep = c;�di ; (
; c) ` a : �

Therefore, we have:

A0 ;
 ` e : sig (hrep = � ;�di) (rep = � ;�d) end
A0 + c : hrep = c;�di ; (
; c) ` a : �

A0 ;
 ` collection c = e in a : �

?

Case Carrier type :

We have:

A ;
 ` self : hrep = jtjA; �di

A ;
 ` rep = t : (rep = jtjA)

By induction hypothesis on the premise we have:

A0 ;
 ` self : hrep = jtjA; �di

By the lemma 3 on jtjA we have jA0jt. Therefore:

A0 ;
 ` self : hrep = jA0jt; �di

A0 ;
 ` rep = t : (rep = jA0jt)

?

Case Method :

We have:

A ;
 ` self : hrep = � ; m : �; �di (1)

A ;
 ` a : �[rep �] (2) where jijA = �

A ;
 ` m : i = a : (m : �)

By the lemma 3, jijA = � implies jA0j� = i. Then by induction hypothesis on
the premises (1) and (2), we have:

A0 ;
 ` self : hrep = � ; m : �; �di

A0 ;
 ` a : �[rep �] where jA0j� = i

A0 ;
 ` m : i = a : (m : �)

?

Case Species Fun :

A+ c : hrep = c; [m : �]i ; (
; c) ` e : (1) where jijA = �

A ;
 ` fun(c : [m : i]): e : hrep = � 0; [m : �]; �ei![c � 0]

By the lemma 3, jijA = � implies jA0j� = i.
By hypothesis, we have:

{ dom(A + c : hrep = c; [m : �]i) = dom(A0 + c : hrep = c; [m : �]i)
{ (A + c : hrep = c; [m : �]i)(�x) > (A0 + c : hrep = c; [m : �]i)(�x) for

�x 2 dom(A+ c : hrep = c; [m : �]i)
{ A0 + c : hrep = c; [m : �]i and A + c : hrep = c; [m : �]i are well-formed in
relation to (
; c) since A and A0 are well-formed in relation to
 and c is
fresh in relation
.

Therefore by induction hypothesis, we have:

A0 + c : hrep = c; [m : �]i ; (
; c) ` e : where jA0j� = i

A0 ;
 ` fun(c : [m : i]): e : hrep = � 0; [m : �]; �ei![c � 0]

?

ut

Lemma 4. If jijA = �, then for all type variable substitution �, we have

j�(A)j�(�) = i.

Proof. The proof is done by simple induction on jijA. ut

Property 2. If A ;
 ` �a : �� , then for all type variable subsitution � such as all
collection name brought by � is declared in
 , we have �(A) ;
 ` �a : �(��).

Proof. The proof is done by induction on A ;
 ` �a : ��

Case Var :

We have:

� 6 A(x)

A ;
 ` x : �

Let A(x) = 8�1 : : : �n:�x where �i are without of reach of �.
By the premise, we have:
� = �x[�1 �1; : : : ; �n �n]
where all collection name occurences in every �i, are declared in
.

Then we have:
(�(A))(x) = �(A(x))

= 8�1 : : : �n:�(�x)
and
�(�) = �(��x[�1 �1; : : : ; �n �n])

= �(��x)[�1 �(�1); : : : ; �n �(�n)]
since �i are without of reach of �.

Thus, we have:
�(�) 6 (�(A))(x)

Since all collection names brought by � are declared in
, therefore we have:

�(�) 6 (�(A))(x)

�(A) ;
 ` x : �(�)

?

Case Carrier type :

We have:

A ;
 ` self : hrep = jtjA; �di

A ;
 ` rep = t : (rep = jtjA)

By induction on the premise, we have:
�(A) ;
 ` self : �(hrep = jtjA; �di)

By the lemma 4, we have �(jtjA) = j�(A)jt. Thus we have
�(A) ;
 ` self : hrep = j�(A)jt; �(�d)i and we obtain:

�(A) ;
 ` self : hrep = j�(A)jt; �(�d)i

�(A) ;
 ` rep = t : (rep = j�(A)jt)

Therefore:

�(A) ;
 ` rep = t : �((rep = jtjA))

?

Case Method :

We have:

A ;
 ` self : hrep = � ; m : �; �di (1)

A ;
 ` a : �[rep �] (2) where jijA = �

A ;
 ` m : i = a : (m : �)

By induction on the premises (1) and (2), we have:
�(A) ;
 ` self : �(hrep = � ; m : �; �di)
and
�(A) ;
 ` a : �(�[rep �])
that is:
�(A) ;
 ` self : hrep = �(�); m : �(�); �(�d)i
and
�(A) ;
 ` a : �(�)[rep �(�)]

Therefore we have:

�(A) ;
 ` self : hrep = �(�); m : �(�); �(�d)i
�(A) ;
 ` a : �(�)[rep �(�)] where j�(A)j�(�) = i

�(A) ;
 ` m : i = a : (m : �(�))

Thus we have:
�(A) ;
 ` m : i = a : �((m : �))

?

