Installing Python Modules

Greg Ward

September 18, 2000
E-mail: gward@python.net

Contents

1 Introduction 1
1.1 Bestcase: trivial installation e 2
1.2 Thenew standard: Distutils. e e
1.3 Theoldway: nostandards e

NN

2 Standard Build and Install 3
2.1 Platformvariations. e e e e e e e e e
22 Splittingthejobup.
2.3 Howbuilding Works o
2.4 Howinstallation works. e e e

AP OW

3 Alternate Installation 5
3.1 Alternate installation: Unix (the home scheme).
3.2 Alternate installation: Unix (the prefix scheme). oL
3.3 Alternate installation: Windows.
3.4 Alternate installation: Mac OS

ENIENES L

4 Custom Installation 8
5 Distutils Configuration Files 10

6 Pre-Distutils Conventions 10
6.1 The Makefile.pre.infile e 10
6.2 Installingmodulesmanually. 10

1 Introduction

Although Python’s extensive standard library covers many programming needs, there often comes a time when you
need to add some new functionality to your Python installation in the form of third-party modules. This might be
necessary to support your own programming, or to support an application that you want to use and that happens to be
written in Python.

In the past, there has been little support for adding third-party modules to an existing Python installation. With the
introduction of the Python Distribution Utilities (Distutils for short) in Python 2.0, this is starting to change. Not

everything will change overnight, though, so while this document concentrates on installing module distributions that
use the Distutils, we will also spend some time dealing with the old ways.

This document is aimed primarily at the people who need to install third-party Python modules: end-users and system
administrators who just need to get some Python application running, and existing Python programmers who want to
add some new goodies to their toolbox. You don’'t need to know Python to read this document; there will be some brief
forays into using Python’s interactive mode to explore your installation, but that's it. If you're looking for information

on how to distribute your own Python modules so that others may use them, sesstitileuting Python Modules
manual.

1.1 Best case: trivial installation

In the best case, someone will have prepared a special version of the module distribution you want to install that is
targeted specifically at your platform and is installed just like any other software on your platform. For example,
the module developer might make an executable installer available for Windows users, an RPM package for users of
RPM-based Linux systems (Red Hat, SUSE, Mandrake, and many others), a Debian package for users of Debian-based
Linux systems (Debian proper, Caldera, Corel, etc.), and so forth.

In that case, you would download the installer appropriate to your platform and do the obvious thing with it: run it if
it's an executable installerpm --install it if it's an RPM, etc. You don’t need to run Python or a setup script,

you don't need to compile anything—you might not even need to read any instructions (although it's always a good
idea to do so anyways).

Of course, things will not always be that easy. You might be interested in a module distribution that doesn’t have
an easy-to-use installer for your platform. In that case, you'll have to start with the source distribution released by
the module’s author/maintainer. Installing from a source distribution is not too hard, as long as the modules are
packaged in the standard way. The bulk of this document is about building and installing modules from standard
source distributions.

1.2 The new standard: Distutils

If you download a module source distribution, you can tell pretty quickly if it was packaged and distributed in the
standard way, i.e. using the Distutils. First, the distribution’s name and version number will be featured prominently
in the name of the downloaded archive, e.doo-1.0.tar.gz’ or ‘widget-0.9.7.zip’. Next, the archive will unpack

into a similarly-named directoryfdo-1.0’ or ‘widget-0.9.7’. Additionally, the distribution will contain a setup script
‘setup.py’, and a README.txt’ (or possibly README’), which should explain that building and installing the module
distribution is a simple matter of running

python setup.py install

If all these things are true, then you already know how to build and install the modules you've just downloaded: run
the command above. Unless you need to install things in a non-standard way or customize the build process, you don’t
really need this manual. Or rather, the above command is everything you need to get out of this manual.

1.3 The old way: no standards

Before the Distutils, there was no infrastructure to support installing third-party modules in a consistent, standardized
way. Thus, it's not really possible to write a general manual for installing Python modules that don't use the Distutils;
the only truly general statement that can be made is, “Read the module’s own installation instructions.”

However, if such instructions exist at all, they are often woefully inadequate and targeted at experienced Python
developers. Such users are already familiar with how the Python library is laid out on their platform, and know where

2 1 Introduction

to copy various files in order for Python to find them. This document makes no such assumptions, and explains how
the Python library is laid out on three major platforms (Unix, Windows, and Mac OS), so that you can understand
what happens when the Distutils do their idknow how to install modules manually when the module author fails

to provide a setup script.

