CIPP Reference Guide

Copyright 1999-2001 dimedis GmbH, Cologne
All Rights Reserved

Thisdocumentation cover s CIPP version 2.28.

http://www.dimedis.de/
http://www.per|.com/CPAN/modules/by-module/CI PP/

Table Of Contents

Introduction 7
CIPPgeneratesPerlcode, 8
EnvironmentswhereCIPPcanbeused 9
CGlCIPP e 9
Apache::CIPP 9
NEW.SPIMT .« o 10
BasicSyntax Rules. 10
CIPPcommandstructureooiiin... 10
Case sensitivity of CIPP parameters 11
CIPPreturnparametersc.ccoieiiivnan... 12
Contextof CIPPcommands 12
Add commentsStoyour SOUrceovvvuvenen.. 13
Ermormessages. 14
ClIPP OIS . ..o 14
Perl errors 14

Table Of Contents i

Table Of Contents

CIPP preprocessor commands ovo v ii i 15
GOl IR, . 17
UsingaextraScriptAlias 20
usingmod rewrite, 21
CGl::SpeedyCGIl and CIPP::CGIoou... 22
Apache::CIPP. 23
Command GrOUPS.o v et e e 25
Variablesand Scoping 25
Control Structures 26
Import 26
ExceptionHandling L. 26
SQL 27
URL-and FormHandling 27
HTML TagReplacements 27
Interface 27
Apache 28
PreproCcessor v 28
Debuggingcii 28
Alphabetical Reference 29
£ 29
A 30
APGETREQUEST e 31
APREDIRECT e 32
AUTOCOMMIT .. e 33
TAUTOPRINT ..o 35
BLOCK . 37
CATCH . 38
COMMIT o 40
CONFIG . ..o 42
DBQUOTE e 44
DO 46
DUMP 47

Table Of Contents

Table Of Contents

ELSE vttt 48
S = 49
FOREACH .. .ottt 50
=0 =Y I 52
GETPARAM ..ottt 56
GETPARAMLIST &ttt 57
GETURL vttt et 58
HIDDENFIELDSot et 61
HTMLQUOTE . . . e et e e 63
IHTTPHEADER ..ottt 64
1= 66
IMG e e e e 67
INCINTERFACE . . o\t e e 68
INCLUDE .\ttt et 71
1N = U 73
INTERFACE . .ttt e 76
LOG ettt e e e 78
MODULE ..ottt e e 80
VY e 82
OPTION .« e et et et e 83
PERL ettt 84
IPROFILE ettt e e e 86
REQUIRE ...\ttt e 83
ROLLBACK ..ttt 89
SAVEFILE . . oottt 01
SELECT .« ettt e et 93
SOl et 95
SUB ottt 100
TEXTAREA @ttt 102
THROW © . oot 103
TRY oot 105
URLENCODE ...ttt et 106
USE ettt e e 107
VAR o 108
WHILE © oot e e 110

Table Of Contents \

Table Of Contents

Vi

Table Of Contents

CHAPTER 1

CIPP - CGlI Pel
Preprocessor

This chapter gives a high-level overview about what CIPP is, where it can be used
and introduces you to the general syntax of the language.

I ntroduction

The name CIPP is an acronym for Cgl Perl Preprocessor. With CGI, aweb server
cals aprogram which generatesa HTML page. The CGI allows passing of param-
eters, so the returned page might look different depending on the input to the pro-
gram. Thisiswhat is commonly refered to as a,,dynamic* page.

CGI programms are just like normal ones, only thereis alot of code printing out
HTML statements. The majority of the codeis concerned about the layout of the
generated page. Thisis a nuisance for two reasons: first, it is difficult to see the
structure of the generated page by looking at the source code, second, alot of the
code just consists of , print* statements - these are boring to write.

CIPP takes another approach to CGI programming: you basically write an ordinary
HTML page and insert into the page the code, which isresponsible for the dynamic
parts. Thisway, you can easily see the structure of the page and for generating
HTML, you can simply write the HTML directly onto the page.

I ntroduction 7

CIPP - CGI Perl Preprocessor <?>

CIPP generates Per| code

CIPP isapreprocessor which generates pure Perl code out of your CIPP embedded
HTML pages. Depending on your environment, this Perl code can either be
installed as a CGl program on the webserver or is executed immediately through an
appropriate handler. More details about the different environments and their prop-
erties are discussed later in this document.

Hereisalittle example of a CIPP code snippet to demonstrate the simplicity of the
preprocessing mechanism (this anticipates some basics of the CIPP programming
language, a detailed description of the language follow beyond this chapter).

<?l F COND="$event eq ’'show “>
The val ue of the variable’
%f oo</ B>

<?/lF>

foo' is:

You will get aHTML formatted content of the Perl variable $foo, assumed the vari-
able $event contains the string ’show’.

CIPP will generate Perl code similar to this.

if ($event eq 'show) {
print “The val ue of the variable
print “$foo\n"“;

foo’ is:
\n“;
}

Thiswasreally asimple example. The CIPP <?| F> istranslated to a Perl 'if’ com-
mand. The non CIPP text blocks (usually containing some HTML) are translated to
aPerl "print’ command. There are many, more complex CIPP commands that save
you alot of work.

So, here you can see the difference between CIPP and ordinary CGI programming.
With CIPP, HTML is normal and code is embedded in away which almost 1ooks
like HTML. CGI programs, on the other hand, contain alot of print statements
which makes them hard to read.

Ok, message understood. Now you know what CIPP basically does for you. In the
next chapter you will learn in what way and environment you can apply it.

Introduction

Environments where CIPP can be used <?>

Environments where CIPP can be used

As mentioned above there are three different environments where you can use CIPP
programs:

e CIPP::CGlI - using CIPP viaacentral CGIl wrapper program
* Apache:CGl - using CIPP as a module inside the Apache webserver

* new.spirit - managing projects of many CIPP files, generating standalone CGlI
programs for production web systems.

A discussion of these three possible use cases follows, where the architecture of
each environment is described briefly. There are extra chapters with configuration
details about all of them.

CGlI::CIPP

CGlI::CIPP is a Perl module which enables you to use CIPP on every CGlI capable
webserver. It is based on a central wrapper script, which does all the preprocessing.
It executes the generated Perl code directly afterwards. Additionally, it implements
afilesystem based cache for the generated code. Preprocessing is done only when
the corresponding CIPP source code changed on disk, otherwise this step is
skipped.

CGlI::CIPPis prepared for usage inside a persistent Perl environment, e.g. in con-
junction with the CGI::SpeedyCGI module, which is not part of the CIPP distribu-
tion, but freely available on CPAN. CGI::CIPP will cache the Perl compiled
programs as subroutines. Subseguent callsto the same CIPP page are answered
immediately, because neither CIPP preprocessing nor Perl compiling needs to be
done in this case.

Your CIPP source files are placed in a particul ar directory on awebserver. With
some additional webserver configuration you can handle them as,,norma“ HTML
documents beneath other webserver documents like images or traditional static
HTML documents. See the chapter about CGI::CIPP configuration for details.

Apache::CIPP

The architecture of the Apache::CIPP is very similar to the one of CGI::CIPP. The
main differenceis that the central CGI wrapper of CGI::CIPP is plugged into the
Apache webserver as a Request Handler using mod_perl, which extends the

Environments where CIPP can be used 9

CIPP - CGI Perl Preprocessor <?>

Apache webserver with a Perl interpreter. Another differenceist that the configura-
tion options for Apache::CIPP are placed into the webserver configuration file.

All the caching is done exactly like CGI::CIPP does. See the chapter about
Apache::CIPP configuration for details.

new.spirit

new.spirit uses CIPP in a different way. new.spirit is aweb based devel opment
environment for creating software projects based on CIPP. In this environment the
Perl code generated by CIPP for each page will be stored as a CGl executable,
installed in acgi-bin path of your webserver. This prevents you from installing your
CIPP sources on the productive webserver system, only the preprocessed Perl code
isinstalled there.

Another difference using CIPP with new.spirit is the naming convention for adress-
ing CIPP programs. CGI::CIPP and Apache::CIPP use URL's as adresses,
new.spirit expects a special dot-separated notation. See the chapter ,,Basic syntax
rules* for details. For new.spirit CIPP configuration please refer to the new.spirit
documentation.

Basic Syntax Rules

This chapter describes the CIPP syntax rules.

CIPP command structure

CIPP commands are embedded into HTML code, so the syntax is related to the
HTML syntax. CIPP commands are written as tags, like HTML does. The main dif-
ferenceisthat CIPP command tags begin with <? instead of <.

Likein HTML, there are two kinds of commands: single commands and block
commands. Block commands have a start and end tag. A block command influ-
encesthe HTML respectively CIPP code surrounded by it.

<?COMVAND [par=value ...] >

10

Basic Syntax Rules

Basic Syntax Rules <?>

or
<?COMVAND [par=value ...]>
HTML or ClI PP code
<?/ COWAND [par=value ...]>

Whitespaces between <? and COMVAND are ignored. The command names are not
case sensitive. Parameters are written als par=value pairs. Assigning avalueto a
parametersis optional. A parameter without avalueis called aswitch.

A parameter with value has the following syntax:

par anmet er _nane = paraneter_val ue
Whitespaces before and behind the = sign are ignored. If the value you want to
assign contai ns whitespaces you must quote the value using double quotes.

<?COVMAND par _1=val ue_wi t hout _whi t espaces

par_2="val ue w th whitespaces">

If your value contains double quotes you must escape them using the backslash
character.

<?COVMAND par _2="val ue with \“doubl e quotes\““>
You may place Perl variables inside your value string, they are expanded in the
usual way (there is one exception regarding return parameters, see section below).
A switch without avalue has this simple syntax:

<?COMVAND SW TCH_NAME>

Case sensitivity of CIPP parameters

Due to historical reasons parameter names are al so not case sensitive. Actually the
CIPP preprocessor convertsall parameter namesto lower case at avery early stage.
So the exact case notation of the parametersislost for later processing. Thisis usu-
aly no problem and works as you expect. HTML behaves the same.

Important Note: This approach has some side effects which you need to be aware
of. For certain CIPP commands, you will be expected to specify Perl variablesin
the same syntactical manner of CIPP parameters. Not matter what you do, CIPP

Basic Syntax Rules 1n

CIPP - CGI Perl Preprocessor <?>

will always work on the lower case version of these names - without giving you any
warning.

The CIPP commands affected by this are: <?MY>, <?| NCLUDE>, <? GETURL>
and <?Hl DDENF| ELDS>. Please refer to the CI PP Reference chapter for details
about these commands.

Important Hint: Always use lower case variable names!

CIPP return parameters

There are many CIPP commands that return parameters back to you. Since com-
mands are inside tags, there is no way to use them in an assignment. This means
that you have to specify a variable (or more than one) which should hold the return
values.

These return variables are treated different from input variables.

$foo = “whatever®; $bar = “x“;
<?COMMVAND i nput =$f oo out put =$bar >

isthe same as
<?COVMMAND i nput =*what ever“ out put =$bar >

but no the same as
<?COMVAND i nput =$f oo out put =*x">

So, the return value from the command will be placed inside $bar. You cannot see
from the syntax alone which parameter is expanded and which isn’'t. However, for
each CIPP command there is a desription of return parameters (if there are any).

Context of CIPP commands

There are three different contexts which CIPP knows. They arelisted and explained
below. CIPP switches from one context to another only by certain block com-
mands. Normal CIPP commands do not change the context.

12

Basic Syntax Rules

Basic Syntax Rules <?>

1.

HTML

Thisisthe default context your CIPP program isin. That means, if your pro-
gram does not contain any CIPP commands, you will produce asimple, static
HTML page.

Inside HTML context, Perl variables are expanded with their content, like Perl
doesit if you use variablesin a double quoted string.

In fact HTML contexts are translated to a Perl print command, which prints the
whole HTML block using some kind of double quotes.

You can force the HTML context using the <?HTM.> command, if you arein a
Perl context (see below).

Variable Assignment

Thisisaspecial context whichisonly existent inside of a<?VAR> block. Inside
this block no other CIPP commands are allowed. Perl variables will be
expanded. Perl expressions are also possible - see the command description for
details.

With <?/ VAR> you terminate the assignment block and CIPP goes back to
HTML context.

Perl

The block command <?PERL> switches to this context. The whole block will
be interpreted as pure Perl code. No automatic HTML output is done here, you
have to use print yourself to do that. You may aso use only certain CIPP com-
mands inside a Perl block, which are <?1 NCLUDE> and <?SQL>. Thislist of
such commands will be expanded in future.

With <?/ PERL> you terminate the command block and CIPP goes back to
HTML context.

Add commentsto your source

CIPP uses a similar mechanism for writing comments like Perl does. Each line
which begins with a# sign isinterpreted as a comment and is fully ignored. Lead-
ing whitespace is ignored; you' re free to indent your comments.

It isnot possible to preceed a CIPP comment by a CIPP command or HTML code.
This would prevent you from using # in HTML code (and the least things that we
want isto mess up HTML code - that isany more than it already is).

You can use the CIPP command <?#> for nestable multiline comments.

Basic Syntax Rules 13

CIPP - CGI Perl Preprocessor <?>

These lines show valid CIPP comments:

<?PERL>

this is indented coment
<?/ PERL>
this coment is not indented

<?#>
this is a multiline conment
<?/ #>

Thefollowing example isinvalid. The comment will be printed, because it isinter-
preted in HTML context (see section above about HTML context).

<?PERL> $path = '/’ <?/PERL> # setting the path

The corresponding web page will contain your comment:

setting the path

Error messages

There aretwo kinds of error messages a Cl PP developer must handle, depending on
the stage the error occured: in CIPP preprocessing or Perl execution. Both stages
have their own error messages.

CIPPerrors

These errors occur while translating your CIPP code to Perl. They regard only the
CIPP syntax, no Perl syntax checking is done at this stage. The corresponding error
messages and line numbers point to the appropriate sections of your CIPP program.
In CGI::CIPP and Apache::CIPP environments you'll get aHTML page with the
CIPP error messages. The source codeis printed out with the according sections
highlighted.