Case Species Fun :

We have:

A+ c : hrep = c; [m : �]i ; (
; c) ` e : (1) where jijA = �

A ;
 ` fun(c : [m : i]): e : hrep = � 0; [m : �]; �ei![c � 0]

By induction on the premise (1), we have:
�(A) + c : hrep = c; [m : �(�)]i ; (
; c) ` e : �()

And by the lemma 4 on jijA = � we have j�(A)j�(�) = i.

By hypothesis, � can bring collection names only declared in
. Since, all
collection names occurence in � 0 and in �e are declared in
, then all collection
names occurences in �(� 0) and in �(�e) are also declared in
. Thus we have:

�(A) + c : hrep = c; [m : �(�)]i ; (
; c) ` e : �() where j�(A)j�(�) = i

�(A) ;
 ` fun(c : [m : i]): e : hrep = �(� 0); [m : �(�)]; �(�e)i!�()[c �(� 0)]

Since c is fresh in relation to
, � doesn't provide types with occurrences of
c. Thus we have:
�()[c �(� 0)] = �([c � 0])
Therefore:
�(A) ;
 ` fun(c : [m : i]): e : �(hrep = � 0; [m : �]; �ei![c � 0])

?

ut

Lemma 5. Let A and A0 two type environments sush as:

{ jijA = �

{ A(c) = A0(c) for all In(c) 2 i

Then jijA = � implies jA0j� = i.

Proof. The proof is by simple induction on jijA. ut

Property 3. Let A and A0 two type environments,
 a collection name environ-
ment and �a an expression such as:

{ A and A0 are well-formed in relation to

{ A(�x) = A0(�x) for all free variable �x of the expression �a

Then A ;
 ` �a : �� implies A0 ;
 ` �a : ��

Proof. The proof is by induction on A ;
 ` �a : �� .

Case Var :

We have:

� 6 A(x)

A ;
 ` x : �

By hypothesis we have A(x) = A0(x) since x is free. Thus � 6 A0(x). Since
A0 is well-formed in relation to
, therefore we have:

� 6 A0(x)

A0 ;
 ` x : �

?

Case Fun-ML :

We have:

A+ x : �1 ;
 ` a : �2

A ;
 ` fun(x): a : �1!�2

By hypothesis we have:

{ (A+ x : �1)(�x) = (A0 + x : �1)(�x) for all free �x in a.

{ (A0 + x : �1) is well-formed in relation to
 since (A + x : �1) and A0 are
well-formed in relation to
.

Thus by induction hypothesis on the premise, we have:

A0 + x : �1 ;
 ` a : �2

A0 ;
 ` fun(x): a : �1!�2

?

Case Abstract :

We have:

A ;
 ` e : sig (hrep = � ;�di) (rep = � ;�d) end (1)

A+ c : hrep = c;�di ; (
; c) ` a : � (2)

A ;
 ` collection c = e in a : �

By hypothesis induction on the premise (1) we have:

A0 ;
 ` e : sig (hrep = � ;�di) (rep = � ;�d) end

By hypothesis we have:

{ (A+ c : hrep = c;�di)(�x) = (A0 + c : hrep = c;�di)(�x) for all free �x in a.
{ (A0 + c : hrep = c;�di) is well-formed in relation to (
; c) since (A + c :
hrep = c;�di) is well formed in relation to (
; c) and A0 is well-formed in
relation to
.

Thus by induction hypothesis on the premise (2) we have:

A0 + c : hrep = c;�di ; (
; c) ` a : �

Therefore we have:

A0 ;
 ` e : sig (hrep = � ;�di) (rep = � ;�d) end
A0 + c : hrep = c;�di ; (
; c) ` a : �

A0 ;
 ` collection c = e in a : �

?

Case Carrier type :

We have:

A ;
 ` self : hrep = jtjA; �di

A ;
 ` rep = t : (rep = jtjA)

By induction on the premise, we have:

A0 ;
 ` self : hrep = jtjA; �di

By the lemma 5 we have jtjA = jA0jt. Therefore we have:

A0 ;
 ` self : hrep = jA0jt; �di

A0 ;
 ` rep = t : (rep = jtjA)

?

Case Method :

we have:

A ;
 ` self : hrep = � ; m : �; �di

A ;
 ` a : �[rep �] where jijA = �

A ;
 ` m : i = a : (m : �)

By the lemma 5 we have jtjA = jA0jt. Thus by induction hypothesis on the
premises we have:

A0 ;
 ` self : hrep = � ; m : �; �di

A0 ;
 ` a : �[rep �] where jA0j� = i

A0 ;
 ` m : i = a : (m : �)

?

Case Species Fun :

we have:

A+ c : hrep = c; [m : �]i ; (
; c) ` e : where jijA = �

A ;
 ` fun(c : [m : i]): e : hrep = � 0; [m : �]; �ei![c � 0]

By hypothesis we have:

{ (A+ c : hrep = c; [m : �]i)(�x) = (A0 + c : hrep = c; [m : �]i)(�x) for all free �x
in e.