Additionally, while there has not previously been a standard installation mechanism, Python has had some standard
machinery for building extensions on Unix since Pythitwersion?** . This machinery (theMakefile.pre.in’ file) is
superseded by the Distutils, but it will no doubt live on in older module distributions for a while. Mhigfile.pre.in’
mechanism is documented in the “Extending & Embedding Python” manual, but that manual is aimed at module
developers—hence, we include documentation for builders/installers here.

All of the pre-Distutils material is tucked away in section 6.

2 Standard Build and Install

As described in section 1.2, building and installing a module distribution using the Distutils is usually one simple
command:

python setup.py install

On Unix, you'd run this command from a shell prompt; on Windows, you have to open a command prompt window
and do it there; on Mac OS **what the heck do you do on Mac OS?**.

2.1 Platform variations

You should always run the setup command from the distribution root directory, i.e. the top-level subdirectory that
the module source distribution unpacks into. For example, if you've just downloaded a module source distribution
‘foo-1.0.tar.gz’ onto a Unix system, the normal thing to do is:

gunzip -c foo-1.0.tar.gz | tar xf - # unpacks into directory foo-1.0
cd foo-1.0
python setup.py install

On Windows, you'd probably unpack the archive before opening the command prompt. If you downloaded the archive
file to ‘C:\Temp’, then it probably unpacked (depending on your software) i6tgTemp\foo-1.0’; from the command
prompt window, you would then run

cd c:\temp\foo-1.0
python setup.py install

On Mac OS, ..**again, how do you run Python scripts on Mac OS?**

arg, my lovely “bslash” macro doesn’t work in non-tt fonts! help me LATEX, you're my only hope...

2.2 Splitting the job up

Running setup.py install builds and installs all modules in one fell swoop. If you prefer to work
incrementally—especially useful if you want to customize the build process, or if things are going wrong—you can
use the setup script to do one thing at a time. This is particularly helpful when the build and install will be done
by different users—e.g., you might want to build a module distribution and hand it off to a system administrator for
installation (or do it yourself, with super-user privileges).

For example, you can build everything in one step, and then install everything in a second step, by invoking the setup
script twice:

python setup.py build
python setup.py install

(If you do this, you will notice that running thiastall command first runs theuild command, which quickly
notices that it has nothing to do, since everything in théld’ directory is up-to-date.)

concrete reason for splitting things up?

2.3 How building works

As implied above, thbéuild command is responsible for putting the files to install intmuéd directory. By default,
this is ‘build’ under the distribution root; if you're excessively concerned with speed, or want to keep the source tree
pristine, you can change the build directory with tHeuild-baseoption. For example:

python setup.py build --build-base=/tmp/pybuild/foo-1.0

(Oryou could do this permanently with a directive in your system or personal Distutils configuration file; see section 5.)
Normally, this isn’'t necessary.

The default layout for the build tree is as follows:

--- build/ --- lib/

or

--- build/ --- lib.<plat>/
temp.<plat>/

where<plat> expands to a brief description of the current OS/hardware platform. The first form, with jiitst a *
directory, is used for “pure module distributions"—that is, module distributions that include only pure Python modules.
If a module distribution contains any extensions (modules written in C/C++, or Java for JPython), then the second form,
with two <plat> directories, is used. In that case, tharp.plat’ directory holds temporary files generated by the
compile/link process that don’t actually get installed. In either caselithéor * lib.plat’) directory contains all Python
modules (pure Python and extensions) that will be installed.

In the future, more directories will be added to handle Python scripts, documentation, binary executables, and whatever
else is needed to handle the job of installing Python modules and applications.

2.4 How installation works

After thebuild command runs (whether you run it explicitly, or timstall command does it for you), the work
of theinstall command is relatively simple: all it has to do is copy everything unilgtd/lib’ (or * build/lib.plat’)
to your chosen installation directory.