Perl errors

Perl errors occur while executing the Perl program, which has been generated by
CIPP. There are two classes of Perl errors: compiler and runtime errors.

14

Error messages

CIPP preprocessor commands <?>

Normally, acompiler error in a CGIl program resultsin a,, Server Error”, if you exe-
cute it on your webserver. The error messages may be written to the webserver
error log file, depending on your webserver software and configuration.

With CIPP generated programs you should never see a,, Server Error“. All CIPP
environments (CGlI::CIPP, Apache::CIPP and new.spirit) initiate a Perl syntax
check after trandating the CIPP code and before executing the Perl code the first
time. Perl compiler errors are caught thisway and aHTML error page is generated
for you. This saves you the hassle of digging into your webserver error log file for
detailed information.

Runtime errors are caught by the CIPP execption handler and can appear in differ-
ent ways, depending on the location inside your program, where the error occurs.
The exception handler prints out the error message, at the actual position, where the
error occured. Maybe you produced already some HTML output, the error message
will appear right beyond it. If you’re using some complex table layout, it can hap-
pen, that your webbrowser is unable to render the page correctly and the error mes-
sageisinvisible dueto this. You haveto look into the produced HTML source code
to see the error message in this case.

All Perl error messages refer to the generated Perl code, not to your CIPP code. So
line numbers are not comparable with the line numbers of your CIPP program.

CIPP preprocessor commands

There are several preprocessor commands. Those commands always begin with an
exclamation mark:

<?! COWAND [par=value ...] >
or

<?I COWAND [par=value ...]>

<?/ ! COMVAND>

The special about these commands is, that they take effect at the preprocessor time
and not at runtime. They modify the internal state of the preprocessor and do not
create Perl code directly, like most of the other CIPP commands do.

CIPP preprocessor commands 15

CIPP - CGI Perl Preprocessor <?>

Dueto thisthe lexical environment of preprocessor commands does not matter the
usual way. E.g. you may want to place a<?! AUTOPRI NT> command inside of an
<?| F> block to advice the preprocessor to generate print statements for HTML
blocks or not (see the description of the <?! AUTOPRI NT> command for details).
But thiswill not work. See this example:

<?l F COND="$user_wants_an_i mage_file"“>
<?! AUTOPRI NT OFF>
<?PERL>
print “Content-Type: image/gif\n\n"
system (“cat /tnp/imge.gif");
<?/ PERL>
<?ELSE>
Ok, you want no inage, so you will
get sonme nice htm </ b> code.
<?/l F>

L ooks ok but will not work!

1. The <? AUTOPRI NT> command causes CIPP not to generate any HT TP head-
ers for you. So the <?EL SE> block will not work, because no HTTP headers
are printed. You'll get a 500 Server Error.

2. Buteven if you print headers there (with ,, Content-type: text/html*): the HTML
block will not be printed either. The <?! AUTOPRI NT> command does not care
about the logical context. The preprocessor reads the file from the top to the bot-
tom and will switch off autoprinting when recognizing the <?! AUTOPRI NT
OFF>. It will not be switched on and the end of the <?1 F> block. Autoprinting
will be disabled for the rest of thefile. So the HTML code inside the <?ELSE>
block will never be printed out.

So use preprocessor commands with care and keep this specia implementation
alwaysin mind. Each preprocessor command description in this manua will give
you hints about the corresponding special behaviour.

16

CIPP preprocessor commands

CHAPTER 2

CIPP Configuration

This chapter describes the configuration details for usage in connection with
CGil::CIPP and Apache::CIPP. If you use CIPP in conjunction with new.spirit
please refer to the according section of the new.spirit handbook.

Please check al so the documentation of the corresponding Perl modules
(CGI::CIPP and Apache::CIPP).

CGl::CIPP

CGlI::CIPP is a Perl module which enables you to use CIPP on every CGlI capable
webserver. It is based on a central wrapper script, which does all the preprocessing.
It executes the generated Perl code directly afterwards. Additionally, it implements
afilesystem based cache for the generated code. Preprocessing is done only when
the corresponding CIPP source code changed on disk, otherwise this step is
skipped.

First fetch CGI::CIPP from your next CPAN mirror and install it the usual way
(perl Makefile.PL; make test; makeinstall).

CGl::CIPP 17

CIPP Configuration CGl::CIPP

Now create a CGl program in a directory, where CGI programs usually reside on
your server (e.g. /cgi-bin/cipp), or configure this program another way to be a CGlI
program.

This program isthe central CGI::CIPP wrapper. It only consists of asingle function
call to the CGI::CIPP module, with a hash of parametersfor configuration. Thisisa
example:

#!/usr/ 1 ocal / bin/perl
The URL of this programis /cgi-bin/cipp

use strict;
use CAd :: ClPP;

Cd :: Cl PP->request (
docunent _root =>"'/ww/ cippfiles’,
di rectoy_i ndex => 'index. cipp’,

cache_dir => ' /tnp/cipp_cache’,
dat abases => {
test => {
dat a_source => 'dbi: nysql:test’
user => ' dbuser’,
passwor d => ' dbpassword’,
auto_commit => 1
1
foo => {
}
}
defaul t _dat abase => ’"test’,
| ang => ' EN

CGl::CIPP

CIPP Configuration

CGl::CIPP

A brief description of the parameters passed to the Cd : : Cl PP- >r equest call

follows:

docunent _r oot

directory_i ndex

cache_dir

dat abases

dat a_source

Thisisthe base directory where all your CIPP files
resides. You will place CIPP programs, Includes
and Config files inside this subdirectory. Using
subdirectories is permitted.

Bewarethat if you placeyour CIPPfilesinto a
subdirectory of your webservers document root,
you risk that someone can fetch your CIPP source
files, if he knowsthe URL of your CIPP document
root. If you do not use the mod_rewrite configura-
tion explained beyond, you never should place
your CIPP filesinto your webservers document
root. Thereis no advantage of doing this.

If you want CGlI::CIPP to treat a special filename
as adirectory index file, passthisfilename here. If
you access a directory with CGI::CIPP and a
according index fileisfound there, it will be exe-
cuted.

This names the directory where CGI::CIPP can
store the preprocessed CIPP programs. If the direc-
tory does not exist it will be created. Aware, thethe
directory must have write access for the user under
which your webserver software is running.

This parameter contains a hash reference, which
defines several database configurations. Thekey of
thishash isthe CIPP internal name of the database,
which can be addressed by the DB parameter of all
CIPP SQL commands. The value is a hash refer-
ence with the following keys defined.

This must be a DBI conforming data source string.
Please refer to the DBI documentation for details
about this.

user Thisisthe username CIPP uses to connect to the
database
passwor d This password is used for the database user.
CGlI::CIPP 19

CIPP Configuration CGl::CIPP

auto_conmit This parameter sets the initial state of the Auto-
Commit flag. Please refer to the description of the
<?AUTOCOVMM T> command or the DBI docu-
mentation for details about AutoCommit.

defaul t _dat abase Thistakesthe name of the default database. This
database is always used, if a CIPP SQL command
ommits the DB parameter. The value passed here
must be a defined key in the dat abases hash.

| ang CIPP has multilanguage support for its error mes-
sages, actually english " EN') and german (' DE’)
are supported.

The CGI wrapper program uses the CGI feature PATH_| NFOto determine which
page should be executed. To execute the CIPP page 'test.cipp’ located in ’ /fwww/
htdocs/cippfiles/foo/test.cipp’ you must specify the following URL (assuming the
configuration of the example above):

http://somehost/ cgi-bin/cipp/fooltest.cipp

You simply add the path of your page (relative to the path you specified with the
docunent _r oot parameter) to the URL of the CGI wrapper.

Be aware of the real URL of your page if you use relative URL'sto non CIPP
pages. In the above example relative URL's must consider that the CGI wrapper
program is located in a different location as the directory you declared as the CIPP
document root. To avoid confusion about this, you should configure your web-
server inthat way, that the CGI wrapper program hasa URL whichislocated inside
your webservers document root. Thisway using relative URLs s easier, because
you never left the document root of your webserver.

If you're using the A pache webserver (what is always recommended :) you have
several aternatives of doing this.

* using aextra ScriptAlias
e using mod_rewrite

Using a extra ScriptAlias

This is aexample configuration of using a ScriptAlias to configure CIPP for easy
usage of relative URLs.

20

CGl::CIPP

CIPP Configuration CGl::CIPP

These are the corresponding basic Apache configuration parameters:

Docunent Root “/ ww/ ht docs*”
ScriptAlias “/cipp” “/ww cgi-bin/cipp"

Now the CGI wrapper program URL islocated inside your document root. Thisisa
example URL for a CIPP page located in /www/htdocs/cipp/foo/test.cipp

http://somehost/ ci pp/fool/test.cipp

The disadvantage of this configuration is, that your CIPP root directory /www/cipp-
files cannot contain other files than CIPP files. It is not possible to put images or
static HTML documents here, because you cannot reach these documents with nor-
mal URLSs.

Using mod_rewrite

You avoid the above mentioned disadvantage if you use mod_rewrite. These arethe
corresponding basic Apache configuration parameters (please refer to the Apache
documentation for details). You will need Apache version 1.2.x or better for using
mod_rewrite.

Docunent Root “/ www/ ht docs*

ScriptAlias “/cgi-bin“ “/ww cgi-bin"
Rewri t eEngi ne “on”

Rewrit eRul e “AL(.*\N L cipp.*)”

“/cgi-bin/cipp/$1“ [PT]

The CGI wrapper program is still located in aextra cgi-bin directory. But the
Rewr i t eRul e directs all URL’swith the suffix .cipp, no matter where they are
located, to the CIPP CGI wrapper program.

Now we have to change the CGI::CIPP configuration:

docunent _root / ww/ ht docs

Thisis dlightly different. We now declare the Apache Docunment Root aso to be
thedocunent _r oot of CGI::CIPP, so no specia subdirectory isneeded. The
Apache rewrite engineis responsible for trand ating URL's with the suffix .cipp to a
appropriate call of the CGI wrapper program.

CGil::CIPP 21

CIPP Configuration CGl::CIPP

Thisisaexample URL for a CIPP page located in /www/htdocs/foo/test.cipp
http://somehost/fool/test.cipp

Now you are able to place CIPP files on your webserver wherever you want,
because there is no specia CIPP directory anymore. Only the suffix .cipp isrele-
vant, due to the RewriteRule above.

CGl::SpeedyCGl and CIPP::CGI

There exists areally nice module called CGI::SpeedyCGl, which is available freely
via CPAN. It implements a nifty way of making Perl CGI processes persistent, so
subseqeuent CGI calls are answered much more faster.

Using CIPP::CGl together with CGI::SpeedyCGl is easy. Simply replace the perl
interpreter path in the shebang line#! / usr /| ocal / bi n/ per | with the accord-
ing path to the speedy program, e.g.: #! / usr /| ocal / bi n/ speedy.

Refer to the CGI::SpeedyCGI documentation for details about configuring Speedy-
CGl. We recommend the usage of the -r and -t switch, so you are able to control the
number of parallel living speedy processes, e.g.

#!/usr/1ocal /bin/speedy -- -r30 -t120

Each speedy process now answeres a maximum of 30 requests and then dies. If a
processisidle for longer than 120 secsit dies also.

22

CGl::CIPP

CIPP Configuration Apache::CIPP

Apache::CIPP

If you use the Apache::CIPP module you have all advantages of a CGI::CIPP/
CGl::SpeedyCGlI configuration, particular regarding the persistence stuff. Also
configuration of Apache::CIPPissimplier, because you put al required parameters
into the Apache configuration file(s). All above mentioned CGI::CIPP configura-
tion tasks to make CGlI::CIPP work as transparently as possible are needlessin a
Apache::CIPP environment.

Apache::CIPP needs the Apache module mod_perl to run, so first fetch mod_perl
and Apache::CIPP from your next CPAN mirror and install them.

This is aexample of the section you have to add to your httpd.conf:

<Location ~ “.*\.cipp“>
Set Handl er “perl-script*®
Per | Handl er Apache: : Cl PP

Per| Set Var cache_dir /tmp/ ci pp_cache
Per | Set Var debug 1

Per| Set Var | ang DE

Per | Set Var dat abases test, foo

Per| Set Var default _db t est

Perl Set Var db_test_data_source dbi:nysql:test
Per| Set Var db_t est _user dbuser

Per| Set Var db_t est _password dbpasswor d
Perl SetVar db_test _auto commt 1

Per| Set Var db_foo_data_source dbi : Oracl e: foo
Per| Set Var db_test user dbuser 2

Per| Set Var db_t est _password dbpasswor d2
Perl SetVar db_test _auto commt 1

</ Locati on>

Theregular expression inside the <Locat i on> tag matches all files with the suf-
fix .cipp, independent from the location on your server. Due to thisyou are able to
place your CIPP pages everywhere you want. So mixing of .cipp and other filesis
no problem with this configuration.

Apache::CIPP 23

CIPP Configuration

Apache::CIPP

Apache::CIPP Parameters are very similar to the CGI::CIPP parameters:

cache_dir

debug

dat abases

def aul t _dat abase

| ang

This names the directory where CGI::CIPP can
store the preprocessed CIPP programs. If the direc-
tory does not exist it will be created. Aware, thethe
directory must have write access for the user under
which your webserver software is running.

If you set the debug parameter to non zero, each
request to Apache::CIPP will be logged in the
apache error logfile, together with some informa-
tion about the internal state of the caches.

This parameter lists the CIPP internal names of all
your database configurations. The list iscomma
separated, whitspace isignored.

Thistakes the name of the default database. This
database is always used, if a CIPP SQL command
ommits the DB parameter. The value passed here
must be adefined value in thedat abases
parameter.

CIPP has multilanguage support for its error mes-
sages, actually english (' EN') and german (' DE’)
are supported.

Thefollowing four parameters must be specified for each database you listed in the
dat abases parameter. Replace the* with the appropriate database name.

db_* data_source

db_* usernane

db_*_ password
db_* auto_commit

This must be a DBI conforming data source string.
Please refer to the DBI documentation for details
about this.

Thisisthe username CIPP uses to connect to the
database

This password is used for the database user.