{ (A0 + c : hrep = c; [m : �]i) is well-formed in relation to (
; c) since
A + c : hrep = c; [m : �]i) is well-formed in relation to (
; c) and A0 is
well-formed in relation to
.

Thus by hypothesis induction on the premise we have:

A0 + c : hrep = c; [m : �]i ; (
; c) ` e :

By the lemma 5 we have jtjA = jA0jt. Therefore we have:

A0 + c : hrep = c; [m : �]i ; (
; c) ` e : where jA0j� = i

A0 ;
 ` fun(c : [m : i]): e : hrep = � 0; [m : �]; �ei![c � 0]

?

ut

Proposition 2. For any context �E, if �a1 � �a2 , then �E[�a1] � �E[�a1].

Proof. The proof is done by simple induction on the size of �E.
Let �E be a one-node context. Let A be a type environment and
 be a collection
name environment such that A ;
 ` �E[�a1] : �� . We show that A ;
 ` �E[�a2] : �� .

All cases are simple and similar. We show one case for example.

Case �E is let x = [] in a :

We have:

Let-ML

A ;
 ` E[�a1] : �1 A+ x : Gen(�1; A) ;
 ` a : �2

A ;
 ` let x = E[�a1] in a : �2

By induction hypothesis applied to the �rst premisse, A ;
 ` E[�a2] : �1.
Hence:

Let-ML

A ;
 ` E[�a2] : �1 A+ x : Gen(�1; A) ;
 ` a : �2

A ;
 ` let x = E[�a2] in a : �2

?

ut

Lemma 6. If jA+ c : hrep = � ; �ij� = i then j i[�=In(c)] jA = �.

Proof. The proof is done by simple induction on jA+ c : hrep = � ; �iji. ut

Lemma 7 (Variable substitution). Let A be a type environment well-formed

in relation to a collection name environment
. Let �a1 and �a2 be expressions.

We have A� ;
 ` �a1 : ��1 and A+ �x : 8�1 : : : �n:��1 ;
 ` �a2 : ��2 such that:

{ �1; : : : ; �n are type variables not free in A

{ the bind variables in �a2 are not free in �a1.

Then A ;
 ` �a2[TS(�a1)=In(�x)][�a1=�x] : ��2 with TS returning the carrier type

of �a1 if it is a collection. Else [TS(�a1)=In(�x)] must be considerate as a neutral

substitution.

Proof. The proof is by induction on �a2 and by deriving A+�x : 8�1 : : : �n:��1 ;
 `
�a2 : ��2.
We note A�x for A+ �x : 8�1 : : : �n:��1.

Case �a2 is x :

There are two cases:

{ case �x is x:
We have:

� 6 A�x(x)

A�x ;
 ` x : �

and

x[TS(�a1)=In(�x)][�a1=�x] = �a1

With the premise we have � 6 8�1 : : : �n:��1. Thus, there is a substitution
�, compatible with
, on the �i such that � = �(��1).

By the property 2 applied on A� ;
 ` �a1 : ��1, we have �(A)
� ;
 ` �a1 : �(��1).

The �i variables are not free in A by hypothesis, then A� ;
 ` �a1 : �(��1).
That is A� ;
 ` �a1 : � .

By the property 3, since A is well-formed in relation to
 , applied on
A� ;
 ` �a1 : � we have A ;
 ` �a1 : � by extending A� with self : �col.

Therefore we have:

A ;
 ` x[TS(�a1)=In(�x)][�a1=�x] : �

{ case �x is not x:

Thus we have:

x[TS(�a1)=In(�x)][�a1=�x] = x

Hence by hypothesis we have:

A�x ;
 ` x[TS(�a1)=In(�x)][�a1=�x] : ��2

Therefore, by the property 3 we have:

A ;
 ` x[TS(�a1)=In(�x)][�a1=�x] : ��2

?

Case �a2 is collection c = e in a :

We have:

A�x ;
 ` e : sig (hrep = � 0;�di) (rep = � 0;�d) end
A�x + c : hrep = c;�di ; (
; c) ` a : �

A�x ;
 ` collection c = e in a : �

If there are �i in the types � and �d, they can be renamed with �i not free
in A and distinct of �i thanks to the following substution � = [�i �i].
If the �i variables doesn't occur in � and �d, then the identity is taken for �.