If you don’t choose an installation directory—i.e., if you just metup.py install —then theinstall com-

mand installs to the standard location for third-party Python modules. This location varies by platform and by how you
built/installed Python itself. On Unix and Mac OS, it also depends on whether the module distribution being installed
is pure Python or contains extensions (“non-pure”):

4 2 Standard Build and Install

Platform | Standard installation location | Default value | Notes

Unix (pure) prefix/lib/python2.0/site-packages Jusr/local/lib/python2.0/site-packages Q)
Unix (non-pure) exec-prefix/lib/python2.0/site-packages | /ust/local/lib/python2.0/site-packages ()
Windows prefix C:\Python (2)
Mac OS (pure) prefix:Lib Python:Lib **?7?27**
Mac OS (non-pure) prefix:Mac:Plugins Python:Mac:Pluglns**???**

Notes:

(1) Most Linux distributions include Python as a standard part of the systemrefio andexec-prefix are usually
both ‘usr’ on Linux. If you build Python yourself on Linux (or any Unix-like system), the defauwdfix and
exec-prefix are fusr/local’.

(2) The default installation directory on Windows was:\Program Files\Python’ under Python 1.6al, 1.5.2, and
earlier.

prefix andexec-prefix stand for the directories that Python is installed to, and where it finds its libraries at run-time.
They are always the same under Windows and Mac OS, and very often the same under Unix. You can find out
what your Python installation uses forefix andexec-prefix by running Python in interactive mode and typing a few
simple commands. Under Unix, just typgthon at the shell prompt; under Windows, run “Python 2.0 (interpreter)”
right? ; under Mac OS¥*??7?** | Once the interpreter is started, you type Python code attkre *’ prompt. For
example, on my Linux system, | type the three Python statements shown below, and get the output as shown, to find
out myprefix andexec-prefix:

Python 1.6 (#22, Sep 2 2000, 23:54:55) [GCC egcs-2.91.66 19990314/Linux (egcs-1.1.2 release)] on linux2
Copyright (c) 1995-2000 Corporation for National Research Initiatives.

All Rights Reserved.

Copyright (c) 1991-1995 Stichting Mathematisch Centrum, Amsterdam.

All Rights Reserved.

>>> import sys

>>> gys.prefix

"lusr’

>>> sys.exec_prefix

‘lusr’

If you don’t want to install to the standard location, or if you don’t have permission to write there, then you need to
read about alternate installations in the next section.

3 Alternate Installation

Often, itis necessary or desirable to install modules to a location other than the standard location for third-party Python
modules. For example, on a Unix system you might not have permission to write to the standard third-party module
directory. Or you might wish to try out a module before making it a standard part of your local Python installation; this
is especially true when upgrading a distribution already present: you want to make sure your existing base of scripts
still works with the new version before actually upgrading.

The Distutilsinstall command is designed to make installing module distributions to an alternate location simple
and painless. The basic idea is that you supply a base directory for the installation, arsticthe command picks

a set of directories (called anstallation schemeunder this base directory in which to install files. The details differ
across platforms, so read whichever of the following section applies to you.

3.1 Alternate installation: Unix (the home scheme)

Under Unix, there are two ways to perform an alternate installation. The “prefix scheme” is similar to how alternate
installation works under Windows and Mac OS, but is not necessarily the most useful way to maintain a personal
Python library. Hence, we document the more convenient and commonly useful “home scheme” first.

The idea behind the “home scheme” is that you build and maintain a personal stash of Python modules, probably under
your home directory. Installing a new module distribution is as simple as

python setup.py install --home=<dir>

where you can supply any directory you like for thkomeoption. Lazy typists can just type a tildé)(theinstall
command will expand this to your home directory:

python setup.py install --home="

The --home option defines the installation base directory. Files are installed to the following directories under the
installation base as follows:

Type of file Installation Directory Override option
pure module distribution home/lib/python --install-purelib
non-pure module distribution home/lib/python --install-platlib
scripts home/bin --install-scripts
data home/share --install-data

3.2 Alternate installation: Unix (the prefix scheme)

The “prefix scheme” is useful when you wish to use one Python installation to perform the build/install (i.e., to run the
setup script), but install modules into the third-party module directory of a different Python installation (or something
that looks like a different Python installation). If this sounds a trifle unusual, it is—that's why the “home scheme”

comes first. However, there are at least two known cases where the prefix scheme will be useful.

First, consider that many Linux distributions put Python/ust’, rather than the more traditionalusr/local’. This

is entirely appropriate, since in those cases Python is part of “the system” rather than a local add-on. However, if
you are installing Python modules from source, you probably want them to ggsifidcal/lib/pythonl1.X’ rather than
‘fusr/lib/python1.X". This can be done with

/usr/bin/python setup.py install --prefix=/usr/local

Another possibility is a network filesystem where the name used to write to a remote directory is different from the
name used to read it: for example, the Python interpreter accessedréscal/bin/python’ might search for modules

in ‘/usr/local/lib/python1.X’, but those modules would have to be installed to, Sayt/@server/export/lib/python1.X".