This parameter sets the initial state of the Auto-
Commit flag. Please refer to the description of the
<?AUTOCOMM T> command or the DBI docu-
mentation for details about AutoCommit.

24

Apache::CIPP

CHAPTER 3 CIPP Command
Reference

This chapter describes all CIPP commandsin alphabetical order. Each reference
contains syntax notation, textual description and examples for each command.

Command Groups

For better overview the following table lists all CIPP commands grouped by type:

Variables and Scoping

VAR Definition of avariable
MY Declaring a private (block local) variable
BLOCK Creation of ablock context to limit the scope of

private variables

Command Groups 25

CIPP Command Reference

<?>

Control Structures

I F

ELSI F
ELSE
VWHI LE
DO
FOREACH
PERL
SUB

Import

| NCLUDE

MODUL E
REQUI RE
USE
CONFI G

Exception Handling

TRY

CATCH

THROW
LOG

Conditional execution of a block

Subsequent conditional execution

Alternative execution of a block

Loop with condition check before first iteration
Loop with condition check after first iteration
Loop iterating with avariable over alist
Insertion of pure Perl code

Definition of aPerl subroutine

Insertion of a CIPP Include file in the actual CIPP
code

Definition of a CIPP Perl Module
Import a CIPP Perl Module
Import astandard Perl module
Import aconfig file

Secured execution of ablock. Any exceptions
thrown in the encapsul ated block are caught.

Execution of ablock if a particular exception was
thrown in a preceding TRY block.

Explicite creation of an exception.
Write aentry in alodfile.

Command Groups

Command Groups

<?>

SQL

SQL

COWM T
ROLLBACK
AUTOCOMM T
DBQUOTE
GETDBHANDLE

URL - and Form Handling

GETURL

URL ENCODE
HTMLQUOTE

HI DDENFI ELDS

HTML Tag Replacements

A

FORM

I MG

OPTI ON

I NPUT
TEXTAREA
SELECT

Interface

| NTERFACE

I NCI NTERFACE
GETPARAM
GETPARAMLI ST
SAVEFI LE

Execution of a SQL statement

Commit atransaction

Rollback atransaction

Control of transaction behaviour

Quoting of avariable for usagein a SQL statement
Returns the internal DBI database handle

Creation of a CIPP object URL

URL encoding of avariable

HTML encoding of avariable

Producing a number of hidden formular fields

Replaces <A> tag

Replaces <FORM> tag

Replaces tag

Replaces <OPTION> tag, with sticky feature
Replaces <INPUT> tag, with sticky feature
Replaces <TEXTAREA> tag

Replaces <SELECT> Tag, with sticky feature

Declaration of a CGl interface for a CIPP program
Declaration of ainterface for CIPP Include
Recieving a non declared CGI input parameter
Returns alist of all CGI input parameter names
Storing a client side upload file

Command Groups

27

CIPP Command Reference

<?>

Apache

APGETREQUEST
APREDI RECT

Preprocessor

I AUTOPRI NT
I HTTPHEADER
I PROFI LE

Debugging
DUMP

Returns the internal Apache request object
Redirects to another URL internally

Controls automatic output of HTML code
Dynamic generation of aHT TP header
Initiate generation of profiling code

Dumps preformatted contents of data structures

28

Command Groups

Alphabetical Reference <?#>

Alphabetical Reference
#

Type
Multi Line Comment

Syntax
<H>

<?/ #>

Description
This block command realizes a multiline comment. Simple comments are
introduced with asingle # sign, so you can only comment one line with them.

All text inside a <?#> block will be treated as a comment and will be ignored.
Nesting of <?#> isallowed.

Example
Thisis asimple multi line comment.

<>
This text will be ignored.
All CIPP tags too.
So this is no syntax error
<?IF foo bar>

<?/ #>

You may nest <?#> blocks:

<PH>
bla foo
<PH>
foo bar
<?/ #>
<?/ #>

Alphabetical Reference 29

CIPP Command Reference <?A>

A
Type
HTML Tag Replacement
Syntax
<?A HREF=hyper | i nked_obj ect _nane[#anchor]
[additional _<A>_paraneters ...] >
<21 A>
Description
This command replaces the <A>HTML tag. You will need thisin a new.spirit
environment to set alink to a CIPP CGI or HTML object.
Parameter
HREF
This parameter takes the name of the hyperlinked object. You may
optionally add an anchor (which should be defined using <A NAME> in the
referred page) using the # character as a delimiter.
This paremeter is expected asan URL in CGI::CIPP or Apache::CIPP
environments and in dot-separated object notation in a new.spirit
environment.
addi ti onal _<A>_paraneters
All additional parameters are taken into the generated <A> tag.
Example

Textual link to "MSG.Main’, in a new.spirit environment.
<?A HREF="MSG Mai n“>Back to the main menu<?/ A>

Image link to ' /main/menu.cgi’, in a CGl::CIPP or Apache::CIPP environ-
ment:

<?A HREF="/mai n/ menu. cgi “>
<?I MG SRC="/i mages/ | ogo. gi f* BORDER=0>
<?/ A>

30

Alphabetical Reference

Alphabetical Reference <?APGETREQUEST>

APCGETREQUEST

Type
Apache

Syntax
<?APGETREQUEST [My] VAR-=request_variable >

Description
This command is only working if CIPPis used as an Apache module.

It returns the internal Apache reguest object, so you can use A pache specific
features.

Parameter

VAR
This is the variable where the request object will be stored.

MY
If you set the MY switch, the created variable will be declared using 'my’.
Its scope reaches to the end of the block which surrounds the
APGETREQUEST command.

Example

The Apache request object will be stored in the implicitely declared variable
Sar.

<?APGETREQUEST MY VAR=$ar >

Alphabetical Reference 31

CIPP Command Reference <?APREDIRECT>

APREDI RECT

Type
Apache

Syntax
<?APREDI RECT URL=new_URL >

Description
This command is only working if CIPPis used as an Apache module.

It resultsin an interna Apache redirect. That means, the new url will be’ exe-
cuted” without notifying the client about this.

Parameter

URL
This expression is used for the new URL.

Note:

The program which uses <? APREDI RECT> should not produce any outpuit,
otherwise this may confuse the webserver or the client, if more then one
HTTP header is sent. So you should use <? AUTOPRI NT OFF> at the top of
the program to circumvent that.

Example
This commands redirect internally to the homepage of the corresponding web-
site:

<?AUTOPRI NT OFF>
<?APREDI RECT URL="/*">

32

Alphabetical Reference

Alphabetical Reference <?AUTOCOMMIT>

AUTOCOMM T

Type
SQL

Syntax
<?AUTOCOW T (ON | OFF)
[DB=dat abase_nane]
[DBH=dat abase_handl e]
[THROMexception] >

Description

The<? AUTOCOVM T> command corresponds directly to the underlying DBI
AutoCommit mechanism.

If AutoCommit is activated each SQL statement will implicitely be executed
in its own transaction. Think of a <? COMMT> after each statement. Explicite
use of <?COMM T> or <?ROLLBACK> isforbidden in AutoCommit mode.

If AutoCommit is deactivated you have to call <?COVMM T> or <?ROLL-
BACK> yourself. CIPP will rollback any uncommited open transactions at the
end of the program.

Parameter

ON| OFF
Switch AutoCommit modus either on or off.

DB
Thisisthe CIPP internal name of the database for this command. In
CGlI::CIPP or Apache::CI PP environment this name hasto be defined inthe
appropriate global configuration. In a new.spirit environment thisis the
name of the database configuration object in dot-separated notation.

If DB is ommited the project default database is used.

DBH

Use this option to pass an existing DBI database handle, which should used
for this SQL command. You can’t use the DBH option in conjunction with
DB.

Alphabetical Reference 33

CIPP Command Reference <?AUTOCOMMIT>

THROW
With this parameter you can provide a user defined exception which should
be thrown on failure. The default exception thrown by this statement is
autocommi t.

If the underlying database is not capable of transactions (e.g. MySQL)
setting AutoCommit to ONwill throw an exception.

Example
Switch AutoCommit on for the database 'foo’.

<?AUTOCOMM T ON DB="fo0">
Switch AutoCommit off for the database 'bar’ and throw the user defined
exception 'myautocommit’ on failure.

<?AUTCCOMM T OFF DB="bar“ THROW"myautocomm t*“>

Alphabetical Reference

Alphabetical Reference <?IAUTOPRINT>

' AUTOPRI NT

Type
Preprocessor

Syntax
<?! AUTOPRI NT OFF>

Description

With the <?! AUTOPRI NT OFF> command the preprocessor can be advised
to suppress the generation of print statements for non CIPP blocks. The
default setting is ON‘and it is only possible to switch it OFF and not the other
way around.

In earlier versions of CIPP this command was hamed <? AUTOPRI NT>. This
notation is depreciated, but will work for compatability reasons.

Parameter

OFF

Automatic generation of print statements for non CIPP blocks will be
deactivated.

Note

Thisis apreprocessor command. Please read the chapter about preprocessor
commands for details about this.

You should use this command at the very top of your program file. CIPP will
not generate any HTTP headersfor you, if you use <?! AUTOPRI NT OFF>,
S0 you have to do this on your own. If you only want to generate a special
HTTP header, use <?! HTTPHEADER> instead.

The ,,CIPP Introduction” Chapter contains a paragraph about CIPP Preproces-
sor Commands. Please refer to this discussion for details of <?! AUTO-
PRI NT>.

Alphabetical Reference 35

CIPP Command Reference <?!AUTOPRINT>

Example
This program sends a GIF image to the client, after generating the proper
HTTP header. (For another example, see <? APREDI RECT>)

<?AUTOPRI NT OFF>
These lines will never be printed, they are fully

i gnored!!!

<?PERL>
ny $file = “/tnp/image.gif";
ny $size = -s $file;

print “Content-type: image/gif\n“;
print “Content-length: $size\n\n“;

open (A F, $file) or die “can’t open $file";
while (<G@F>) {
print;
}
close A F;
<?/ PERL>

36

Alphabetical Reference

Alphabetical Reference <?BLOCK>

BLOCK

Type
Variables and Scoping

Syntax
<?BLOCK>

<?/ BLOCK>
Description

Use the <?BLOCK> command to divide your program into logical blocksto
control variable scoping. Variables declared with <?MY> inside a block are
not valid outside.

Example
The variable $example does not exist beyond the block.

<?BLOCK>
<?MY $exanpl e>
$exanpl e i s known.
<?/ BLOCK>

$exanpl e does not exist here. This will
result in a Perl conpiler error, because
$exampl e is not declared here.

Alphabetical Reference 37

CIPP Command Reference <?CATCH>

CATCH

Type
Exception Handling

Syntax
<?CATCH [THROWexception]
[W]
[EXCVAR=vari abl e_f or _exception]
[MSGVAR=variable_for_error_nessage | >
<?/ CATCH>
Description

Typicaly a<?CATCH> block follows after a<?TRY> block. You can process
one particular or just any exception with the <? CATCH> block.

<?CATCH> and <?TRY> hasto be placed inside the same block.

See the description of <? TRY> for details about the CIPP exception handling
mechanism.

Parameter

THROW
If this parameter is omitted, all exceptions will be processed here.
Otherwise the <? CATCH> block is executed only if the appropriate
exception was thrown.

EXCVAR
Names the variable, where the exception identifier should be stored in.
Usefull if you use <? CATCH> for a generic exception handler and omitted
the THROWparameter.

MSGVAR
Name the variable, where the error message should be stored in.

MY
If you set the MY switch the created variable will be declared using ' my’. Its
scope reaches to the end of the block which surrounds the <? CATCH>
command.

38 Alphabetical Reference

Alphabetical Reference <?CATCH>

Example
We try to insert arow into a database table, which has a primary key defined,
and commit the transcation. We catch two exceptions: the possible primary
key constraint violation and a possible commit exception, maybe the database
is not capable of transactions.

<?TRY>
<?SQL SQ.=“insert into persons
(firstname, |astnane)
val ues (’John’, ’Doe’)"><?/SQL>
<?COWM T>
<?/ TRY>

<?CATCH THROWEsgl MY MSGVAR=$nmessage>
<?LOG MSG="Can’t insert data: $nessage”
TYPE="dat abase" >
<?/ CATCH>

<?CATCH THROWEcommi t MSGVAR=$nmessage>
<?LOG MSG="COMM T rejected: $nessage”
TYPE="dat abase" >
<?/ CATCH>

Alphabetical Reference 39

CIPP Command Reference <?COMMIT>

COWM T

Type
SQL

Syntax
<?COM T [DB=dat abase_nane]

[DBH=dat abase_handl e]
[THROMexception] >

Description

The <?COVM T> command concludes the actual transaction and makes all
changes to the database permanent.

Using <?COVM T> in <? AUTOCOMM T ON> modeis not possible.

If you are not in <? AUTOCOMM T ON> mode a transaction begins with the
first SQL statement and end either with a<? COVM T> or <? ROLLBACK>
command.

Parameter

DB
Thisisthe CIPP internal name of the database for this command. In
CGlI::CIPP or Apache::CI PP environment this name hasto be defined inthe
appropriate global configuration. In a new.spirit environment thisis the
name of the database configuration object in dot-separated notation.

If DB is ommited the project default database is used.

DBH
Use this option to pass an existing DBI database handle, which should used
for this SQL command. You can’t use the DBH option in conjunction with
DB.

THROW
With this parameter you can provide a user defined exception which should
be thrown on failure. The default exception thrown by this statement is
commi t.

If the underlying database is not capable of transactions (e.g. MySQL)
execution of this command will throw an exception.

40

Alphabetical Reference

Alphabetical Reference <?COMMIT>

Example
We insert arow into a database table and commit the change immediately. We
throw a user defined exeption, if the commit fails. So be safe we first disable

AutoCommiting.

<?AUTCCOM T COFF>

<?SQ@Q SQ@.="insert into foo (num str)
val ues (42, 'bar’);“>

<?/ SQL>

<?COM T THROW“ COMM T_Excepti on“>

Alphabetical Reference 41

CIPP Command Reference <?CONFIG>

CONFI G

Type
Import

Syntax

<?CONFI G NAME=config_file
[RUNTIME | [NOCACHE]
[THROMexception] >

Description

The <? CONFI G> command reads a config file. Thisis done viaamechanism
similar to Perl’srequire, so the config file has to be pure Perl code defining
global variables.