By application of the property 2 on the premises, we obtain:

�(A�x) ;
 ` e : �(sig (hrep = � 0;�di) (rep = � 0;�d) end)
�(A�x + c : hrep = c;�di) ; (
; c) ` a : �(�)

�(A�x) ;
 ` collection c = e in a : �(�)

Since �i and �i are not free in A we have:

A�x ;
 ` e : sig (hrep = �(� 0); �(�d)i) (rep = �(� 0); �(�d)) end (1)

A�x + c : hrep = c; �(�d)i ; (
; c) ` a : �(�)(2)

A�x ;
 ` collection c = e in a : �(�)

By induction hypothesis on e of the premise (1), we have:

A ;
 ` e[TS(�a1)=In(�x)][�a1=�x] : sig (hrep = �(� 0); �(�d)i) (rep = �(� 0); �(�d)) end

We note that �x cannot be c, because c is fresh in relation to
. We have:

(collection c = e in a)[TS(�a1)=In(�x)][�a1=�x] =
collection c = e[TS(�a1)=In(�x)][�a1=�x] in a[TS(�a1)=In(�x)][�a1=�x]

To apply the induction hypothesis on the expression a of the premise (2),
the hypothesis A� ;
 ` �a1 : ��1 must be extended with A� + c : hrep =
c; �(�d)i ; (
; c) ` �a1 : ��1. This extension is valid. Indeed, since c is fresh in
relation to
, the judgment A� ;
 ` �a1 : ��1 can be extended with A� ; (
; c) `
�a1 : ��1. Then we obtain the �nal extention by applying the property 3 on
A� ; (
; c) ` �a1 : ��1. This is possible since A� + c : hrep = c; �(�d)i and A�

are well-formed in relation to (
; c).
Thus by induction hypothesis on the expression a of the presmise (2) we have:

A+ c : hrep = c; �(�d)i ; (
; c) ` a[TS(�a1)=In(�x)][�a1=�x] : �(�)

Hence we obtain the following result:

A ;
 ` e[TS(�a1)=In(�x)][�a1=�x] : sig (hrep = �(� 0); �(�d)i) (rep = �(� 0); �(�d)) end
A+ c : hrep = c; �(�d)i ; (
; c) ` a[TS(�a1)=In(�x)][�a1=�x] : �(�)

A ;
 ` collection c = e[TS(�a1)=In(�x)][�a1=�x] in a[TS(�a1)=In(�x)][�a1=�x] : �(�)

By inverse renoming, therefore we have:

A ;
 ` collection c = e[TS(�a1)=In(�x)][�a1=�x] in a[TS(�a1)=In(�x)][�a1=�x] : �

that is:

A ;
 ` (collection c = e in a)[TS(�a1)=In(�x)][�a1=�x] : �

?

Case �a2 is fun(c : [m : i]): e :

We have:

Species Fun

A�x + c : hrep = c; [m : �]i ; (
; c) ` e : where jA�xj� = i

A�x ;
 ` fun(c : [m : i]): e : hrep = � 0; [m : �]; �ei![c � 0]

Since c is fresh in relation to
, �x can't be c. Thus we have:

(fun(c : [m : i]): e)[TS(�a1)=In(�x)][�a1=�x] =
fun(c : [m : i [TS(�a1)=In(�x)]]): e[TS(�a1)=In(�x)][�a1=�x]

If there are �i in the type hrep = � 0; [m : �]; �ei![c � 0], they
can be renamed with �i not free in A and distinct of �i thanks to fol-
lowing substitution � = [�i �i]. If the �i variables don't occur in
hrep = � 0; [m : �]; �ei![c � 0], then the identity is taken for �.

By the property 2 on the premise we have:

�(A�x + c : hrep = c; [m : �]i) ; (
; c) ` e : �()

That is, since �i and �i are not free in A:

A�x + c : hrep = c; [m : �(�)]i ; (
; c) ` e : �()

In oder to apply the induction on the above judgment, we must extend the
hypothesis A� ;
 ` �a1 : ��1 by A� + c : hrep = c; [m : �(�)]i ; (
; c) `:
��1.This extension is valid. Indeed, since c is fresh in relation to
, the judgment
A� ;
 ` �a1 : ��1 can be extended with A� ; (
; c) ` �a1 : ��1. Then we obtain
the �nal extention by applying the property 3 on A� ; (
; c) ` �a1 : ��1. This is
possible since A� + c : hrep = c; [m : �(�)]i and A� are well-formed in relation
to (
; c).
Thus by induction hypothesis on the expression a of the presmise (2) we have:

A+ c : hrep = c; [m : �(�)]i ; (
; c) ` e[TS(�a1)=In(�x)][�a1=�x] : �()

Then, by application of the lemma 4 on jA�xj� = i we have:

j�(A�x)j�(�) = i

That is, since �i and �i are not free in A:

jA�xj�(�) = i

And by application of the lemma 6 application, we obtain:

jAj�(�) = i[TS(�a1)=In(�x)]

Thus, we obtain:

Species Fun

A+ c : hrep = c; [m : �(�)]i ; (
; c) ` e[TS(�a1)=In(�x)][�a1=�x] : �()
where jAj�(�) = i[TS(�a1)=In(�x)]

A ;
 ` fun(c : [m : i [TS(�a1)=In(�x)]]): e[TS(�a1)=In(�x)][�a1=�x] :
hrep = �(� 0); [m : �(�)]; �ei!�()[c �(� 0)]

Therefore, by inverse renaming we obtain:

A ;
 ` (fun(c : [m : i]): e)[TS(�a1)=In(�x)][�a1=�x] : hrep = � 0; [m : �]; �ei![c � 0]

?