This could be done with

/usr/local/bin/python setup.py install --prefix=/mnt/@server/export

In either case, the-prefix option defines the installation base, and thexec-prefix option defines the platform-
specific installation base, which is used for platform-specific files. (Currently, this just means non-pure module distri-
butions, but could be expanded to C libraries, binary executables, etedxéc-prefixis not supplied, it defaults to
--prefix. Files are installed as follows:

6 3 Alternate Installation

Type of file Installation Directory Override option

pure module distribution prefix/lib/pythonl.X/site-packages --install-purelib
non-pure module distribution exec-prefix/lib/python1.X /site-packages --install-platlib
scripts prefix/bin --install-scripts
data prefix/share --install-data

There is no requirement thaprefix or --exec-prefixactually point to an alternate Python installation; if the directories
listed above do not already exist, they are created at installation time.

Incidentally, the real reason the prefix scheme is important is simply that a standard Unix installation uses the prefix
scheme, but with-prefix and--exec-prefixsupplied by Python itself (asys.prefix andsys.exec _prefix).

Thus, you might think you'll never use the prefix scheme, but every time yopython setup.py install

without any other options, you're using it.

Note that installing extensions to an alternate Python installation has no effect on how those extensions are built: in
particular, the Python header file®{thon.h’ and friends) installed with the Python interpreter used to run the setup
script will be used in compiling extensions. Itis your responsibility to ensure that the interpreter used to run extensions
installed in this way is compatibile with the interpreter used to build them. The best way to do this is to ensure that the
two interpreters are the same version of Python (possibly different builds, or possibly copies of the same build). (Of
course, if your-prefix and--exec-prefixdon’t even point to an alternate Python installation, this is immaterial.)

3.3 Alternate installation: Windows

Since Windows has no conception of a user’s home directory, and since the standard Python installation under Win-
dows is simpler than that under Unix, there’s no point in having sepaiatefix and--home options. Just use the
--prefix option to specify a base directory, e.g.

python setup.py install --prefix="\Temp\Python"
to install modules to the\Temp’ directory on the current drive.

The installation base is defined by thprefix option; the--exec-prefixoption is not supported under Windows. Files
are installed as follows:

Type of file Installation Directory Override option
pure module distribution prefix --install-purelib
non-pure module distribution prefix --install-platlib

scripts prefix\Scripts --install-scripts
data prefix\Data --install-data

3.4 Alternate installation: Mac OS

Like Windows, Mac OS has no notion of home directories (or even of users), and a fairly simple standard Python
installation. Thus, only a-prefix option is needed. It defines the installation base, and files are installed under it as
follows:

how do MacPython users run the interpreter with command-line args?

Type of file Installation Directory Override option
pure module distribution prefix:Lib --install-purelib
non-pure module distribution prefix:Mac:Plugins --install-platlib

scripts prefix:Scripts --install-scripts
data prefix:Data --install-data

3.3 Alternate installation: Windows 7

**Corran Webster says: “Modules are found in either ‘:Lib’ or ‘ :Mac:Lib ’, while extensions usually go in
“:Mac:Plugins ""—does this mean that non-pure distributions should be divided between:Mac:Plugins ' and
“:Mac:Lib '? If so, that changes the granularity at which we care about modules: instead of “modules from
pure distributions” and “modules from non-pure distributions”, it becomes “modules from pure distributions”,
“Python modules from non-pure distributions”, and “extensions from non-pure distributions”. Is this neces-
sary?1?**

4 Custom Installation

Sometimes, the alternate installation schemes described in section 3 just don’t do what you want. You might want
to tweak just one or two directories while keeping everything under the same base directory, or you might want to
completely redefine the installation scheme. In either case, you're creatirgian installation scheme

You probably noticed the column of “override options” in the tables describing the alternate installation schemes above.
Those options are how you define a custom installation scheme. These override options can be relative, absolute, or
explicitly defined in terms of one of the installation base directories. (There are two installation base directories, and
they are normally the same—they only differ when you use the Unix “prefix scheme” and supply diffgrefik
and--exec-prefixoptions.)