<?CONFI G> ensures aproper load of the configuration file even in persistent
Perl environments.

In contrast to “require” <?CONFI G> will reload a config file when the file
was altered on disk. Otherwise the file will only be loaded once.

Parameter

NAME
Thisis the name of the config file, expected as an URL in CGI::CIPP or
Apache::CIPP environments and in dot-separated object notationin a
new.spirit environment.

RUNTI ME
This switch makes sense only in a new.spirit environment. If you set it the
NAME parameter will be resolved at runtime, so it can contain variables.
new.spirit will not check the existance of the filein this case. Normally
you'll get a CIPP error message, if the adressed file does not exist.

In CGI::CIPP and Apache::CI PP environments the NAME parameter will
always be resolved at runtime.

42

Alphabetical Reference

Alphabetical Reference <?CONFIG>

NOCACHE
Thisswitchisuseful in persistant Perl environments. It forces <? CONFI G>
to read the config file even if it did not change on disk. You'll need thisif
your config file does some calculations based on the request environment,
e.g. if the value of some variables depends on the clients user agent.

THROW
With this parameter you can provide a user defined exception to be thrown
on failure. The default exception thrown by this statement isconf i g.

An exception will be thrown, if the config file does not exist or is not
readable.

Example

L oad of the configuration file“/lib/general.conf*, with disabled cache, used in
CGil::CIPP or Apache::CIPP environment:

<?CONFI G NAME="/ 1 i b/ gener al . conf“ NOCACHE>

Load of the configuration file object x.custom.general in a new.spirit environ-
ment:

<?CONFI G NAME=" x. cust om gener al “ >

Load of aconfig file with a name determined at runtime, in a new.spirit envi-
ronment, throwing “myconfig* on falure:

<?CONFI G NAME="$config_file* RUNTI ME
THROWE“ myconfi g“ >

Alphabetical Reference 43

CIPP Command Reference <?DBQUOTE>

DBQUOTE
Type
SQL
Syntax
<?DBQUOTE VAR=vari abl e
[M]
[DBVAR=quoted_result_variable]
[DB=dat abase_nane]
[DBH=dat abase_handle] >
Description

<?SQL> (and DBI) has a nice way of quoting parametersto SQL statements
(called parameter binding). Usage of that mechanism is generally recom-
mended (see <?SQL> for details). However if you need to construct your own
SQL statement, <?DBQUOTE> will let you do so.

<?DBQUOTE> will generate the string representation of the given scalar vari-
able asfit for an SQL statement. That is, it takes care of quoting special char-
acteres.

Parameter

VAR
Thisisthe scalar variable containing the parameter you want to be quoted.

DBVAR
Thisoptional parameters takes the variable where the quoted content should
be stored. The surrounding ’ characters are part of the result, if the variable
isnot undef. A value of undef will result in NULL (without the surrounding
"), so the quoted variable can be placed directly in a SQL statement.

If you ommit DBVAR, the name of the target variable is computed by
placing the prefix "db_" in front of the VAR name.

MY
If you set the MY switch the created variable will be declared using ' my’. Its

scope reaches to the end of the block which surrounds the <? DBQUOTE>
command.

Alphabetical Reference

Alphabetical Reference <?DBQUOTE>

DB
Thisisthe CIPP internal name of the database for this command. In
CGlI::CIPP or Apache::CI PP environment this name hasto be defined inthe
appropriate global configuration. In a new.spirit environment thisis the
name of the database configuration object in dot-separated notation.

If DB is ommited the project default database is used.
DBH
Use thisoption to pass an existing DBI database handle, which should used

for this SQL command. You can’t use the DBH option in conjunction with
DB.

Example

This quotes the variable $name, the result will be stored in the just declared
variable $db_name.

<?DBQUOTE MY VAR="$nane“ >

This quotes $name, but stores the result in the variable $quoted_name.
<?DBQUOTE VAR="$name“ MY DBVAR="$quot ed_nane“ >

The quoted variable can be used in a SQL statement this way:

<?SQL SQ@.="insert into persons (nane)
val ues ($quoted_nane)“>

Alphabetical Reference 45

CIPP Command Reference <?DO>

DO

Type
Control Structure

Syntax
<?DO>

<?/ DO COND=condi ti on >

Description

The <?DC> block repeats executing the contained code as long as the condi-
tion evaluates true. The condition is checked afterwards. That means that the
block will always be executed at least once.

Parameter

COND
This takes a Perl condition. Aslong as this condition is true the <?DO>
block will be repeated.

Example
Print “Hello World* $n times. (note: for n=0 and n=1 you get the same result)
<?DC>

Hel | o Wor | d

<?/ DO COND=*--%$n > 0“>

46

Alphabetical Reference

Alphabetical Reference <?DUMP>

DUMP

Type
Debugging

Syntax
<?DUMP $var_1 ... S$var_n>

Description

The <?DUMP> command dumps the contents of the given variables using
Data::Dumper, inside of aHTML <pre></pre> block.

Parameter

$var _1 .. $var_n
The contents of this variables are dumped to STDOUT.

Example
<?DUMP $hash_ref $list_ref>

Alphabetical Reference

47

CIPP Command Reference <?ELSE>

ELSE

Type
Control Structure

Syntax
<?ELSE>

Description

<?ELSE> closes an open <?| F> or <?ELSI F> conditional block and opens
anew block (whichislater terminated by <?/ | F>) . The block isonly exe-
cuted if the condition of the preceding block was evaluated and failed.

<?MY> variables are only visible inside this block.

(Or short: it works as you would expect.)

Example
Only Larry gets a personal greeting message:
<?I F COND="$nane eq 'Larry’ “>
H Larry, you' re wel cone!
<?ELSE>

Hi Stranger!
<?/ 1 F>

48

Alphabetical Reference

Alphabetical Reference <?ELSIF>

ELSI F

Type
Control Structure

Syntax
<?ELSI F COND=condi ti on >

Description

<?ELSI F> closes an open <?| F> or <?ELSI F> conditional block and
opens a new block. The condition is only evaluated if the condition of the pre-
ceding block was evaluated and failed.

<?MY> variables are only visible inside this block.

(Or short: it works as you would expect.)
Parameter

COND
Takes the Perl condition.

Example
Larry and Linus get personal greeting messages:

<?| F COND="$nane eq 'Larry’ “>
H Larry, you' re wel cone!
<?ELSI F COND="$nane eq ' Linus'*“>
Hi Linus, you' re vel komm!
<?ELSE>
Hi Stranger!
<?/1F>

Alphabetical Reference 49

CIPP Command Reference <?FOREACH>

FOREACH

Type
Control Structure

Syntax
<?FOREACH [MY] VAR=runni ng_vari abl e
LI ST=perl _list >
<?/ FOREACH>
Description

<?FOREACH> corresponds directly the Perl foreach command. The running
variable will iterate of the list, executing the enclosed block for each value of
thelist.

Parameter

VAR
Thisisthe scalar running variable.

LI ST
You can write any Perl list here, e.g. using the bracket notation or pass a
array variable using the @ notation.

My
If you set the MY switch the created running variable will be declared using
"my’. Its scope reaches to the end of the block which surrounds the
<?FOREACH> command.

Note: thisisadlightly different behaviour compared to a Perl “foreach my
$var (@list)* command, where the running variable $var isvaid only
inside of the foreach block.

50 Alphabetical Reference

Alphabetical Reference

<?FOREACH>

Example
Counting up to 'three’:
<?FOREACH MY VAR="$cnt*
LI ST="(" one’,

$cnt
<?/ FOREACH>

two

"three')"“>

Alphabetical Reference

51

CIPP Command Reference <?FORM>

FORM

Type
HTML Tag Replacement

Syntax
<?FORM ACTI ON=cqgi _file
[additional <FORM>_paraneters ...] >
<?/ FORW>
Description

<?FORM> generatesaHTML <FORM> tag, setting the ACTI ON option to the
appropriate URL. The request METHOD defaultsto POST if no other valueis
given.

Parameter

ACTI ON
Thisis the name of the form target CGI program, expected as an URL in
CGlI::CIPP or Apache::CIPP environments and in dot-separated object
notation in a new.spirit environment.

addi ti onal _<FORM>_par aneters
All additional parameters are taken over without changes into the produced
<FORM> tag. If you ommit the METHOD parameter it will default to POST.

Example

Creating a named form with a submit button, pointing to the CGI object
“x.login.start”, in a new.spirit environment:

<?FORM ACTI ON="x. | ogi n. start“ NAME="nyf or ni' >
<?I NPUT TYPE=SUBM T VALUE=" Start “>
<?/ FORM>

52 Alphabetical Reference

Alphabetical Reference <?FORM>

Creating a similar form, but the action is written as an URL because we are in
CGil::CIPP or Apache::CIPP environment:

<?FORM ACTI ON="/1 ogi n/ start.cgi“ NAME="nyforni >

<?I NPUT TYPE=SUBM T VALUE=* Start “>

<?/ FORW>

Alphabetical Reference

53

CIPP Command Reference <?FORM>

GETDBHANDLE

Type
SQL

Syntax

<?CGETDBHANDLE [DB=dat abase_nanme] [My]
VAR=handl e_vari able >

Description

This command returns a reference to the internal Perl database handle, which
isthe object references returned by DBl - >connect .

With this handle you are able to perform DBI specific functions which are
currently not directly available through CIPP.

Parameter

VAR
This is the variable where the database handle will be stored.

MY

If you set the MY switch the created variable will be declared using'my’. Its
scope reaches to the end of the block which surrounds the
<?GETDBHANDL E> command.

DB
Thisisthe CIPPinternal name of the database for this command. In
CGlI::CIPP or Apache::CI PP environment this name hasto be defined inthe
appropriate global configuration. In a new.spirit environment thisis the
name of the database configuration object in dot-separated notation.

If DB is ommited the project default database is used.

Example

We get the database handle for the database object 'x.Oracl€’ in a new.spirit
environment and perform a select query using this handle.

Alphabetical Reference

Alphabetical Reference

<?FORM>

Ok, you simply can do thiswith the <?SQL> command, but now you can see

how much work is done for you through CIPP:)

<?GETDBHANDLE DB="MSG Or acl e MY VAR="$dbh*>

<?PERL>
ny $sth = $dbh->prepare (qq{
select n,s from TEST_table
where n between 10 and 20

1)

die “my_sql\t$DBl::errstr* if $DBl::errstr;

$st h- >execut e;

die “my_sql\t$DBl::errstr* if $DBl::errstr;

my ($n, $s);

while (($n, $s) = $sth->fetchrow) {
print “n=$n s=$s
\n“;

}

$st h- >f i ni sh;

die “my_sql\t$DBl::errstr* if $DBl::errstr;

<?/ PERL>

Alphabetical Reference

55

CIPP Command Reference <?GETPARAM>

GETPARAM

Type
Interfaces

Syntax

<?GETPARAM NAME=par anet er _nane
[Mr] [VAR=content_variable] >

Description

With this command you can explicitely get a CGl parameter. Thisisuseful if
your CGI program uses dynamically generated parameter names, so you are
not able to use <?1 NTERFACE> for them.

Refer to <?1 NTERFACE> to see how easy it isto handle standard CGI input
parameters.

Parameter

NAME
Identifier of the CGI input parameter

VAR

This is the variable where the content of the CGI parameter will be stored.
This can be either a scalar variable (indicated through a $ sign) or an array
variable (indicated through a @ sign).

MY

If you set the MY switch the created variable will be declared using'my’. Its
scope reaches to the end of the block which surrounds the <? GETPARAM>
command.

Example

We recieve two parameters, one staticly named parameter and one scalar
parameter, which has a dynamic generated identifier.

<?GETPARAM NAME="Ii st paranf MY VAR=" @i st*“>
<?GETPARAM NAME=“scal ar $name“ MY VAR="“$scal ar“>

56

Alphabetical Reference

Alphabetical Reference <?GETPARAMLIST>

GETPARAMLI ST

Type
Interfaces

Syntax
<?CGETPARAMLI ST [MY] VAR=vari able >

Description

This command returns a list containing the identifiers of al CGI input param-
eters.

Parameter

VAR
Thisisthevariable where the identifiers of all CGI input parameterswill be
stored in. It must be an array variable, indicated through a @ sign.

MY
If you set the MY switch the created list variable will be declared using
"my’. Its scope reaches to the end of the block which surrounds the
<?CGETPARAMLI ST> command.

Example

Thelist of al CGI input parameter identifierswill be stored into the array
variable @input_param_names.

<?CGETPARAMLI ST MY VAR=" @ nput _par am nanes" >

Alphabetical Reference 57

CIPP Command Reference <?GETURL>

GETURL

Type
URL and Form Handling

Syntax

<?CGETURL NAME=obj ect _file
[Mr] VAR=target_variable
[RUNTIME] [THROWMexception] >
[PARAMS=paraneters_vari abl es]
[PAR 1=value_1 ... PAR n=value_n] >

Description

This command returns a URL, optionally with parameters. In a new.spirit
environment you use this to resolve the dot-separated object name to areal
life URL.

In CGI::CIPP and Apache::CI PP environments this is not necessary, because
you work alwayswith real URLs. Neverthelessit a so useful there, becauseiits
powerfull possibilities of generating parmeterized URLSs.

Parameter

NAME
Thisis the name of the specific file, expected as an URL in CGI::CIPP or
Apache::CIPP environments and in dot-separated object notationin a
new.spirit environment.

VAR
Thisis the scalar variable where the generated URL will be stored in. In
earlier versions of CIPP this option was named URLVAR. The usage of the
URLVAR notation isdepreciated, but it works for compatibility reasons. To
prevent from logical errors CIPP throws an error if you use URLVAR and
VAR inside of one command (e.g. to create an URL which containsa
parameter called VAR or URLVAR).

URLVAR
Depreciated. See description of VAR.

58 Alphabetical Reference

Alphabetical Reference <?GETURL>

MY
If you set the MY switch the created variable will be declared using ' my’. Its
scope reaches to the end of the block which surrounds the <? GETURL >
command.