Case �a2 is m : i = a :

We have:

Method

A�x ;
 ` self : hrep = � ; m : �; �di (1)

A�x ;
 ` a : �[rep �] (2) where jA�xj� = i

A�x ;
 ` m : i = a : (m : �)

By the property 3 on the premisse (1) we have:

A ;
 ` self : hrep = � ; m : �; �di

By induction hypothesis on the premise (2):

A ;
 ` a[TS(�a1)=In(�x)][�a1=�x] : �[rep �]

And by application of the lemma 6 on where jA�xj� = i , we have:

jAj� = i[TS(�a1)=In(�x)]

Therefore we have:

Method

A ;
 ` self : hrep = � ; m : �; �di

A ;
 ` a[TS(�a1)=In(�x)][�a1=�x] : �[rep �] where jAj� = i[TS(�a1)=In(�x)]

A ;
 ` m : i[TS(�a1)=In(�x)] = a[TS(�a1)=In(�x)][�a1=�x] : (m : �)

Thus we have:

A ;
 ` (m : i = a)[TS(�a1)=In(�x)][�a1=�x] : (m : �)

?

Case �a2 is rep = t :

We have:

Carrier type

A�x ;
 ` self : hrep = jA�xjt; �di

A�x ;
 ` rep = t : (rep = jA�xjt)

By the property 3 on the premise, we have:

A ;
 ` self : hrep = jA�xjt; �di

By the lemma 6 applied on jA�xjt, we have:

jA�xjt = jAjt[TS(�a1)=In(�x)]

Thus, we obtain:

Carrier type

A ;
 ` self : hrep = jAjt[TS(�a1)=In(�x)]; �di

A ;
 ` rep = t[TS(�a1)=In(�x)] : (rep = jAjt[TS(�a1)=In(�x)])

Hence:

A ;
 ` rep = t[TS(�a1)=In(�x)] : (rep = jA�xjt)

And we have:
(rep = t)[TS(�a1)=In(�x)][�a1=�x] =
rep = t[TS(�a1)=In(�x)]

Therefore we have:

A ;
 ` (rep = t)[TS(�a1)=In(�x)][�a1=�x] : (rep = jA�xjt)

?

ut

Lemma 8 (Concatenation of �eld lists). Let A be a type environment

and
 a collection name environment. Le w1 and w2 two �eld lists such as

A ;
 ` w1 : �1 and A ;
 ` w2 : �2.

If �1 and �2 are compatible, then A ;
 ` w1@w2 : �1 � �2.

Proof. The proof is done simply by induction on w1.

ut

Lemma 9. Let �a be col, a or e expressions. Let w be a �eld list expression.

Let A be a type environment and supposed starry. Then we have A + self :
h�ci ;
 ` w : �c and A + self : h�ci ;
 ` �a : �� such that the bind variables

of �a are not free in hwi. Then A ;
 ` �a[hwi=self] : ��] : ��

Proof. The proof is done easily by induction on �a and by deriving A + self :
h�ci ;
 ` �a : �� .
We note Es for E + self : h�ci.

Case �a is collection c = e in a :

We have:

Abstract

As ;
 ` e : sig (hrep = � 0;�di) (rep = � 0;�d) end (1)

As + c : hrep = c;�di ; (
; c) ` a : � (2)

As ;
 ` collection c = e in a : �

By induction hypothesis applied on e of the premise (1), we have:

A ;
 ` e[hwi=self] : sig (hrep = � 0;�di) (rep = � 0;�d) end

We extend the hypothesis A + self : h�ci ;
 ` w : �c by A + self :
h�ci ; (
; c) ` w : �c since c is fresh in relation to
. Then, A + c : hrep =
c;�di + self : h�ci is well formed in relation to (
; c) since A + self : h�ci

is well formed in relation to
 and c is fresh in relation to
. Hence by the
property 3 applied on A+ self : h�ci ; (
; c) ` w : �c, we have A+ c : hrep =
c;�di+ self : h�ci ; (
; c) ` w : �c.
Thus by induction hypothesis applied on a of the premise (2) we have:

A+ c : hrep = c;�di ; (
; c) ` a[hwi=self] : �

Thus we have:

Abstract

A ;
 ` e[hwi=self] : sig (hrep = � 0;�di) (rep = � 0;�d) end
A+ c : hrep = c;�di ; (
; c) ` a[hwi=self] : �

A ;
 ` collection c = e[hwi=self] in a[hwi=self] : �

Therefore:

A ;
 ` (collection c = e in a)[hwi=self] : �

?