For example, say you're installing a module distribution to your home directory under Unix—but you want scripts
to go in “Iscripts’ rather than */bin’. As you might expect, you can override this directory with thiastall-scripts

option; in this case, it makes most sense to supply a relative path, which will be interpreted relative to the installation
base directory (your home directory, in this case):

python setup.py install --home=" --install-scripts=scripts

Another Unix example: suppose your Python installation was built and installed with a prefixrdbtal/python’, so
under a standard installation scripts will wind up ast/local/python/bin’. If you want them in fusr/local/bin’ instead,
you would supply this absolute directory for thénstall-scripts option:

python setup.py install --install-scripts=/usr/local/bin

(This performs an installation using the “prefix scheme,” where the prefix is whatever your Python interpreter was
installed with— Yusr/local/python’ in this case.)

If you maintain Python on Windows, you might want third-party modules to live in a subdirectgmefot, rather

than right inprefix itself. This is almost as easy as customizing the script installation directory—you just have to
remember that there are two types of modules to worry about, pure modules and non-pure modules (i.e., modules from
a non-pure distribution). For example:

python setup.py install --install-purelib=Site --install-platlib=Site

The specified installation directories are relativerefix. Of course, you also have to ensure that these directories are
in Python’s module search path, e.g. by puttingpgh’ file in prefix (**should have a section describing .pth files
and cross-ref it here**).

If you want to define an entire installation scheme, you just have to supply all of the installation directory options.
The recommended way to do this is to supply relative paths; for example, if you want to maintain all Python module-
related files undemython’ in your home directory, and you want a separate directory for each platform that you use
your home directory from, you might define the following installation scheme:

8 4 Custom Installation

python setup.py install --home=""\
--install-purelib=python/lib \
--install-platlib=python/lib.$PLAT \
--install-scripts=python/scripts
--install-data=python/data

or, equivalently,

python setup.py install --home="/python \
--install-purelib=lib \
--install-platlib="lib.SPLAT’ \
--install-scripts=scripts
--install-data=data

$PLAT is not (necessarily) an environment variable—it will be expanded by the Distutils as it parses your command
line options (just as it does when parsing your configuration file(s)).

Obviously, specifying the entire installation scheme every time you install a new module distribution would be very
tedious. Thus, you can put these options into your Distutils config file (see section 5):

[install]

install-base=$HOME
install-purelib=python/lib
install-platlib=python/lib. SPLAT
install-scripts=python/scripts
install-data=python/data

or, equivalently,

[install]
install-base=$HOME/python
install-purelib=lib
install-platlib=Ilib.SPLAT
install-scripts=scripts
install-data=data

Note that these two aneot equivalent if you supply a different installation base directory when you run the setup
script. For example,

python setup.py --install-base=/tmp

would install pure modules tmp/python/lib in the first case, and ttmp/lib in the second case. (For the second case,
you probably want to supply an installation base/whp/python’.)

You probably noticed the use 8HOMENd$PLAT in the sample configuration file input. These are Distutils configu-
ration variables, which bear a strong resemblance to environment variables. In fact, you can use environment variables
in config files—on platforms that have such a notion—but the Distutils additionally define a few extra variables that
may not be in your environment, such®R3LAT. (And of course, you can only use the configuration variables supplied

by the Distutils on systems that don’t have environment variables, such as Ma¢t@®7**).) See section 5 for

details.

**need some Windows and Mac OS examples—when would custom installation schemes be needed on those

platforms?**

5 Distutils Configuration Files

not even implemented yet, much less documented!

6 Pre-Distutils Conventions

6.1 The Makefile.pre.in file

6.2 Installing modules manually

10

6 Pre-Distutils Conventions

	1 Introduction
	1.1 Best case: trivial installation
	1.2 The new standard: Distutils
	1.3 The old way: no standards

	2 Standard Build and Install
	2.1 Platform variations
	2.2 Splitting the job up
	2.3 How building works
	2.4 How installation works

	3 Alternate Installation
	3.1 Alternate installation: Unix (the home scheme)
	3.2 Alternate installation: Unix (the prefix scheme)
	3.3 Alternate installation: Windows
	3.4 Alternate installation: MacOS

	4 Custom Installation
	5 Distutils Configuration Files
	6 Pre-Distutils Conventions
	6.1 The Makefile.pre.in file
	6.2 Installing modules manually