RUNTI ME
This switch makes only sense in a new.spirit environment. The NAME
parameter will be resolved at runtime, so it can contain variables. CIPP will
not check the existance of the filein this case. Normally you get a CIPP
error message, if the adressed file does not exist.

In CGI::CIPP and Apache::CI PP environments the NAME parameter will
always be resolved at runtime.

THROW
With this parameter you can define the exception to be thrown on failure.
The default exception thrown by this statement isget ur | .

An exception will be thrown, if the adressed file does not exist.

PARANS
Thistakes acomma separated list of parameters, which will be encoded and
added to the generated URL . You may pass scalar variables (indicated
through the $ sign) and also array variables (indicated through the @ sign).

With the PARAMS option you can only pass parameters whose values are
stored in variables with the same name (where caseis significant). The
variables listed in PARAMS will be treated case sensitive.

PAR 1..PAR n
Any additional parametersto <? GETURL> are interpreted as named
parametersfor the URL. You can pass scalar and array values this way
(using $ and @). Variables passed this way are seen by the called program
aslower case written variable names, no matter which case you used in
<?GETURL>.

Note

It ishighly recommended to use lower case variable names. Due to historica
reasons CI PP converts parameter names to lower case without telling you
about it. If this ever gets “fixed" and you have uppercase latters, your code
will break. So, use lowercase.

Alphabetical Reference 59

CIPP Command Reference <?GETURL>

Example

We arein a new.spirit environment and produce a tag, pointing to a
new.spirit object (btw: the easiest way of doing thisis the <?| MG> com-
mand):

<?CGETURL NAME="X. | nages. Logo“ MY VAR=$url >
<I MG SRC="$ur| “>

Now we link the CGI script “/secure/messager.cgi“ in a CGl::CIPP or
Apache::CIPP environment. We pass some parameters to this script. (Note the
case sensitivity of the parameter names, we really should use lower case vari-
ables all the time!)

<?VAR MY NAME=$User name>hans<?/ VAR>

<?VAR MY NAME=@ d>(1, 42, 5) <?/ VAR>

<?GETURL NAME="/secure/ messager.cgi“ MY VAR=$url
PARAMS=" $User name, @ d“ EVENT=del et e>

del et e nessagse</ A>

The CGI program “/secure/messager.cgi“ recieves the parameters this way
(note that the $User nane parameter isseen as$User nane, but EVENT is
seen as $event). If you find this confusing, use always lower case variable
names.

<?| NTERFACE | NPUT="$event, $Usernane, @d“>
<?l F COND="$event eq 'delete’ “>
<?MY $id_text>
<?PERL>$id_text = join (“, “ @d)<?PERL>
You are about to delete
$usernanme’s | D s?: $id_text

<?/ 1 F>

Alphabetical Reference

Alphabetical Reference <?HIDDENFIELDS>

H DDENFI ELDS

Type
URL and Form Handling

Syntax
<?HI DDENFI ELDS [PARAMS=par anet er _vari abl es]
[PAR 1=value_1 ... PAR n=value_n] >
Description

This command produces a number of <INPUT TYPE=HIDDEN> HTML
tags, one for each parameter you specify. Use thisto transport a bunch of
parametersviaaHTML form. This command takes care of special characters
in the parameter values and quotes them if necessary.

Parameter

PARANMS
Thistakes acomma separated list of parameters, which will be encoded and
transformed to a<INPUT TY PE=HIDDEN> HTML tag. You may pass
scalar variables (indicated through the $ sign) and also array variables
(indicated through the @ sign).

With the PARAMS option you can only pass parameters whose values are
stored in variables with the same name (where case is significant).

PAR 1..PAR n
Any additiona parametersto <?HI DDENFI ELDS> are interpreted as
named parameters. You can pass scalar and array values thisway (using $
and @). Variables passed thisway are seen by the called program as lower
case written variable names, no matter which case you used in
<?HI DDENFI ELDS>.

Alphabetical Reference 61

CIPP Command Reference <?HIDDENFIELDS>

Example

Thisisaform in anew.spirit environment, pointing to the object
“X.secure.messager”. The two parameters $username and $password are
passed via PARAMS, the parameter “event” is set to “show".

<?FORM ACTI ON=" x. secur e. nessager “>

<?HI DDENFI ELDS PARAMS=" $user nane, $password*
event =" show" >

<I NPUT TYPE=SUBM T VALUE="show nessages"“>

<?/ FORM>

62

Alphabetical Reference

Alphabetical Reference <?HTMLQUOTE>

HTM_QUOTE

Type
URL and Form Handling

Syntax

<?HTMLQUOTE VAR=vari abl e _to_encode
[My] HTM.VAR=t arget _vari able >

Description

This command quotes the content of a variable, so that it can be used inside a
HTML option or <TEXTAREA> block without the danger of syntax clashes.
Thefollowing conversions are done in this order:

& => &anp;
< = <
“ => "
Parameter
VAR

Thisisthe scalar variable containing the parameter you want to be quoted.

HTMLVAR
This non-optional parameter takes the variable where the quoted content
will be stored.

MY
If you set the MY switch the created variable will be declared using ' my’. Its
scope reaches to the end of the block which surrounds the
<?HTMLQUOTE> command.

Example
We produce a <TEXTAREA> tag with a quoted instance of the variable $text.
Note: you can also use the <? TEXTAREA> command for this purpose.

<?HTMLQUOTE VAR="$text“ MY HTMLVAR="$htm _text*“>
<TEXTAREA NAME="t ext“>$ht nl _t ext </ TEXTAREA>

Alphabetical Reference 63

CIPP Command Reference <?IHTTPHEADER>

I HTTPHEADER

Type
Preprocessor

Syntax

<?I HTTPHEADER [MY] VAR=htt p_header_hash_ref >
Perl Code which nmodifies the
http_header_hash_ref variable

<?/ ! HTTPHEADER>

Description

Use this command, if you want to modify the standard HTTP header
response. CIPP generates by default a simple HTTP header of this form:

Content-type: text/htm\n\n

In anew.spirit environment you can define a project wide default HTTP
header extension, e.g. , Pragme: no-cache”, or something similar.

If you want to modify the HTTP header at runtime, you can use this
command. The <?! HTTPHEADER> command switches to Perl context, so
you write Perl code inside the block. The variable you declared with the
VAR option is accessable inside this block and will contain areference to a
hash containing the default HTTP header tags. Your Perl code now can
delete, add or modifiy HTTP header tags.

But be careful: because <?! HTTPHEADER> is a preprocessor command,
the position of the <?! HTTPHEADER> command inside your CIPP
program (even if you useit inside an Include), does not indicate the time,
on which your HTTP header code is executed.

CIPP inserts the code you write in the <?! HTTPHEADER> block at the top
of the generated CGI code, so it is executed before any other code you
wrotein you CIPP program or Include, because the HTTP header must
appear before any content.

Alphabetical Reference

Alphabetical Reference <?!'HTTPHEADER>

So it isnot possible to access any lexically scoped variables declared
outside the <?! HTTPHEADER> block within the block. Usually you
statically add or delete HTTP header fields. Your code may depend on CGI
environment variables, or on aresult of a SQL query, but that's it. If you
want to access configuration variables, you must use the <? CONFI G>
command inside your <?! HTTPHEADER> block.

Note

This command is not implemented for Apache::CIPP and CGlI::CIPP environ-
ments, but you can use it with new.spirit .

Parameter

VAR
The actual HTTP header will be assigned to thisvariable, as areferenceto a
hash. Thiskeys of this hash are the HTTP header tags.

MY
If you set the MY switch the created variable will be declared using ' my’. Its
scope reaches to the end of the <?! HTTPHEADER> block .

Example

A HTTP header is created, which tells proxies how long they may cache the
content of the produces HTML page.

<?! HTTPHEADER MY VAR="$htt p“>
delete a Pragma Tag (rmay be defined
globally in a new spirit environnment)
del ete $http->{Pragna};

read a global config
<?CONFI G NAMVE="x. gl obal “ >

get cache tine
my $cache_tinme = $gl obal::cachable_tinme || 1200;

set Cache-Control header tag
$http->{' Cache-Control '} =
“max- age=$cache_tine, public*;
<?! | HTTPHEADER>

Alphabetical Reference 65

CIPP Command Reference <?IF>

| F

Type
Control Structure

Syntax
<?I F COND=condition >

t . .<?ELSI F COND=condition >]
[<?ELSE>]
;§}IF>

Description

The <?1 F> command executes the enclosed block if the condition is true.
<?ELSE> and <?ELSI F> can be used inside an <?1 F> block in the com-
mon manner.

Parameter

COND
This takes a Perl condition. If this condition is true, the code inside the
<?I| F> block is executed.

Example
Only Larry gets a greeting message here.
<?| F COND="$nane eq 'Larry’ “>

H Larry!
<?/l F>

Alphabetical Reference

Alphabetical Reference <?IMG>

I MG

Type
HTML Tag Replacement

Syntax
<?I MG SRC=i mage_file
[additional _<I M>_paraneters ...] >
Description

A HTML Tag will be generated, whoms SRC option points to the
appropriate image URL.

Parameter

SRC
Thisis the name of the image, expected asan URL in CGlI::CIPP or

Apache::CIPP environments and in dot-separated object notationin a
new.spirit environment.

addi ti onal _<I MG>_par aneters
All additional parameters are taken without changes into the produced

<l MG> tag.

Example
In anew.spirit environment we produce aimage link to another page, setting
the border to 0.

<?A HREF="X. mai n. menu“ >
<?I MG SRC="x. i nages. | ogo* BORDER=0>
<?/ A>

In CGI::CIPP or Apache::CIPP environment we provide an URL instead of a
dot-separated object name.

<?A HREF="/mai n/ menu. cgi “>
<?I MG SRC="/i mages/ | ogo. j pg* BORDER=0>
<?/ A>

Alphabetical Reference 67

CIPP Command Reference <?INCINTERFACE>

| NCI NTERFACE

Type
Interface

Syntax
<?I NCI NTERFACE [| NPUT=list_of variables]
[OPTIONAL=list_of variables
[NOQUOTE=Ilist_of _variables]
[QUTPUT=list_of variables] >

Description

Use this command to declare an interface for an Include file. You can use this
inside the Include file. In order to declare the interface of a CGl filethis, use
the <?1 NTERFACE> command.

You can declare mandatory and optional parameters. Parameters are always
identified by name, not by position likein many programming languages. You
can pass al types of Perl variables (scaars, arrays and hashes, a so refer-
ences). Also you can specify output parameters, which are passed back to the
caller. Even these parameters are named, which requires some getting used to
for most people. However it isvery useful. :)

All input parameters declared this way are visible as the appropriate variables
inside the Include file. They are always declared with ny to prevent name
clashes with other parts of the program.

Parameter

All parameters of <?| NCI NTERFACE> expect a comma separated list of
variables. All Perl variable types are supported: scalars ($), arrays (@and
hashes (%). Whitespaces are ignored. Read the note beneath the NOQUOTE
section about passing non scaar valuesto an Include.

Note: You have to use lower case variable names, because the <?| NCLUDE>
command converts all variable names to lower case.

I NPUT
This parameters takes the list of variables the caller must providein his
<?1 NCLUDE> command (mandatory parameters).

68

Alphabetical Reference

Alphabetical Reference <?INCINTERFACE>

OPTI ONAL
The variables listed here are optional input parameters. They are always
declared with my and visible insidethe Include, but are set toundef , if the
caller ommits them.

OQUTPUT
If you want your Include to pass values back to the caller, list the
appropriate variables here. This variables are declared with my. Set them
everywhere in your Include, they will be passed back automatically.

Note: the name of the variable receiving the output from the include must
be different from the name of the output parameter. Thisisdueto
restrictions of the internal implementation.

NOQUOTE
By default all input parameters are defined by assigning the given value
using double quotes. Thismeansit is possible to pass either string constants
or string expressions to the Include, which are interpreted at runtime, in the
same manner. Often thisis the behaviour you expect.

You haveto list input (no output) parameters in the NOQUOTE parameter if
you want them to be interpreted as areal Perl expression, and not in the
string context (e.g. $i +1 will result in a string containing the value of $i
concatenated with +1 in a string context, but in an incremented $i
otherwise).

Note: Also you haveto list all non-scalar and reference input parameters
here, because array, hash and reference variables are also computed inside a
string context by default, and thisis usually not what you expect.

Note: Maybe thiswill changein future. Listing array and hash parameters
in NOQUOTE will be optional, the default behaviour for those variables will
change, so that they are not computed in string context by default.

Notes

The <?1 NCI NTERFACE> command may occur several timesinside one
Include file. The position inside the source code does not matter. All declara-
tions will be added to an interface accordingly.

If you ommit a<?l NCI NTERFACE> command inside your Include, its inter-
face is empty. That means, you cannot pass any parameters to it. If you try so
thiswill result in an error message at CIPP compile time.

Alphabetical Reference 69

CIPP Command Reference <?INCINTERFACE>

Example

This example declares an interface, expecting some scalars and an array. Note
the usage of NOQUOTE for the array input parameter. The Include also returns
ascalar and an array parameter.

<?1 NCI NTERFACE | NPUT="$f i r st nane, $| ast nane*
OPTI ONAL=" @ d“
OUTPUT="$scal ar, @i st"
NOQUOTE=" @ d*“ >
<?PERL>
$scal ar="returning a scalar”;
@ist= (“returning“, “a“, “list");
<?/ PERL>

The caller may use this <?1 NCLUDE> command. Note that all input parame-
ter names are converted to lower case.

<?| NCLUDE NAME=“/i ncl ude/test.inc"
FI RSTNAME=" Lar r y*
| ast name="Wal | “
| D=*(5, 4, 3)“
MYy
$s=SCALAR
@ =LI ST>

Alphabetical Reference

Alphabetical Reference <?INCLUDE>

| NCLUDE

Type
Import

Syntax
<?| NCLUDE NAME=i ncl ude_narme
[input_paraneter_1=Wertl ...]
[W]
[variable_l1=output_paranmeter_1 ...] >

Description
Use Includes to divide your project into reusable pieces of code. Includes are
defined in separate files. They have awell defined interface due to the
<?1 NCl NTERFACE> command. CIPP performs parameter checking for you
and complain about unknown or missing parameters.