Case �a is fun(c : [m : i]): a :

We have:

Species Fun

As + c : hrep = c; [m : �]i ; (
; c) ` e : (1) where jAsj� = i

As ;
 ` fun(c : [m : i]): e : hrep = � 0; [m : �]; �ei![c � 0]

We extend the hypothesis A + self : h�ci ;
 ` w : �c by A + self :
h�ci ; (
; c) ` w : �c since c is fresh in relation to
. Then, A + c : hrep =
c; [m : �]i+ self : h�ci is well formed in relation to (
; c) since A+ self : h�ci

is well formed in relation to
 and c is fresh in relation to
. Hence by the
property 3 applied on A+ self : h�ci ; (
; c) ` w : �c, we have A+ c : hrep =
c; [m : �]i+ self : h�ci ; (
; c) ` w : �c.
Thus by induction hypothesis applied on e of the premise (1) we have:

A+ c : hrep = c; [m : �]i ; (
; c) ` e[hwi=self] :

And by the lemma 5, applied on jAsj� = i, we have jijA = �.
Thus we have:

Species Fun

A+ c : hrep = c; [m : �]i ; (
; c) ` e[hwi=self] : where jijA = �

A ;
 ` fun(c : [m : i]): e[hwi=self] : hrep = � 0; [m : �]; �ei![c � 0]

Therefore we have:

A ;
 ` (fun(c : [m : i]): e)[hwi=self] : hrep = � 0; x[m : �]; �ei![c � 0]

?

ut

Lemma 10. If �a1!��a2, then �a1 � �a2.

Proof. The proof is don e indepently for each redex. All cases are easy now that
we have proven the right lemmas.
Let assume A ;
 ` �a1 : �� and A is starry in relation to the context of the �
relation.

Case �a1 is (fun(x): a) v :

A derivation for �a1 is:

A+ x : � 0 ;
 ` a : � 0 (1)

A ;
 ` fun(x): a : �!� 0 A ;
 ` v : � (2)

A ;
 ` (fun(x): a) v : � 0

By the lemma 7 applied on the premises (1) and (2), we have:

A ;
 ` a[v=x] : � 0

?

Case �a1 is let x = v in a :

A derivation for �a1 is:

A ;
 ` v : � 0 (1) A+ x : Gen(� 0; A) ;
 ` a : � (2)

A ;
 ` let x = v in a : �

By the lemma 7 applied on the premises (1) and (2), we have:

A ;
 ` a[v=x] : � 0

?

Case �a1 is hvwi!m :

We suppose vw = (m : i = vw(m)) @ v0w with m 62 dom(v0w).
We note As for A

� + self : hrep = � ; m : �; �di

A derivation for �a1 is:

As ;
 ` self : hrep = � ; m : �; �di

As ;
 ` vw(m) : �[rep �] (1) where jijA = �

As ;
 ` (m : i = vw(m)) : (m : �) As ;
 ` v
0

w : (rep = � ; �d)

A� + self : hrep = � ; m : �; �di ;
 ` (m : i = vw(m)) @ v0w : (rep = � ; m : �; �d) (2)

A ;
 ` h(m : i = vw(m)) @ v0wi : hrep = � ; m : �; �di

A ;
 ` h(m : i = vw(m)) @ v0wi!m : �[rep �]

By applying the lemma 9 on the premises (1) and (2) we obtain:

A ;
 ` vw(m)[h(m : i = vw(m)) @ v0wi=self] : �[rep �]

Hence:
A ;
 ` vw(m)[hvwi=self] : �[rep �]

?

Case �a1 is collection c = struct vw end in a :

A derivation for �a1 is:

A� + self : hrep = � ;�di ;
 ` vw : (rep = � ;�d) (1)

A ;
 ` struct vw end :
sig (hrep = � ;�di) (rep = � ;�d) end A+ c : hrep = c;�di ; (
; c) ` a : � 0 (2)

A ;
 ` collection c = struct vw end in a : � 0

By applying the rule Executive collection on the premise (1) we have:

A� + self : hrep = � ;�di ;
 ` vw : (rep = � ;�d)

A ;
 ` hvwi : hrep = � ;�di (10)

The jugdment of the premise (1) is well formed. Thus, all occurences of
collection name used in the carrier type � is declared according to
. As c is
fresh in relation to
, the type � doesn't contain occurences of c. Then by the
property 1 applied on the premise (2) we have:

(A+ c : hrep = c;�di)[c �] ;
 ` a : � 0[c �]

Since the jugdment A ;
 ` collection c = struct vw end in a : � 0 is
well formed, the type environment and the type � 0 don't contain occurences of
collection name c.
Thus from the previous jugdment we obtain the judgment (20):

A+ c : hrep = � ;�di ;
 ` a : �
0

By the lemma 7 applied on the jugments (10) and (20) we obtain the conclu-
sion:

A ;
 ` a[CT (hvwi)=In(c)][hvwi=c] : �

?

Case �a1 is species z = ve in a :

A derivation for �a1 is:

A ;
 ` ve : (1) A+ z : Gen(;A) ;
 ` a : � (2)

A ;
 ` species z = ve in a :

By the lemma 7 applied on the premises (1) and (2) we obtain the conclusion:

A ;
 ` a[ve=z] :

?

Case �a1 is (m : i = a; vw) with m 2 dom(vw) :

A derivation for �a1 is:

A ;
 ` m : i = a : (m : �) A ;
 ` vw : � (1)

A ;
 ` (m : i = a; vw) : (m : �)� �

Since m 2 dom(vw), we have m 2 dom(�). Then, (m : �) and � are compat-
ible. Thus � = (m : �)� �. Therefore, by the premise (1) we have:

A ;
 ` vw : (m : �)� �

?

Case �a1 is rep = t; vw with rep 2 dom(vw) :

A derivation for a1 is:

A ;
 ` rep = t : (rep : �) A ;
 ` vw : � (1)

A ;
 ` rep = t; vw : (rep : �) � �

Since rep 2 dom(vw), we have rep 2 dom(�). Then, (rep : �) and � are
compatible. Thus � = (rep : �) � �. Therefore, by the premise (1) we have:

A ;
 ` vw : (rep : �) � �

?

Case �a1 is inherit (struct vw end); w :

A derivation for �a1 is:

A ;
 ` self : �col (2)

A� + self : �col ;
 ` vw : �1 (1)

A� ;
 ` struct vw end : sig (�col) �1 end

A ;
 ` inherit (struct vw end) : �1 A ;
 ` w : �2 (3)

A ;
 ` inherit (struct vw end); w : �1 � �2

By the premise (2), we have A = A� + self : �col. Thus the premise (1) can
be rewritten as A ;
 ` vw : �1. As �1 and �2 are compatible (that is, �1��2),
the lemma 8 can be apply on the judment (1) and (3). Hence the conclusion:

A ;
 ` vw @ w : �1 � �2

?

Case �a1 is (fun(c : [m : i]): e) vcol :

A derivation for a1 is:

A+ c : hrep = c; [m : �]i ; (
; c) ` e : (1) where jijA = �

A ;
 ` fun(c : [m : i]): e : (rep = � ; [m : �])![c �] A ;
 ` vcol : hrep = � ; [m : �]i (2)

A ;
 ` (fun(c : [m : i]): e) vcol : [c �]

?

From the jugdment A ;
 ` vcol : hrep = � ; [m : �]i, the carrier type �

doesn't contain occurence of c since it is fresh in relation to
. Thus by the
property 1 applied on the premise (1) we have:

(A+ c : hrep = c; [m : �]i)[c �] ;
 ` e : [c �]

The type environment A is well-formed in relation to � and c is fresh in
relation to � . Thus, c doesn't occur in A. Since we have jijA = �, c doesn't
occur also in �. Thus we obtain the following judgment from the previous one:

A+ c : hrep = � ; [m : �]i ;
 ` e : [c �] (10)

Now we can apply the lemma 7 on the judgment (10) and (2) to obtain the
conclusion:

A ;
 ` e[vcol=c][CT (vcol)=In(c)]

ut

Lemma 11. 1. Let v be a value. We assume ? ` v : � . If � is functional

type, then v is a function.

2. Let ve be a species value. We assume ? ` ve : . If is function type, then

ve is parameterized species. Otherwise ve is a structure.

Proof. 1. If � is function type, then � = �1 ! �2. Since v is a value, in the en-
vironment?; ?, only the rule Fun-ML can be applied. Then v is a function.

2. Since ve is a value, in the environment?; ?, only the rules Species-Fun and

Species Body can be applied. If is a functional type, that is = �col!0,
then it's only Species-Fun is applied. Then ve is a parameterized species.
Otherwise, if is not a functional type, only Species Body rule can be
applied. In this case, ve is a structure.

ut

Theorem 1. Reduction preserves typings (i.e. for any A, if A� ;
 ` �a : �� and

�a!�a0, then A� ;
 ` �a0 : ��).

Proof. The proof is done according to the di�erent previous lemmas.

Theorem 2. Well-typed irreductible normal forms are values (i.e. if ? ` �a : ��
and �a cannot be reduced, then �a is a value).

Proof. The proof is done by simultaneous induction on the size of di�erent form
of �a. We assume ? ` a : � (respectively ? ` e : and A; ? ` w : � with E just
containing self necessary for the �elds w).

Case �a is cst :

By de�nition, cst is a value.

?

Case �a is x :

x cannot be typed in the empty environmment.

?

Case �a is fun(x): a :

By de�nition, fun(x): a is a value.

?

Case �a is a1 a2 :

A derivation for �a is:

? ` a1 : �1!�2 ? ` a2 : �1

? ` a1 a2 : �2

The induction hypothesis applied to expression a1 shows that it is a value.
From the previous derivation, the type �1 ! �2 of a1 is functional. Thus by
the lemma 11, a1 must be a function fun(x): a01. Then the expression �a can be
reduced. It's contradictory.

?

Case �a is (a1; a2) :

The induction hypothesis applied to expressions a1 and a2 shows that they are
values. Then (a1; a2) is a value by de�nition.

?

Case �a is let x = a1 in a2 :

The induction hypothesis applied to expression a1 shows that it is a value. Then
the expression �a can be reduced. It's contradictory.

?

Case �a is col!m :

The induction hypothesis applied to expression col shows that it is a value. Then
the expression �a can be reduced. It's contradictory.

?