The Include file code will be inserted at the same position you write
<?1 NCLUDE>, inside of a Perl block. Due to this variables declared inside
the Include are not valid outside.

Please refer to the <?1 NCI NTERFACE> chapter to see how parameters are
processed by an Include.

Parameter

NANVE
This is the name of the Include file, expected asan URL in CGI::CIPP or
Apache::CIPP environments and in dot-separated object notationin a
new.spirit environment.

I NPUT- PARAMETERS
You can pass parameters to the Include using the usual
PARAMETER=VAL UE notation. Note that parameter names are converted
to lower case. For more details about Include input parameters refer to the
appropriate section of the <?1 NCI NTERFACE> chapter.

OUTPUT- PARAMETERS
You can recieve parameters from the Include using the notation

{$@4 vari abl e=out put _par anet er

Alphabetical Reference 71

CIPP Command Reference <?INCLUDE>

Note that the name of the output parameters are automatically converted to
lower case. Note also that the caller must not use the same name like the
output parameter for thelocal variable which recieves the output parameter.
That means for the above notation that var i abl e must be different from
out put _par anet er, ignoring the case.

For more details about Include output parameters refer to the appropriate
section of the <?1 NCI NTERFACE> chapter.

MY
If you set the MY switch all created output parameter variables will be
declared using 'my’. Their scope reaches to the end of the block which
surrounds the <?1 NCLUDE> command.

Important note

The actual CIPP implementation doesreally include the Include code at the
position where the <?| NCLUDE> command occurs. This affects variable
scoping. All variables visible at the callers source code where you write the
<?1 NCLUDE> command are also visible inside your Include. So you can use
these variables, although you never declared them inside your Include. Use of
thisfeatureis discouraged, in fact you should avoid the usage of variablesyou
did not declared in your scope.

Short notation

In anew.spirit environment the <?1 NCLUDE> command can be abbreviated
in the following manner:

<?i ncl ude_nane

[input_paraneter_1=Wertl ...]
[W]
[variable_l1=output_paraneter_1 ...] >

Example
See example of <?| NCI NTERFACE>.

72

Alphabetical Reference

Alphabetical Reference <?INPUT>

| NPUT

Type
HTML Tag Replacement

Syntax
<?I NPUT [NAME=par anet er _nane]
[VALUE=par anet er _val ue]
[SRC=i nage_obj ect]
[TYPE=i nput _type] [STICKY[=sticky_var]]
[additional _<I NPUT>_paraneters ...] >
Description

This generatesa HTML <INPUT> tag where the content of the VALUE
option is escaped to prevent HTML syntax clashes. In case of TY PE="radio"
or TYPE="checkbox" in conjunction with the STICKY Option, the state of
the input widget will be preserved.

Parameter

NAME
The name of the input widget.

VALUE
Thisisthe VALUE of the corresponding <INPUT> tag. Its content will be

escaped.

SRC
Thisis the name of the image, expected asan URL in CGlI::CIPP or
Apache::CIPP environments and in dot-separated object notationin a
new.spirit environment.

TYPE
Only the TY PEs ,radio* and ,,checkbox" are specially handled when the
STICKY optionis also given.

Alphabetical Reference 73

CIPP Command Reference <?INPUT>

STI CKY
If this option is set and the TY PE of theinput widget is eiterh , radio” or
»checkbox® CIPP will generate the CHECKED option automaticaly, if the
value of the corresponding Perl variable (whichis$par anmet er _nane
for TYPE="radio" and @par anet er _nanme for TYPE="checkbox")
equals to the VALUE of thiswidget. If you assign avalue to the STICKY
option, thiswill be taken as the Perl variable for checking the state of the
widget. But the default behaviour of deriving the name from the NAME
option will fit most cases.

addi ti onal _<I NPUT>_par aneters
All additional parameters are taken without changes into the generated
<l NPUT> tag.

Note

If you use the STICKY feature in conjuncion with checkboxes, please note
that theinternal implementation may be ineffective, if you handle large check-
box groups. Thisis due theinternal representation of the checkbox valuesasa
list, so agrep is neccesary to check, wheter a checkbox is checked or not. If
you feel uncomfortable about that, use aclassic HTML <INPUT> tag, maybe
with aloop around it, and check state of the checkboxes using a hash.

74

Alphabetical Reference

Alphabetical Reference <?INPUT>

Example
We generatetwo HTML input fields, asimple text and a password field, both
initialized with some values. Also two checkboxes are generated, using the
STICKY feature to initalize their state genericly.

<?VAR MY NAME=S$user nanme>| arry<?/ VAR

<?VAR MY NAME=$password>this is my “password”<?/ VAR>
<?I NPUT TYPE=TEXT S| ZE=40 VALUE=$user nane>

<?I NPUT TYPE=PASSWORD Sl ZE=40 VALUE=$passwor d>

<?VAR MY NAME=$check>42<?/ VAR>

<?| NPUT TYPE=CHECKBOX NAME="check® VALUE="42"
STI CKY> 42

<?| NPUT TYPE=CHECKBOX NAME=*check® VALUE="43"
STl CKY> 43

Thiswill produce the following HTML code:

<I NPUT TYPE=TEXT SI ZE=40 VALUE="larry"“>
<I NPUT TYPE=TEXT Sl ZE=40
VALUE=“t hi s ist ny " password"“>

<I NPUT TYPE=CHECKBOX NAME="check” VALUE="42"
CHECKED>
<I NPUT TYPE=CHECKBOX NAME=“check" VALUE="43">

Alphabetical Reference 75

CIPP Command Reference <?INTERFACE>

| NTERFACE

Type
Interface

Syntax

<?I NTERFACE [I NPUT=Ilist_of_variables]
[OPTI ONAL=Il i st _of _variables] >

Description
This command declares the interface of a CGI program. You can declare man-

datory and optional parameters. Parameters are always identified by their
name. You can recieve scalar and array parameters.

All input parameters declared thisway are visible as the appropriate variables
inside the CGI program. They are always declared with nmy to prevent name
clashes with other parts of the program.

Using <?1 NTERFACE> isoptional, if you are not in’ use strict’ mode. If you
ommit <?| NTERFACE> all actual parameters are passed to your program, no
parameter checking isdonein thiscase. But it is strongly recommended to use
<?1 NTERFACE> because CIPP checks the consistency of your CGlI calls at
runtime.

If you arein’use strict’ mode (which is the default), using <?1 NTERFACE>
is mandatory, because one cannot create lexical variables at runtime. They
must be declared in this manner, so CIPP can add the appropriate decalaration
statements to the generated source code.

Parameter

All parameters of <?| NTERFACE> expect a comma separated list of vari-
ables. Scalars ($) and arrays (@ are supported. Whitespaces are ignored.

Note: It isrecommended that you use lower case variable namesfor your CGI
interfaces, because some CIPP commands for generating URLs (e.g.
<?CGETURL>) convert parameter names to lower case.

I NPUT
This parameters takes the list of variables the caller must pass to the CGlI
program.

76

Alphabetical Reference

Alphabetical Reference <?INTERFACE>

OPTI ONAL
The variables listed here are optional input parameters. They are always
declared with my and visible inside the program, but are set to undef , if
the caller ommits them.

Notes
The <?1 NTERFACE> command may occur several timesinside a CGl pro-
gram, the position inside the source code does not matter. All declarationswill
be added to an interface accordingly.

Example
We specify an interface for two scalars and an array.

<?| NTERFACE | NPUT="$f i r st nane, $I| ast name*“
OPTI ONAL=" @ d“ >

A HTML form which adresses this CGIl program may ook like this (assuming
we arein a CGI::CIPP or Apache::CIPP environment).

<?VAR MY NAME=" @ d“ NOQUOTE>(1, 2, 3, 4) <?/ VAR>

<?FORM ACTI ON="/ user/ save. cgi “>
<?HI DDENFI ELDS PARAMS=" @ d“ >
<P>fir st nane:
<?| NPUT TYPE=TEXT NANME=fir st nanme>
<P>| ast nane:
<?| NPUT TYPE=TEXT NAME=| ast name>
<?/ FORM>

Alphabetical Reference 77

CIPP Command Reference <?LOG>

LOG

Type
Exception Handling

Syntax
<?LOG MsSG=error _nessage
[TYPE=type_of _nessage]
[FI LENAVE=speci al _l ogfile]
[THROWMexception] >

Description

The <?L0OG> command adds a line to the project specific logfile, if no other
filenameis specified. In new.spirit environments the default filename of the
logfileispr od/ | og/ ci pp. | 0g. In CGI::CIPP and Apache::CIPP environ-

ments messages are writtento / t np/ ci pp. 1 og (c: \ t np\ ci pp. | og
under Win32) by default.

Log file entries contain a timestamp, client | P adress, a message type and the
message itself.

Parameter

MSG
Thisis the message.

TYPE

You can use the TYPE parameter to speficy a special type for this message.
Thisissimply astring. You can use this feature to ease logfile analysis.

FI LENAVE

If you want to add this message to a specia logfile you pass the full path of
this file with FI LENAME.

THROW

With this parameter you can provide a user defined exception to be thrown
on failure. The default exception thrown by this statement is| og.

An exception will be thrown, if thelog fileis not writable or the path is not
reachable.

78

Alphabetical Reference

Alphabetical Reference <?LOG>

Example

If the variable $error is set a simple entry will be added to the default logfile.

<?IF COND="$error != 0“>
<?LOG MSG=“internal error: $error“>
<?/ 1 F>

The error message “error in SQL statement” is added to the special logfile
with thepath / t np/ ny. | og. Thisentry is marked with the special type
dber r or. If thisfile is not writable an exception called f i | ei o isthrown.

<?LOG MSG=" error in SQL statement"
TYPE="dberror*“

FI LE=*/ t np/ ny. | og*
THROWE f i | ei 0" >

Alphabetical Reference 79

CIPP Command Reference <?MODULE>

MCDULE

Type
Import

Syntax
<?MODULE NAME=ci pp_per| _nmodul e >

<?/ MODULE>

Description
With this command you define a CIPP Perl Module. Thisworks currently in a
new.spirit environment only.

The generated Perl code will beinstalled in the project specific lib/ folder and
can be imported with the <?REQUIRE> command. Don’t <?USE> for CIPP
Perl modules, because <?REQUIRE> does some database initialization.

Parameter

NAME
Thisis the name of the module you want to use. Nested module names are
delimited by : : .

Itisnot possibleto use avariable or expression for NAME, you must always
use aliteral string here.

80

Alphabetical Reference

Alphabetical Reference

<?MODULE>

Example
<?MODULE NANME="Test :: Modul e*“>

<?SUB NANME=" new' >
<?PERL>
ny $class = shift;
return bl ess {
foo => 1,
}, $cl ass;
<?/ PERL>
<?/ SUB>

<?SUB NAME="“print_foo">
<?PERL>
ny $self = shift;
print $self->{foo}, ,<p>\n“
<?/ PERL>
<?/ SUB>

<?/ MODULE>

Alphabetical Reference

81

CIPP Command Reference <?MY>

MY

Type
Variables and Scoping

Syntax
<?MY [VAR=list_of variables]
variable_ 1 ... variable_N >
Description

This command declares private variables, using the Perl command ny inter-
nally. Their scope reachesto the end of the block which surrounds the <?My>
command, for example only inside a<?I| F> block.

All types of Perl variables (Scalars, Arrays and Hashes) can be declared this
way.
If you want to initialize the variables with a value you must use the <?VAR>

command or Perl commands directly. <?MY> only declares variables. Their
initial valueisundef .

Parameter

VAR
This parameter takes a comma separated list of variable names, that should
be declared. With thisoption it is possible to declare variables which are not
in lower case.

variable_1..variable_N
You can place additionel variables everywhere inside the <? My>
command. This variables are aways declared in lower case notation.

Note:

If you need a new variable for another CIPP command, you can most often
use the MY switch of that command, which declares the variable for you. This
saves you one additional CIPP command and makes your code more readable.

Example
See <?BLOCK>

82 Alphabetical Reference

Alphabetical Reference <?0PTION>

OPTI ON

Type
HTML Tag Replacement

Syntax
<?0PTI ON [VALUE=par anet er _val ue]
[additional _<OPTI ON>_paraneters ...] >
<?/ OPTI ON\>
Description

This command generates aHTML <OPTION> tag, where the text inside the
<OPTION> block isHTML escaped and the VALUE is quoted. The usage of
the <?0PTION> command outside of a<?SELECT> block isforbidden. If the
surrounding <?SELECT> command hasits STICKY option set, the select
state of the options are preserved (see <?SEL ECT> for more information
about the STICKY feature).

Parameter

VALUE
Thisisthe VALUE of the generated <OPTION> tag. Its content will be
escaped.

addi ti onal _<OPTI ON>_par anet ers
All additional parameters are taken over without changes into the produced
<OPTI ON> tag.

Example
See the description of the <?SEL ECT> command for a compl ete example.

Alphabetical Reference 83

CIPP Command Reference <?PERL>

PERL

Type
Control Structure

Syntax
<?PERL [COND=condition] >

<?/ PERL>

Description
With this command you open a block with pure Perl commands. You may
place any valid Perl code inside this block.

You may use the Perl pri nt statement to produce HTML code (or whatever
output you want) for the client.

At the moment, there are only two CIPP commands which are actually sup-
ported inside a <?PERL> block: <?| NCLUDE> and <?SQL>. Support of
more commands will be added in the future.

Parameter

COND
If you set the COND parameter, the Perl block is only executed, if the given
condition istrue.

Example

All occurences of the string 'nt’ in the scalar variable $str will be replaced by
"no thanks'. The result will be printed to the client.

<?PERL>
$text =~ s/nt/no thanks/g;
print $text;

<?/ PERL>

Alphabetical Reference

Alphabetical Reference <?PERL>

If this list contains some elements a string based on the list is generated.

<?PERL COND=“scalar(@ist) != 0“>

nmy ($string, $el ement);

foreach $element (@ist) {

$string .= $el enent;

}

print $string;
<?/ PERL>
OK its easier to use 'join', but it's
only an exanple... :-)

Alphabetical Reference

CIPP Command Reference <?!PROFILE>

I PROFI LE

Type
Preprocessor Command

Syntax
<?!PROFILE { ON | OFF }
[DEEP] >
Description

This preprocessor command controls the generation of profiling code. This
feature is currently experimental, the syntax of the <2 PROFILE> command
may change in future.

If you switch profiling on, CIPP will generate profile code for the rest of the
file, respectively until a<?PROFILE OFF> command occurs. Switching pro-
filing at runtimeis not possible, because the <?' PROFILE> command takes
effect on the preprocessor.

Currently two tasks are profiled: SQL statements and Include executions. If

profiling is switched on, you'll get alineon STDERR for every executed SQL
and Include command, which contains the corresponding execution time. You
need the Perl module Time::HiResinstalled on your system if you want to use

profiling.
Parameter
ON | OFF

Switch profiling either on or off.

DEEP
If you set the DEEP option, the content all processed Includeswill be
profiled, too. Otherwise only the document itself, where the <? PROFILE>
command stands, will be profiled.

Note that the DEEP switch can produce lots of output.

86

Alphabetical Reference

Alphabetical Reference <?!PROFILE>

Example
Thefollowing SQL Statement and Include will be profiled.

<?! PROFI LE ON>
<?SQ. SQ.="sel ect foo, bla
from Dbar
where baz=?"
PARAMS=" $baz*“
MY VAR="$f oo, $bla“>
$f oo $bl a

<?/ SQL>

<?|1 NCLUDE NAME="/f oo/ bar.inc“>
<?! [/ PROFI LE OFF>

no profiling here
<?| NCLUDE NAME="/bar/fo0o0.inc">

Something like thiswill appear on STDERR and thusin your webserver error

log:

PRCFI LE 42421 START

PROFI LE 42421 SQL sel ect foo, baz 0.0178
PROFI LE 42421 | NCLUDE / fool bar.inc 0. 0020

PROFI LE 42421 STOP

The 42421 isthe PID of the serving process, so you can differ between out-
puts of several processes. You see the head of each SQL statement and the
name of an Include, followed by the execution time in seconds.

You can use the PROFILE option of the <?SQL> command to replace the out-
put of the SQL statement with a user defined label. See <?SQL > for details.

Alphabetical Reference 87

CIPP Command Reference <?REQUIRE>

REQUI RE

Type
Import

Syntax
<?REQUI RE NAMVE="ci pp_per| _nodul e* >

Description

This command imports a module which was created with new.spirit in con-
junction with the <?MODUL E> command. You can’t import other Perl mod-
ules, because <?REQUIRE> executes CIPP specific initialization code to
establish database connections, if they’re needed by the module.

<?REQUIRE> uses internally the Perl command 'require’ to import the mod-
ule. So CIPP Perl Modules are unable to export symbols to the callers
namespace. You haveto fully quallify function names, or write OO style mod-
ules.

Parameter

NANVE

Thisis the name of the module you want to use. Nested module names are
delimited by : : . Thisisthe name of the module you provided with the
<?MODULE> command.

You may also place a scalar variable here, which contains the name of the
module. So it is possible to load modules dynamically at runtime.

Example

refer to the description of <?MODULE> to see
the inplementation of the Test:: Mdul e nmodul e.
<?REQUI RE NAME="Test : : Mbdul e“ >

<?PERL>
my $t = new Test:: Modul e;
$t->print_foo;

<?/ PERL>

88

Alphabetical Reference

Alphabetical Reference <?ROLLBACK>

ROLLBACK

Type
SQL

Syntax
<?ROLLBACK [DB=dat abase_nane]

[DBH=dat abase_handl e]
[THROMexception] >

Description

The <?ROLLBACK> command concludes the actual transaction and cancels
all changes to the database.

Using <?ROLLBACK> in <?AUTOCOMM T ON> modeis not possible.

If you are not in <? AUTOCOMM T ON> mode a transaction begins with the
first SQL statement and ends either with a <? COVM T> or <?ROLLBACK>
command.

Parameter

DB
Thisisthe CIPP internal name of the database for this command. In
CGlI::CIPP or Apache::CI PP environment this name hasto be defined inthe
appropriate global configuration. In a new.spirit environment thisis the
name of the database configuration object in dot-separated notation.

If DB is ommited the project default database is used.

DBH
Use this option to pass an existing DBI database handle, which should used
for this SQL command. You can’t use the DBH option in conjunction with
DB.

THROW
With this parameter you can provide a user defined exception which should
be thrown on failure. The default exception thrown by this statement is
rol | back.

If the underlying database is not capable of transactions (e.g. MySQL)
execution of this command will throw an exception.

Alphabetical Reference 89

CIPP Command Reference <?ROLLBACK>

Example
We insert arow into adatabase table and rollback the change immediately. We
throw a user defined exeption, if the rollback fails, maybe the database is not

capable of transactions.
<?SQ SQ.="insert into foo (num str)
val ues (42, 'bar’);"“>

<?/ SQL>
<?ROLLBACK THROA:“ ROLLBACK Excepti on“>

0

Alphabetical Reference

Alphabetical Reference <?SAVEFILE>

SAVEFI LE

Type
Interface

Syntax
<?SAVEFI LE FI LENAVE=server_si de_fil enane
VAR=upl oad_f ornul ar _vari abl e
[SYMBOLIC]
[THROWMexception] >

Description

This command saves a file which was uploaded by a client in the webservers
filesystem.

Parameter

FI LENAME
Thisis the fully qualified filename where the file will be stored.

VAR
Thisisthe identifier you used in the HTML form for the filename on client
side, the value of the <INPUT NAME> parameter) .

SYMBOLI C
If this switch is set, VAR isthe name of the variable which contains the
<INPUT TYPE=FILE> identifier. Usethisif you want to determine the
name of the field at runtime.

THROW
With this parameter you can provide a user defined exception which should
be thrown on failure. The default exception thrown by this statement is
savefile.

Note

The client side file upload will only function proper if you set the encoding
type of the HTML form to ENCTYPE="nul ti part/f or m dat a“. Oth-
erwise you will get a exception, that the file could not be fetched.

Alphabetical Reference 91

CIPP Command Reference <?SAVEFILE>

There is another quirk you should notice. The variable which correspondsto
the<INPUT NAME> option in thefile upload formisa GLOB reference (due
to the internal implementation of the CGI module, which CIPP uses). That
means, if you use that variable in string context you get the client side file-
name of the uploaded file. But also you can use the variable as afilehandle, to
read data from the file (thisiswhat <? SAVEFI LE> does for you).

This GLOB thing isusually no problem, aslong asyou don’t pass the variable
asabinding parameter to a<? SQL> command (because you want to store the
client side filename in the database). The DBI module (which CIPP uses for
the database stuff) complains about passing GL OBS as binding parameters.

The solution isto create a new variable assigned from the value of thefile
upload variable enforced to be in string context using double quotes.

<?| NTERFACE | NPUT="$upfi | enane” >
<?MY S$client fil enane>
<?PERL> $client_filenane = “$upfil ename” <?/PERL>

Example
First we provide aHTML form with the file upload field.

<?FORM METHOD=" POST* ACTI ON="/i mage/ save. cgi “
ENCTYPE="nul ti part/form data“>

Fi | eupl oad:

<I NPUT TYPE=FI LE NAME="upfil ename" S| ZE=45>

<I NPUT TYPE=“reset“>

<I NPUT TYPE="submit“ NAME="subnmit“ VALUE="Upl oad">

</ FORW>

The/ i mage/ save. cgi program hasthe following code to store thefile in
the filesystem.

<?SAVEFI LE FI LENAMVE="/t np/ upl oad. t mp*
VAR="upfi | enane"
THROWENY _upl oad>

The same procedure using the RUNTI VE parameter.

<?VAR My=$fi el d_name>upfi |l ename<?/ VAR>
<?SAVEFI LE FI LENAVE="/t np/ upl oad. t np*
SYMBOLI C
VAR="$f i el d_nane*
THROWEuUpl oad>

Alphabetical Reference

Alphabetical Reference <?SELECT>

SELECT

Type
HTML Tag Replacement

Syntax
<?SELECT [NAME=par anet er _nane]
[MULTIPLE] [STICKY]
[additional <SELECT>_paraneters ...] >

<?/ SELECT>

Description

This command generates a selection widget providing preservation of the
selection state (similar to the STICKY feature of the <?2INPUT> command).

Parameter

NAME
The name of the formular widget.

MULTI PLE
If thisis set, amulti selection list will be generated, instead of asingle
selection popup widget.

STI CKY
If the STICKY option is set, the <?20PTION> commands inside the
<?SELECT> block preserve their state in generating automatically a
SELECTED option, if the corresponding entry was selected before. Thisis
done in checking the value of the corresponding Perl variable (which is
$par armet er _nane for apopup and @par anet er _nane for
MULTIPLE selection list). If you assign avaueto the STICKY option, this
will be taken as the Perl variable for checking the state of the widget. But
the default behaviour of deriving the name from the NAME option will fit
most cases.

addi ti onal _<SELECT>_par aneters
All additional parameters are taken over without changes into the produced
<SELECT> tag.

Alphabetical Reference 93

CIPP Command Reference <?SELECT>

Note

If you usethe STICKY feature in conjuncion withaMULTIPLE selection list
widget, please note that the internal implementation may be ineffective, if you
handlelargelists. Thisisdue theinternal representation of thelist valuesasan
array, so agrep is neccesary to check, wheter alist entry is selected or not. If
you feel uncomfortable about that, use classic HTML <SELECT> and
<OPTION> tags, maybe with aloop around it, and check state of the check-
boxes using a hash.

Example

Thisisacomplete CIPP program, which provides amulitple selection list and
preserversits state over subsequent executions of the program.

<?1 NCI NTERFACE OPTI ONAL="@i st*“>
<?FORM ACTI ON="sti cky. cgi “>

<?SELECT NAME=“Ilist“ MJLTI PLE STI CKY>
<?0PTI ON VALUE="1">val ue 1<?/ OPTI ON\>
<?O0PTI ON VALUE="2“>val ue 2<?/ OPTI ON\>
<?0PTI ON VALUE="3“>val ue 3<?/ OPTI ON\>
<?/ SELECT>

<?I NPUT TYPE="subnit“ VALUE="send">

<?/ FORM>

94

Alphabetical Reference

Alphabetical Reference <?SQL>

SQ

Type
SQL

Syntax
<?SQL SQ.=sql _st at enment
VAR=l i st _of variables_for_the result]
PARAMS=i nput _par aneter]
W NSTART=st art _row]
W NSI ZE=nunber _of rows_to_fetch]
RESULT=sql _return_code]
DB=dat abase_nane]
DBH=dat abase_handl e]
THROWEexception] >
MY]
PROFI LE=profil e_| abel]

——————————

<?/ SQL>
Description
Use the <?SQL> command to execute arbitrary SQL statementsin a specific

database. You can fetch results from a SELECT query, or simply execute
INSERT, UPDATE or other SQL statements.

When you execute a SELECT query (resp. set the VAR parameter, see below)
the code inside the <?SQL> block will be repeated for every row returned
from the database.

Parameter

SQL
This takes the SQL statement to be executed. A trailing semicolon will be
stripped off.

The statement may contain ? placeholders. They will be replaced by the
expressions listed in the PARAMS parameter. See the PARAMS section for
details about placeholders.

Alphabetical Reference 95

CIPP Command Reference <?SQL>

Thisis an example of asimpleinsert without placeholders.

<?SQL SQ.="insert into foo values (42, 'bar’)“>
<?/ SQL>

VAR
If you set the VAR parameter, CI PP asumes that you execute a SQL
statement which returns aresult set (normally a SELECT statement).

The VAR parameter takes a list of scalar variables. Each variable
corresponds to the according column of theresult set, so the position of the
variablesinside the list isrelevant.

You can use this variable inside the <? SQL> block to access the actual
processed row of the result set. Below the <? SQL> block the variable
contains the values of the last row fetched, even when they are implicitely
declared via a MY switch.

Thisis an example of creating asimple HTML table out of an SQL result
Set.

<TABLE>
<?SQL SQ.="sel ect num str fromfoo"
MY VAR="$n, $s“>
<TR>
<TD>$n</ TD>
<TD>$s</ TD>
</ TR>
<?/ SQL>
</ TABLE>

PARANS
All placeholdersinside your SQL statement will be replaced with the values
given in PARAMS. It expects a comma separated list (white spaces are
ignored) of Perl expressions, normally variables (scalar or array), literals or
constants. The Perl valueundef will betranslated to the SQL value NULL.
The content of the first expression substitutes the first placeholder in the
SQL string, etc.

Alphabetical Reference

Alphabetical Reference <?SQL>

Values of parameters are quoted, if necessary, before substitution. Thisis
the main advantage of PARANS in this context. (You could place the perl
variablesinto the SQL statement as such, but you would have to use
<?DBQUOTE> on them first. Or else.).

Beware that you cannot use placeholders to contain (parts of) SQL code.
The SQL must contain the syntactically complete statement - placeholders
can only contain values. (The main reason for thisis that the SQL statement
is parsed by most databases before the placeholders are substituted. Seethe
DBI manpage for details about placeholders.)

Here are some examples which demonstate the usage of placeholders.

<?VAR MY NAME=$n>42<?/ VAR>

<?VAR MY NAME=$s>Hel | o " Worl d’ <?/ VAR>

<?SQ@Q SQ.="insert into foo values (?, ?, ?)“
PARAMS="$n, $s, time()"“>

<?/ SQL>

<?VAR MY NAME=$wher e_nunr42<?/ VAR>
<?SQL SQ.="select numstr from foo
where num = ?“
PARAMS=" $wher e_nuni >
MY VAR="$col um_n, $colum_s“>
n=$col um_n s=" $col um_s’

<?/ SQL>
<?SQL SQ.="update foo
set str=?
where n=?“
PARAMS=" $s, $where_nuni >
<?/ SQL>
W NSTART

If you want to process only a part of the result set you can specfiy the first
row you want to see with the W NSTART parameter. All rows before the
given W NSTART row will be fetched but ignored. Execution of the
<?SQL> block begins with the W NSTART row.