Case �a is collection c = e in a :

A derivation for �a is:

? ` e : sig (hrep = � ; �di) (rep = � ; �d) end c : hrep = c; �di; c ` a : �

? ` collection c = e in a : �

The induction hypothesis applied to species expression e shows that it is
a value. From the previous derivation, the type sig (hrep = � ; �di) (rep =
� ; �d) end of e is the one for a structure. Thus by the lemma 11, e must
be a structure struct vw end. Then the expression �a can be reduced. It's
contradictory.

?

Case �a is species z = e in a :

The induction hypothesis applied to species expression e shows that it is a value.
Then the expression �a can be reduced. It's contradictory.

?

Case �a is c :

c cannot be typed in the empty environmment.

?

Case �a is self :

self cannot be typed in the empty environmment.

?

Case �a is hwi :

The induction hypothesis applied to species expression hwi shows that it is a
value. Thus by de�nition, hwi is a value.

?

Case �a is z :

z cannot be typed in the empty environmment.

?

Case �a is struct w end :

The induction hypothesis applied to species expression struct w end shows
that it is a value. Thus by de�nition, struct w end is a value.

?

Case �a is fun(c : [m : i]): e :

By de�nition fun(c : [m : i]): e is a value.

?

Case �a is e col :

A derivation for �a is:

? ` e : �col! ? ` col : �col

? ` e a :

The induction hypothesis applied to expression e shows that it is a value.
From the previous derivation, the type �col ! of e is functional. Thus by the
lemma 11, e must be a a parameterized species fun(c : [m : i]): e0. Then the
expression �a can be reduced. It's contradictory.

?

Case �a is ? :

By de�nition, ? is a value.

?

Case �a is d; w :

By induction d and w are values. d is a method or rep �eld not overloaded by
w. In this case, �a is a value by de�nition. Otherwise, �a can be reduced. And in
this case, it's contradictory.

?

Case �a is m : i = a :

By de�nition, �a is a value.

?

Case �a is rep = t :

By de�nition, �a is a value.

?

Case �a is inherit e :

A derivation for �a is:

A ;
 ` self : �col A� ;
 ` e : sig (�col) � end

A ;
 ` inherit e : �

The induction hypothesis applied to species expression e shows that it is a
value. From the previous derivation, the type sig (�col) � end of e is the one
for a structure. Thus by the lemma 11, e must be a structure struct vw end.
Then the expression �a can be reduced. It's contradictory.

?

References

1. Boulm, S., Doligez, D., Dubois, C., Fechter, S., Hardin, T., Jaume, M., Maarek,

M., M�enissier-Morain, V., Pons, O., Prevosto, V., Rioboo, R., Donzeau-Gouge,

V.V.: The Foc project. (2003) http://www-spi.lip6.fr/~foc.

2. Prevosto, V., Doligez, D.: Inheritance of algorithms and proofs in the computer

algebra library foc. Journal of Automated Reasoning 29 (2002) 337{363 Special

Issue on Mechanising and Automating Mathematics, In Honor of N.G. de Bruijn.

3. Boulm�e, S., Hardin, T., Rioboo, R.: Some hints for polynomials in the Foc project.

In: Calculemus 2001 Proceedings. (2001)

4. Leroy, X., Doligez, D., Garrigue, J., R�emy, D., Vouillon, J.: The Objective

Caml system release 3.02 Documentation and user's manual. INRIA. (2001)

http://pauillac.inria.fr/ocaml/htmlman/.

5. Leroy, X.: Manifest types, modules, and separate compilation. In: 21st symposium

Principles of Programming Languages, ACM Press (1994) 109{122

6. Hirschowitz, T., Leroy, X.: Mixin modules in a call-by-value setting. In: European

Symposium on Programming. (2002) 6{20

7. Fechter, S.: Une s�emantique pour FoC. Rapport de D.E.A., Universit�e Paris 6

(2001) avaible at http://www-spi.lip6.fr/~fechter.

8. Fechter, S.: An object-oriented model for the certi�ed computer algebra li-

brary. Paper presented at FMOODS 2002 PhD workshop (2002) http://www-

spi.lip6.fr/~fechter.

9. R�emy, D., Vouillon, J.: Objective ML: An e�ective object-oriented extension to

ML. Theory and Practice of Object Systems 4 (1998) p. 27{50

10. Barras, B., Boutin, S., Cornes, C., Courant, J., Coscoy, Y., Delahaye, D.,

de Rauglaudre, D., Filliâtre, J.C., Gim�enez, E., Herbelin, H., Huet, G., Laulh�ere,

H., Munoz, C., Murthy, C., Parent-Vigouroux, C., Loiseleur, P., Paulin-Mohring,

C., Sa��bi, A., Werner, B.: The Coq Proof-assistant reference manual. INRIA. 6.3.1

edn. (1999) http://pauillac.inria.fr/coq/doc/main.html.

11. Boite, O., Fechter, S.: BBFoC. draft available at http://www-spi.lip6.fr/~fechter

(2002)

12. Prevosto, V.: Conception et implantation du langage Foc pour le d�eveloppement

de logiciels certi��es. PhD thesis, Universit�e Paris VI (2003)