The row count begins with 1.

Alphabetical Reference 97

CIPP Command Reference <?SQL>

Hereis an example. The first 5 rows will be skipped.

<?SQL SQ.="sel ect num str fromfoo"
MY VAR="$n, $s“

W NSTART=6
n=%$n s=’ $s’

<?/ SQL>
W NSI ZE

Set this parameter to specify the number of rows you want to process. You
can combine this parameter with W NSTART to process a“window" of the
result set.

Thisis an example of doing this (skipping 5 rows, processing 5 rows).

<?SQL SQ.="sel ect num str fromfoo"
MY VAR="$n, $s“
W NSTART=6 W NSI ZE=5
n=$n s='$s’

<?/ SQL>

RESULT
Some SQL statements return a scalar result value, e.g. the number of rows
processed (e.b. UPDATE and DELETE). The variable placed here will take
the SQL result code, if thereis one.

Example:

<?SQ SQ.="delete fromfoo where nunr42“
MY RESULT=$del et ed>

<?/ SQL>

Successfully del eted $del eted rows!

DB
Thisisthe CIPP interna name of the database for this command. In
CGlI::CIPP or Apache::CI PP environment this name hasto be defined inthe
appropriate global configuration. In a new.spirit environment thisis the
name of the database configuration object in dot-separated notation.

If DB is ommited the project default database is used.

Alphabetical Reference

Alphabetical Reference <?SQL>

DBH
Use thisoption to pass an existing DBI database handle, which should used
for this SQL command. You can’t use the DBH option in conjunction with
DB.

THROW
With this parameter you can provide a user defined exception which should
be thrown on failure. The default exception thrown by this statement is

sql .

MY
If you set the MY switch all created variables will be declared using 'my’.
Their scope reaches to the end of the block which surrounds the <? SQL>
command.

PROFI LE
Here you can define a profilelabel for this SQL statement. If you use the
<?'PROFILE> command this label is printed out instead of the head of the
SQL statement. See the chapter of <?!PROFILE> about details.

Breaking the <?SQL > loop
If you want to break the SQL loop of a select statement, simply use this Perl
Code:

<?PERL>
| ast SQ;
<?/ PERL>

Example
Please refer to the examples in the parameter sections above.

Alphabetical Reference 99

CIPP Command Reference <?SUB>

SUB

Type
Control Structure

Syntax

<?SUB NAME=subrouti ne_nane >
<?/ SUB>
Description

This defines the <? SUB> block as a Perl subroutine. You may use any CIPP
commands inside the block.

Generally Includes are the best way to create reusable modules with CIPP. But
sometimes you need real Perl subroutines, e.g. if you want to do some OO
programming.

Parameter

NANE
This is the name of the subroutine. Please refer to the perlsub manpage for
detail s about Perl subroutines.

It isnot possible to declare protoyped subroutines with <? SUB>.

Example
Thisisasubroutine to create atext input field in a specific layout.

<?SUB NAME=print _i nput _fiel d>
Catch the input paraneters
<?MY $l abel $nane $val ue>
<?PERL>
($!l abel , $nanme, $value) = @;
<?/ PERL>

print the text field

<p>

$l abel : </ B>

<?I NPUT TYPE=TEXT SI ZE=40 NAME=$nane VALUE=$val ue>
<?/ SUB>

100

Alphabetical Reference

Alphabetical Reference <?SUB>

You may call this subroutine from every Perl context this way.

<?PERL>
print_input_field ('Firstnane’, 'firstnane’,
"Larry’);
print_input_field ('Lastname’, 'surnane’,
"VMall);
<?/ PERL>

Alphabetical Reference 101

CIPP Command Reference <?TEXTAREA>

TEXTAREA

Type
HTML Tag Replacement

Syntax
<?TEXTAREA [additi onal <TEXTAREA> paraneters ...]>

<?/ TEXTAREA>

Description

This generatesa HTML <TEXTAREA> tag, with aHTML quoted content to
prevent from HTML syntax clashes.

Parameter

addi ti onal _<TEXTAREA> par aneters
There are no specia parameters. All parameters you passto
<?TEXTAREA> are taken in without changes.

Example
This creates a<TEXTAREA> initialized with the content of the variable
$fulltext.

<?VAR MY NANME=$f ul | t ext >HTM. Text </ B><?/ VAR>
<?TEXTAREA NAME=f ul | t ext ROAB=10
COLS=80>%f ul | t ext <?/ TEXTAREA>

This leads to the following HTML code.

<TEXTAREA NAME=f ul | t ext ROW6=10
COLS=80>&l t ; B>HTML Text &l t ; B></ TEXTAREA>

102

Alphabetical Reference

Alphabetical Reference <?THROW>

THROW

Type
Exception Handling

Syntax
<?THROW THROWEexcepti on [MSG=nessage | >

Description
This command throws an user specified exception.

Parameter

THROW
Thisis the exception identifier, asimple string. It isthe criteriafor the
<?CATCH> command.

MSG
Optionally, you can pass a additional message for your exception, eg. a
error message you have got from a system call.

Example
We try to open afile and throw a exception if thisfails.

<?My S$error>
<?PERL>

open (INPUT, '/bar/foo') or $error=$!;
<?/ PERL>

<?| F COND="$error"“>
<?THROW THROW:" open_fi | e*
MSG=“file /bar/foo, S$error“>
<?/l F>

Note

If you want to throw a exception inside a Perl block you can do this with the
Perl di e function. The die argument must follow this convention:

identifier TAB nessage

Alphabetical Reference 103

CIPP Command Reference

<?THROW>

This is the above example using this technique.

<?PERL>
open (INPUT, '/bar/foo’)
or die “open_file\tfile /bar/foo,
<?/ PERL>

$'

104

Alphabetical Reference

Alphabetical Reference <?TRY>

TRY

Type
Exception Handling

Syntax
<?TRY >

<?/ TRY >

Description
Normally your program exits with a general exception message if an error/
exception occurs or isthrown explicitely. The general exception handler

which is responsible for this behaviour is part of any program code which
CIPP generates.

You can provide your own exception handling using the <? TRY> and
<?CATCH> commands.

All exceptions thrown inside a <? TRY> block are caught. You can use a sub-
sequent <? CATCH> block to process the exceptions to set up your own
exception handling.

If you ommit the <? CATCH> block, nothing will happen. You never see
something of the exception, it will be fully ignored and the program works on.

Example

We try to insert arow into a database table and write alog file entry with the
error message, if the INSERT fails.

<?TRY>
<?SQL SQ.="insert into foo values (42, 'bar’)“>
<?/ SQL>

<?/ TRY>

<?CATCH THROWE“i nsert“ MY MSGVAR="$nsg“>
<?LOG M5G="unable to insert row, $msg"
TYPE="dat abase" >
<?/ CATCH>

Alphabetical Reference 105

CIPP Command Reference <?URLENCODE>

URL ENCCDE

Type
URL and Form Handling

Syntax
<?URLENCODE VAR=unencoded vari abl e
[My] ENCVAR=encoded_vari able >

Description
Usethis command to URL encode the content of a scalar variable. Parameters
passed via URL always have to be encoded this way, otherwise you risk syn-
tax clashes.

Parameter

VAR
Thisis the variable you want to be encoded.

ENCVAR
The encoded result will be stored in this variable.

MY
If you set the MY switch the created variable will be declared using ' my’. Its

scope reaches to the end of the block which surrounds the
<?URLENCODE> command.

Example
In this examplewelink an external CGI script and pass the content of the vari-
able $query after using <? URLENCODE> on it.

<?URLENCODE VAR=$query MY ENCVAR=$enc_query>

find sonething

</ A>

Hint: in CGI::CIPP and Apache::Cl PP environments you &l so can use the
<?A> command for doing this.

Alphabetical Reference

Alphabetical Reference <?USE>

USE

Type
Import

Syntax
<?USE NAME=per| _nodul e >

Description

With this command you can access the extensive Perl module library. You can
access any Perl module which isinstalled on your system.

In anew.spirit environment you can place user defined modulesin the pr od/
I i b directory of your project, which isincluded in the library search path by
default.

If you want to use a CIPP Module (generated with new.spirit and the <?MOD-
UL E> command), use <?REQUIRE> instead.

Parameter

NANE
Thisis the name of the module you want to use. Nested module names are
delimited by : : . Thisisexactly what the Perl use pragma expects (you
guessed right, CIPP simply translates <?USE> to use :-).

Itisnot possibleto use avariable or expression for NAME, you must always
use aliteral string here.

Example
The standard modules File::Path and Text::Wrap are imported to your pro-
gram.

<?USE NAME="“Fil e:: Pat h">
<?USE NAME="Text::Wap">

Alphabetical Reference 107

CIPP Command Reference <?VAR>

VAR

Type
Variables and Scoping

Syntax
<?VAR NAME=vari abl e
[M]
[DEFAULT=val ue]
[NOQUOTE] >

<?/ VAR>

Description
This command defines and optionally declares a Perl variable of any type
(scaar, array and hash). The value of the variable is derived from the content

of the <?VAR> block. You can assign constants, string expressions and any
Perl expressions this way.

It isnot possible to nest the <?VAR> command or to use any CIPP command
inside the <?VAR> block. The content of the <?VAR> block will be evaluated
and assigned to the variable.

Parameter

NANVE
This is the name of the variable. You must specify the full Perl variable
here, including the $, @or %sign to indicate the type of the variable.

These are some examples for creating variables using <?VAR>.

<?VAR NAME=$skal ar>a string<?/ VAR>
<?VAR NAME=@i st e>(1, 2, 3, 4) <?/ VAR>
<?VAR NAME=%hash>(1 => 'a', 2 =>"'b")<?/VAR>

DEFAULT
If you set the DEFAULT parameter, this value will be assigned to the
variable, if the variable is actually undef. In this case the content of the
<?VAR> block will be ignored.

Setting the DEFAULT parameter is only supported for scalar variables.

108

Alphabetical Reference

Alphabetical Reference <?VAR>

You can use this feature to provide default values for input parameters this
way.

<?VAR NAME=$event DEFAULT="show'>$event <?/ VAR>

Hint: you may think there must be aeasier way of doing this. You areright.
:-) We recommend you using this alternative code, the usage of DEFAULT
is deprecated.

<?PERL>
$event || = 'show ;
<?/ PERL>

NOQUOTE
By default the variableis defined by assigning the given value using double
guotes. Thismeansit is possible to assign either string constants or string
expressions to the variable without using extra quotes.

If you do not want the content of <?VAR> block to be evaluated in string
context set the NOQUOTE switch. E.g., so it is possible to assign an integer
expression to the variable.

Thisis an example of using NOQUOTE for an non string expression.

<?VAR MY NAME=$el enent _cnt NOQUOTE>
scalar(@iste)
<?/ VAR>

MY
If you set the MY switch the created variable will be declared using ' my’. Its
scope reaches to the end of the block which surrounds the <?VAR>
command.

Example
Please refer to the examples in the parameter sections above.

Alphabetical Reference 109

CIPP Command Reference <?WHILE>

VH LE

Type
Control Structure

Syntax
<?VWH LE COND=conditi on >

<?/ VWH LE>
Description

This realizes aloop, where the condition is checked first before entering the
loop code.

Parameter

COND
Aslong asthis Perl condition istrue, the <?WHI LE> block will be
repeated.

Example

This createsaHTML table out of an array using <?\WHI LE> to iterate over
thetwo arrays @firstname and @l astname, assuming that they are of identical
size.

<TABLE>
<?VAR MY NAME=$i >0<?/ VAR>
<?WHI LE COND="$i ++ < scal ar (@ ast nane) “>
<TR>
<TD>$| ast nane[$i | </ TD>
<TD>$firstname[$i] </ TD>
</ TR>
<?/ WHI LE>
</ TABLE>

110

Alphabetical Reference

	CIPP Reference Guide
	Copyright 1999-2001 dimedis GmbH, Cologne All Rights Reserved

	Table Of Contents
	CHAPTER 1 CIPP - CGI Perl Preprocessor
	Introduction
	CIPP generates Perl code

	Environments where CIPP can be used
	CGI::CIPP
	Apache::CIPP
	new.spirit

	Basic Syntax Rules
	CIPP command structure
	Case sensitivity of CIPP parameters
	CIPP return parameters
	Context of CIPP commands
	1. HTML
	2. Variable Assignment
	3. Perl

	Add comments to your source

	Error messages
	CIPP errors
	Perl errors

	CIPP preprocessor commands
	1. The <?AUTOPRINT> command causes CIPP not to generate any HTTP headers for you. So the <?ELSE> ...
	2. But even if you print headers there (with „Content-type: text/html“): the HTML block will not ...

	CHAPTER 2 CIPP Configuration
	CGI::CIPP
	Using a extra ScriptAlias
	Using mod_rewrite
	CGI::SpeedyCGI and CIPP::CGI

	Apache::CIPP

	CHAPTER 3 CIPP Command Reference
	Command Groups
	Variables and Scoping
	Control Structures
	Import
	Exception Handling
	SQL
	URL- and Form Handling
	HTML Tag Replacements
	Interface
	Apache
	Preprocessor
	Debugging

	Alphabetical Reference
	#
	A
	APGETREQUEST
	APREDIRECT
	AUTOCOMMIT
	!AUTOPRINT
	BLOCK
	CATCH
	COMMIT
	CONFIG
	DBQUOTE
	DO
	DUMP
	ELSE
	ELSIF
	FOREACH
	FORM
	GETPARAM
	GETPARAMLIST
	GETURL
	HIDDENFIELDS
	HTMLQUOTE
	!HTTPHEADER
	IF
	IMG
	INCINTERFACE
	INCLUDE
	INPUT
	INTERFACE
	LOG
	MODULE
	MY
	OPTION
	PERL
	!PROFILE
	REQUIRE
	ROLLBACK
	SAVEFILE
	SELECT
	SQL
	SUB
	TEXTAREA
	THROW
	TRY
	URLENCODE
	USE
	VAR
	WHILE

